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Abstract
The major goal of the present paper is to construct optical solitons of the Ginzburg–Landau 
equation including the parabolic nonlinearity. Such an ultimate goal is formally achieved 
with the aid of symbolic computation, a complex transformation, and Kudryashov and 
exponential methods. Several numerical simulations are given to explore the influence of 
the coefficients of nonlinear terms on the dynamical features of the obtained optical soli-
tons. To the best of the authors’ knowledge, the results reported in the current study, clas-
sified as bright and kink solitons, have a significant role in completing studies on the Ginz-
burg–Landau equation including the parabolic nonlinearity.
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1 Introduction

Nonlinear partial differential (NLPD) equations have long been regarded as useful tools 
for describing a wide range of phenomena in a variety of scientific disciplines. As mod-
els for exploring real-world phenomena, NLPD equations play a fundamental role in 
the development of the contemporary world. Over the last several decades, one of the 
most significant challenges has been the development of new methods to construct exact 
solutions for NLPD equations. In recent years, several new, more powerful, and effec-
tive approaches have been established to retrieve exact solutions of NLPD equations, 
the sine-Gordon expansion method (Yan 1996; Yıldırım et  al. 2021a, 2021b; Akbar 
et  al. 2021), the ( G�

∕G)-expansion method (Wang et  al. 2008; Bekir 2008; Siddique 
et al. 2021; Bekir et al. 2021), the Sardar sub-equation method (Rezazadeh et al. 2020a, 
2020b; Akinyemi 2021; Akinyemi et al. 2021a), the Kudryashov method (Kudryashov 
2020a, 2020b, 2020c; Hosseini et al. 2021a), and the exponential method (He and Wu 
2006; Ali and Hassan 2010; Hosseini et al. 2020a), are examples to mention.

As it is evident, the nonlinear Schrödinger equation is often used to simulate soliton 
dynamics in nonlinear optics. Many additional models, in contrast to the nonlinear 
Schrödinger equation, can be used as an alternative to such a classical model, for exam-
ple, the Schrödinger–Hirota equation, the Chen–Lee–Liu equation, and many more. In 
the present study, the authors aim to conduct a study on the following Ginzburg–Landau 
equation including the parabolic nonlinearity (Biswas 2018; Arshed et al. 2019; Elboree 
2020)

and acquire its optical solitons using Kudryashov and exponential methods. In Eq.  (1), 
u(x, t) indicates the wave profile, and x and t denote spatial and temporal coordinates, 
respectively. Besides, �1 is the GVD while �4 is the coefficient of nonlinear terms, �5 is the 
coefficient of detuning, and �2 and �3 relate to the parabolic nonlinearity. Optical solitons 
of the GL equation including the parabolic nonlinearity were derived by Biswas in (2018) 
with the help of the semi-inverse method. Arshed et al. (2019) employed the exponential 
method to obtain a series of optical soliton of the GL equation including the parabolic non-
linearity. Elboree (2020) used the exp(−�(�)) method to report optical solitons of the GL 
equation including the parabolic nonlinearity. More works regarding the Ginzburg–Lan-
dau equation and its solitons can be found in Mirzazadeh et al. (2016); Rezazadeh 2018; 
Sulaiman et  al. 2018; Osman et  al. 2019; Hosseini et  al. 2020b; Hosseini et  al. 2021b; 
Ouahid et al. 2021).

Kudryashov and exponential methods have been designed as newly well-established 
methods to derive solitons of NLPD equations. In recent years, these methods have 
achieved much attention, especially from mathematicians and physicists. Akinyemi 
et al. (2021b) used the Kudryashov method to derive solitons of a Schrödinger equation 
involving spatio-temporal dispersions. Nisar et al. (2021) extracted solitons of a popula-
tion equation with the beta-time derivative using the exponential method.

The structure of the present paper is as follows: In Sect.  2, a full description of 
Kudryashov and exponential methods are provided. In Sect.  3, the GL equation 

(1)

i
�u(x, t)

�t
+�1

�2u(x, t)

�x2
+
(
�2|u(x, t)|2 + �3|u(x, t)|4

)
u(x, t)

−
�4

|u(x, t)|2u∗(x, t)

(
2|u(x, t)|2 �

2|u(x, t)|2

�x2
−

(
�|u(x, t)|2

�x

)2
)

− �5u(x, t) = 0,



Optical solitons to the Ginzburg–Landau equation including…

1 3

Page 3 of 11 631

including the parabolic nonlinearity is reduced in a 1D regime using a complex trans-
formation. In Sect. 4, Kudryashov and exponential methods are used to retrieve optical 
solitons of the GL equation including the parabolic nonlinearity. Furthermore, Sect. 4 
presents several numerical simulations to explore the influence of the coefficients of 
nonlinear terms on the dynamical features of the obtained optical solitons. The article is 
concluded in Sect. 5.

2  Kudryashov and exponential methods

The current section gives a full description of Kudryashov and exponential methods. The 
Kudryashov method recommends a series as follows

as the solution of

In series (2), a
i
, i = 0, 1, ...,N are derived later, N is found through the balance principle, 

and K(∈) is

satisfying

From Eqs. (2) and (3), we reach a consistent nonlinear system whose solution leads to soli-
tons of Eq. (3).

Compared to the Kudryashov method, the exponential method seeks the following non-
trivial solution

as the solution of Eq. (3). In Eq. (4), the coefficients are acquired later and N ∈ ℕ.
As before, from Eqs. (4) and (3), we arrive at a consistent nonlinear system whose solu-

tion yields solitons of Eq. (3).

3  The model in its 1D regime

To reduce the governing model in a 1D regime, it is assumed that the model solution has 
the form

where U(∈) indicates the shape of the pulse and
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The above transformation causes

From Eq. (5), one can acquire

Due to the first equation, one can find the soliton speed as

Now, considering Eq. (6) and the transformation U(∈) =
√
V(∈) results in

Using the balance principle, from 
(

dV(∈)

d∈

)2

 and V4(∈) in Eq. (7), it is found that

4  The model and its solitons

In the current section, Kudryashov and exponential methods are applied to acquire optical 
solitons of the GL equation including the parabolic nonlinearity. Furthermore, the present 
section gives several numerical simulations to explore the influence of the coefficients of 
nonlinear terms on the dynamical features of the obtained optical solitons.

4.1  Employing the Kudryashov method

Based on Eqs. (2) and (8), the solution of Eq. (7) takes the following form

where a0 and a1 are unknown, and K(∈) has been defined in Sect. 2. After inserting Eq. (9) 
into Eq. (7), we reach a consistent nonlinear system as follows
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whose solution gives:
Case 1:

Thus, the following optical soliton to the GL equation including the parabolic nonlinearity 
is derived

where

Case 2:
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Accordingly, the following optical soliton to the GL equation including the parabolic 
nonlinearity is acquired

where
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Fig. 1  a 3D representation of ||u1(x, t)|| for Set 1; b 3D representation of ||u1(x, t)|| for Set 2; c 3D representa-
tion of ||u1(x, t)|| for Set 3
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Several numerical simulations are presented in Fig.  1 to explore the influence of the 
coefficients of nonlinear terms on the dynamical features of ||u1(x, t)|| . The following sets

Set 1 ∶
{
A = 0.1,B = 0.5, a1 = 1, �3 = 1, �4 = 1, �5 = 1, k = 0.03

}
,

Set 2 ∶
{
A = 0.1,B = 0.5, a1 = 1, �3 = 2, �4 = 1, �5 = 1, k = 0.03

}
,

Set 3 ∶
{
A = 0.1,B = 0.5, a1 = 1, �3 = 1, �4 = 1.5, �5 = 1, k = 0.03

}
,

have been used to carry out this goal. A series of bright solitons (nontopological 
waves) are observed in Fig. 1.

4.2  Employing the exponential method

Since N ∈ ℕ , we choose N = 1 . Such a selection leads to

where a0 , a1 , b0 , and b1 are unknown. After setting Eq. (10) in Eq. (7), the following con-
sistent nonlinear system is acquired

whose solution gives
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Consequently, the following optical soliton to the GL equation including the para-
bolic nonlinearity is obtained

where
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Fig. 2  a 3D representation of ||u3(x, t)|| for Set 1; b 3D representation of ||u3(x, t)|| for Set 2; c 3D representa-
tion of ||u3(x, t)|| for Set 3
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Figure 2 presents some numerical simulations to show the influence of the coefficients 
of nonlinear terms on the dynamical features of ||u3(x, t)|| . The following sets

Set 1 ∶
{
a1 = 1, b0 = 1, b1 = 1, �3 = 1, �4 = 1, �5 = 1, k = 0.05, a = 2.7

}
,

Set 2 ∶
{
a1 = 1, b0 = 1, b1 = 1, �3 = 2, �4 = 1, �5 = 1, k = 0.05, a = 2.7

}
,

Set 3 ∶
{
a1 = 1, b0 = 1, b1 = 1, �3 = 1, �4 = 1.5, �5 = 1, k = 0.05, a = 2.7

}
,

have been applied to achieve this aim. Several kink solitons (shock waves) are seen in 
Fig. 2.

5  Conclusion

In the present paper, the authors acquired optical solitons to the Ginzburg–Landau equa-
tion including the parabolic nonlinearity by employing the Kudryashov and exponential 
methods. As a result, a series of optical solitons, classified as bright and kink solitons, to 
the governing model was formally listed. Some numerical simulations were considered to 
examine the influence of the coefficients of nonlinear terms on the dynamical features of 
the obtained optical solitons. The current study’s findings proved the superior performance 
of Kudryashov and exponential methods in dealing with the Ginzburg–Landau equation 
including the parabolic nonlinearity. It is worth mentioning that the authors’ task for future 
works is adopting other well-designed methods (Kilic and Inc 2015, 2017; Inc et al. 2016; 
Tchier et  al. 2016, 2017) to seek new optical solitons of the Ginzburg–Landau equation 
including the parabolic nonlinearity.
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