

MDPI

Article

The Hausdorff–Pompeiu Distance in *Gn*-Menger Fractal Spaces

Donal O'Regan 1,† , Reza Saadati 2,*,† , Chenkuan Li 3,† and Fahd Jarad 4,5,†

- School of Mathematical and Statistical Science, National University of Ireland, University Road, H91 TK33 Galway, Ireland
- ² School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran
- 3 Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
- Department of Mathematics, Cankaya University, Etimesgut, Ankara 06790, Turkey
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- * Correspondence: rsaadati@eml.cc
- † These authors contributed equally to this work.

Abstract: This paper introduces a complete Gn-Menger space and defines the Hausdorff–Pompeiu distance in the space. Furthermore, we show a novel fixed-point theorem for Gn-Menger- θ -contractions in fractal spaces.

Keywords: fixed point; generalized contraction; Hausdorff–Pompeiu distance; iterated function system; *Gn*-Menger fractal space

MSC: 54C40; 14E20; 46E25

1. Introduction and Preliminaries

We begin with the concept of a Gn-Menger space using distributional maps (DMs) and triangular norms. Throughout the entire paper, we let $\mathbb{I} = [0,1]$, $\mathbb{I}^{\circ} = (0,1)$, $\mathbb{R}^{\bullet} = [-\infty, +\infty]$, $\mathbb{J} = [0, +\infty)$ and $\mathbb{J}^{\circ} = (0, +\infty)$. Define the set of distributional maps \mathbb{U}^{+} as the set of all functions $j: \mathbb{R}^{\bullet} \to \mathbb{I}$, denoting $j_{1} = j(i)$, which are left continuous and nondecreasing on \mathbb{R} with $j_{0} = 0$ and $j_{+\infty} = 1$. In addition, let $\partial^{+} \subseteq \mathbb{U}^{+}$ consist of all (proper) mappings $j \in \mathbb{U}^{+}$ for which $\ell^{-}j_{+\infty} = 1$, where $\ell^{-}j_{i}$ means the left limit at the point i. Please refer to [1–3] for more details. Note all proper DMs are the DMs of real random variables (namely, we have $P(|g| = \infty) = 0$ for any random variable g).

In \mho^+ , we define " \leq " as follows:

$$1 \leq \hbar \iff 1_{\tau} \leq \hbar_{\tau}$$

for each τ in \mathbb{R} (partially ordered). For example,

$$hat{\hbar}_{ au} = \left\{ egin{array}{ll} 0, & ext{if } au \in \mathbb{R} - \mathbb{J}^{\circ}, \ 1 - e^{- au}, & ext{if } au \in \mathbb{J}^{\circ}, \end{array}
ight.$$

for $\hbar \in \partial^+$. Note that the function \wp_{τ}^u defined by

$$\wp_{\tau}^{u} = \begin{cases} 0, & \text{if } \tau \leq u, \\ 1, & \text{if } \tau > u, \end{cases}$$

is an element of \mho^+ , and \wp_{τ}^0 is the maximal element in this space (for more information, see [1–3]).

Definition 1 ([1,4]). A continuous triangular norm (CTN) is a continuous binary operation * from \mathbb{I}^2 to \mathbb{I} , such that

Citation: O'Regan, D.; Saadati, R.; Li, C.; Jarad, F. The Hausdorff–Pompeiu Distance in *Gn*-Menger Fractal Spaces. *Mathematics* **2022**, *10*, 2958. https://doi.org/10.3390/math10162958

Received: 10 July 2022 Accepted: 15 August 2022 Published: 16 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Mathematics 2022, 10, 2958 2 of 11

- (a) $\vartheta * \mathfrak{t} = \mathfrak{t} * \vartheta$ and $\vartheta * (\mathfrak{t} * \mathfrak{G}) = (\vartheta * \mathfrak{t}) * \mathfrak{G}$ for all $\vartheta, \mathfrak{t}, \mathfrak{G} \in \mathbb{I}$;
- (b) $\vartheta * 1 = \vartheta$ for all $\vartheta \in \mathbb{I}$;
- (c) $\vartheta * \mathfrak{t} \leq \vartheta' * \mathfrak{t}'$ whenever $\vartheta \leq \vartheta'$ and $\mathfrak{t} \leq \mathfrak{t}'$ for all $\vartheta, \mathfrak{t}, \vartheta', \mathfrak{t}' \in \mathbb{I}$.

Some examples of *t*-norms are:

- (1) $\vartheta *_P \mathfrak{t} = \vartheta \mathfrak{t}$ (the product CTN);
- (2) $\vartheta *_M l = \min{\{\vartheta, l\}}$ (the minimum CTN);
- (3) $\vartheta *_L l = \max{\vartheta + l 1, 0}$ (the Lukasiewicz CTN).

Assume that, for every $\vartheta \in \mathbb{I}^{\circ}$, there exists a $\mathfrak{t} \in \mathbb{I}^{\circ}$ (which is independent of ℓ , but depends on ϑ) such that the following inequality holds

$$\overbrace{(1-1)*\cdots*(1-1)}^{\ell} > 1-\vartheta, \quad \text{for each } \ell \in \{2,3,\ldots\}.$$
(1)

In this case, we say the CTN * has the (D) property (CTND for short).

Definition 2. Let * be a CTN, $U \neq \emptyset$ and ζ be a mapping from U^n to ∂^+ . The ordered tuple $(U, \zeta, *)$ is called a Gn-Menger space if the following conditions are satisfied:

- $(\zeta 1) \zeta_{\tau}^{u_1,\dots,u_n} = \wp_{\tau}^0$ for $\tau \in \mathbb{J}^{\circ}$, if and only if $u_1 = u_2 = \dots = u_n$ and $\tau \in \mathbb{J}^{\circ}$;
- (ζ 2) $\zeta_{\tau}^{u_1,\ldots,u_n}$ is invariant under any permutation of $u_1,\ldots,u_n\in U$ and $\tau\in\mathbb{J}^\circ$;
- $(\zeta 3) \zeta_{\tau}^{u_1,u_1,\dots,u_1,u_2} \ge \zeta_{\tau}^{u_1,u_2,\dots,u_n}$ for every $u_1,\dots,u_n \in U$ and $\tau \in \mathbb{J}^{\circ}$;
- $(\zeta 4) \zeta_{\tau+\varsigma}^{u_1,u_2,\dots,u_n} \geq \zeta_{\varsigma}^{u_1,u_{n+1},\dots,u_{n+1}} * \zeta_{\tau}^{u_{n+1},u_2,\dots,u_n} \text{ for every } u_1,\dots,u_n,u_{n+1} \in U \text{ and } \tau,\varsigma \in \mathbb{J}^{\circ}.$

Moreover, ζ is called a Gn-Menger distance.

For more details about *Gn*-Menger space and distance, see [5–15]. Our results improve and generalize recent results in [16–18].

Example 1. *Define* $\zeta : \mathbb{R}^n \to \partial^+$ *by*

$$\zeta_{\tau}^{u_1,\dots,u_n} = \begin{cases} 0, & \text{if } \tau \in \mathbb{R} - \mathbb{J}^{\circ}, \\ \exp(-\max_{i \neq j,i,j \in \{1,2,\dots,n\}} \{|u_i - u_j|\}/\tau), & \text{if } \tau \in \mathbb{J}^{\circ}. \end{cases}$$

Then, the ordered tuple $(\mathbb{R}, \zeta, *_P)$ *is a Gn-Menger space.*

Clearly, $(\zeta 1)$ and $(\zeta 2)$ are straightforward. For $(\zeta 3)$, let $\tau \in \mathbb{J}^{\circ}$, and since

$$\frac{|u_1 - u_2|}{\tau} \le \frac{\max_{i \neq j, i, j \in \{1, 2, \dots, n\}} \{|u_i - u_j|\}}{\tau},$$

we get

$$\zeta_{\tau}^{u_{1},u_{1}...,u_{1},u_{2}} = \exp\left(-\frac{|u_{1}-u_{2}|}{\tau}\right) \\
\geq \exp\left(-\frac{\max_{i\neq j,i,j\in\{1,2,...,n\}}\{|u_{i}-u_{j}|\}}{\tau}\right) \\
= \zeta_{\tau}^{u_{1},...,u_{n}}.$$

Mathematics 2022, 10, 2958 3 of 11

Regarding ($\zeta 4$), let $\tau, \varsigma \in \mathbb{J}^{\circ}$, and note

$$\zeta_{\zeta}^{u_{1},u_{n+1},\dots,u_{n+1}} *_{p} \zeta_{\tau}^{u_{n+1},u_{2},\dots,u_{n}} \\
= \exp\left(-\frac{|u_{1}-u_{n+1}|}{\zeta}\right) \cdot \exp\left(-\frac{\max_{i\neq j,i,j\in\{2,\dots,n,n+1\}}^{\{|u_{i}-u_{j}|\}}}{\tau}\right) \\
\leq \exp\left(-\frac{|u_{1}-u_{n+1}|}{\zeta+\tau}\right) \cdot \exp\left(-\frac{\max_{i\neq j,i,j\in\{2,\dots,n,n+1\}}^{\{|u_{i}-u_{j}|\}}}{\zeta+\tau}\right) \\
= \exp\left(-\frac{|u_{1}-u_{n+1}| + \max_{i\neq j,i,j\in\{2,\dots,n,n+1\}}^{\{|u_{i}-u_{j}|\}}}{\zeta+\tau}\right) \\
\leq \exp\left(-\frac{\max_{i\neq j,i,j\in\{1,2,\dots,n,n+1\}}^{\{|u_{i}-u_{j}|\}}}{\zeta+\tau}\right) \\
\leq \exp\left(-\frac{\max_{i\neq j,i,j\in\{1,2,\dots,n\}}^{\{|u_{i}-u_{j}|\}}}{\zeta+\tau}\right) \\
= \zeta_{\tau+\varepsilon}^{u_{1},u_{2},\dots,u_{n}}.$$

We would like to point out that the above example also holds for CTN $*_M$. In the following, we show every Gn-Menger space induces a Menger metric space in the sense of Schweizer and Sklar.

Example 2. Let $(U, \zeta, *)$ be a Gn-Menger space. Define the distributional function η on U^2 as

$$\eta_{\tau}^{u,v} = \zeta_{\tau}^{u,v,\dots,v} * \zeta_{\tau}^{v,u,\dots,u},$$

for every $u, v \in U$ and $\tau \in \mathbb{J}^{\circ}$. Then, $(U, \eta, *)$ is a Menger metric space. In fact, it is easy to check that η is a Menger metric (for more references, see [1,9,19]).

(I) Let $\tau \in \mathbb{J}^{\circ}$ and

$$\varrho_{\tau}^{0} = \eta_{\tau}^{u,v}
= \zeta_{\tau}^{u,v,\dots,v} * \zeta_{\tau}^{v,u,\dots,u}$$

so we have

$$\wp_{\tau}^{0} = \zeta_{\tau}^{u,v,\dots,v}$$

and

$$\wp_{\tau}^0 = \zeta_{\tau}^{v,u,\dots,u}.$$

Using (ζ 1), we get u=v. Obviously, the converse is also true.

- (II) From (ζ 2), we have $\eta_{\tau}^{u,v} = \eta_{\tau}^{v,u}$ for every $u, v \in U$ and $\tau \in \mathbb{J}^{\circ}$.
- (III) Let $u, v, w \in U$ and $\tau, \varsigma \in \mathbb{J}^{\circ}$. From ($\zeta 4$), we have

$$\begin{array}{ll} \eta^{u,v}_{\tau+\varsigma} & = & \zeta^{u,v,\dots,v}_{\tau+\varsigma} * \zeta^{v,u,\dots,u}_{\tau+\varsigma} \\ & \geq & \left[\zeta^{u,w,\dots,w}_{\tau} * \zeta^{w,v,\dots,v}_{\varsigma}\right] * \left[\zeta^{v,w,\dots,w}_{\varsigma} * \zeta^{w,u,\dots,u}_{\tau}\right] \\ & = & \left[\zeta^{u,w,\dots,w}_{\tau} * \zeta^{w,u,\dots,u}_{\tau}\right] * \left[\zeta^{w,v,\dots,v}_{\varsigma} * \zeta^{v,w,\dots,w}_{\varsigma}\right] \\ & = & \eta^{u,w}_{\tau} * \eta^{w,v}_{\varsigma}. \end{array}$$

It now follows that $(U, \eta, *)$ is a Menger metric space from (I), (II) and (III).

Mathematics 2022, 10, 2958 4 of 11

Definition 3. Let $(U, \zeta, *)$ be a Gn-Menger space. Assume $\rho \in \mathbb{I}^{\circ}$, $\tau \in \mathbb{J}^{\circ}$ and $u_0 \in U$. We define the open ball with center u_0 and radius ρ as

$$O_{\rho,\tau}^{u_0} = \{u \in U: \ \zeta_{\tau}^{u_0,u,\dots,u} > 1 - \rho \ and \ \zeta_{\tau}^{u,u_0,\dots,u_0} > 1 - \rho\}.$$

Definition 4. *Let* $(U, \zeta, *)$ *be a Gn-Menger space.*

- (1) A sequence $\{u_k\}$ in U is said to be convergent to u in U if, for every $\lambda \in \mathbb{I}^{\circ}$, there exists a positive integer N such that $\zeta_{\tau}^{u,u_k,\dots,u_k} > 1 \lambda$ for every $\tau \in \mathbb{J}^{\circ}$ whenever $k \geq N$.
- (2) A sequence $\{u_k\}$ in U is called a Cauchy sequence if, for every $\lambda \in \mathbb{I}^{\circ}$, there exists a positive integer N such that $\zeta_{\tau}^{u_{k_1},u_{k_2},...,u_{k_n}} > 1 \lambda$ for every $\tau \in \mathbb{J}^{\circ}$ whenever $k_1,...,k_n \geq N$.
- (3) A Gn-Menger space $(U, \zeta, *)$ is said to be complete, if and only if every Cauchy sequence in U is convergent to a point in U.

Lemma 1. Let $(U, \zeta, *)$ be a Gn-Menger space. Then, ζ is continuous on U^n .

Proof. For a fixed n, we let $(u_1, \ldots, u_n) \in U^n$ and $\tau \in \mathbb{J}^{\circ}$. Let $\{(u_{1,k}, \ldots, u_{n,k})\}$ be a sequence in U^n converging to (u_1, \ldots, u_n) . Consider a fixed number $\alpha \in \mathbb{J}^{\circ}$ such that $\alpha < \frac{\tau}{n+1}$. Using $(\zeta 4)$ we derive

$$\zeta_{\tau}^{u_{1,k},\dots,u_{n,k}} \geq \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\tau-\alpha}^{u_{1,u},u_{2,k},\dots,u_{n,k}} \\
= \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\frac{\alpha}{2}+\tau-\frac{3}{2}\alpha}^{u_{1,u_{2,k},\dots,u_{n,k}}} \\
\geq \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\frac{\alpha}{2}}^{u_{2,k},u_{2,\dots,u_{2}}} * \zeta_{\tau-\frac{3}{2}\alpha}^{u_{1,u_{2},u_{3,k},\dots,u_{n,k}}} \\
= \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\frac{\alpha}{2}}^{u_{2,k},u_{2,\dots,u_{2}}} * \zeta_{\frac{\alpha}{2}+\tau-\frac{4}{2}\alpha}^{u_{1,u_{2},u_{3,k},\dots,u_{n,k}}} \\
\geq \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\frac{\alpha}{2}}^{u_{2,k},u_{2,\dots,u_{2}}} * \zeta_{\frac{\alpha}{2}}^{u_{3,k},u_{3,\dots,u_{3}}} * \zeta_{\tau-\frac{4}{2}\alpha}^{u_{1,u_{2},u_{3,u_{4,k},\dots,u_{n,k}}}} \\
\cdot \\
\cdot \\
\geq \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\frac{\alpha}{2}}^{u_{2,k},u_{2,\dots,u_{2}}} * \zeta_{\frac{\alpha}{2}}^{u_{3,k},u_{3,\dots,u_{3}}} \\
* \cdot \cdot \\
\leq \zeta_{\alpha}^{u_{1,k},u_{1},\dots,u_{1}} * \zeta_{\frac{\alpha}{2}}^{u_{2,k},u_{2,\dots,u_{2}}} * \zeta_{\frac{\alpha}{2}}^{u_{3,k},u_{3,\dots,u_{3}}} \\
* \cdot \cdot * \zeta_{\frac{\alpha}{2}}^{u_{n,k},u_{n,\dots,u_{n}}} * \zeta_{\tau-\frac{n+1}{2}\alpha}^{u_{1,u_{2},u_{3,u_{4,k},\dots,u_{n}}}} ,$$

and

$$\begin{array}{lll} \zeta_{\tau}^{u_{1},\dots,u_{n}} & \geq & \zeta_{\alpha}^{u_{1},u_{1,k},\dots,u_{1,k}} * \zeta_{\tau-\alpha}^{u_{1,k},u_{2},\dots,u_{n}} \\ & = & \zeta_{\alpha}^{u_{1},u_{1,k},\dots,u_{1,k}} * \zeta_{\frac{\alpha}{2}+\tau-\frac{3}{2}\alpha}^{u_{1,k},u_{2,k},u_{3},\dots,u_{n}} \\ & \geq & \zeta_{\alpha}^{u_{1},u_{1,k},\dots,u_{1,k}} * \zeta_{\frac{\alpha}{2}}^{u_{2},u_{2,k},\dots,u_{2,k}} * \zeta_{\tau-\frac{3}{2}\alpha}^{u_{1,k},u_{2,k},u_{3},\dots,u_{n}} \\ & = & \zeta_{\alpha}^{u_{1},u_{1,k},\dots,u_{1,k}} * \zeta_{\frac{\alpha}{2}}^{u_{2},u_{2,k},\dots,u_{2,k}} * \zeta_{\frac{\alpha}{2}+\tau-\frac{4}{2}\alpha}^{u_{1,k},u_{2,k},u_{3,k},u_{4,k},u_{4,m,u_{n}}} \\ & \geq & \zeta_{\alpha}^{u_{1},u_{1,k},\dots,u_{1,k}} * \zeta_{\frac{\alpha}{2}}^{u_{2},u_{2,k},\dots,u_{2,k}} * \zeta_{\frac{\alpha}{2}}^{u_{3},u_{3,k},\dots,u_{3,k}} * \zeta_{\tau-\frac{4}{2}\alpha}^{u_{1,k},u_{2,k},u_{3,k},u_{4,m,u_{n}}} \\ & \cdot & \cdot & \cdot & \cdot \\ & \geq & \zeta_{\alpha}^{u_{1},u_{1,k},\dots,u_{1,k}} * \zeta_{\frac{\alpha}{2}}^{u_{2},u_{2,k},\dots,u_{2,k}} * \zeta_{\frac{\alpha}{2},u_{3,k},u_{4,k},\dots,u_{3,k}}^{u_{3,k},u_{4,k},\dots,u_{3,k}} \\ & * \cdots * \zeta_{\frac{\alpha}{2}}^{u_{n},u_{n,k},\dots,u_{n,k}} * \zeta_{\tau-\frac{n+1}{2}\alpha}^{u_{1,k},u_{2,k},u_{3,k},u_{4,k},\dots,u_{n,k}}^{u_{n,k}}. \end{array}$$

We can do this for any n. Letting $k \to \infty$ in the above, we imply by the continuity property of a CTN that

$$\lim_{k \to \infty} \zeta_{\tau}^{u_{1,k},...,u_{n,k}} \geq \zeta_{\tau - \frac{n+1}{2}\alpha}^{u_{1},u_{2},u_{3},u_{4},...,u_{n}}, \tag{2}$$

Mathematics 2022, 10, 2958 5 of 11

and

$$\zeta_{\tau}^{u_1,\dots,u_n} \geq \lim_{k\to\infty} \zeta_{\tau-\frac{n+1}{2}\alpha}^{u_{1,k},u_{2,k},u_{3,k},u_{4,k},\dots,u_{n,k}}.$$
(3)

From (2) and (3), we get by letting α tend to zero that

$$\lim_{k\to\infty}\zeta_{\tau}^{u_{1,k,\dots,u_{n,k}}} = \zeta_{\tau}^{u_{1,\dots,u_n}}, \tag{4}$$

for every $\tau > 0$, which shows the continuity of ζ . \square

2. Fixed-Point Theorem

Lemma 2. Consider the Gn-Menger space $(U, \zeta, *)$ in which * is a CTND. Define $\Xi_{\vartheta, \zeta}: U^n \longrightarrow \mathbb{J}$ by

$$\Xi_{\vartheta,\zeta}(u_1,\ldots,u_n)=\inf\{\tau\in\mathbb{J}^\circ:\zeta_{\tau}^{u_1,\ldots,u_n}>1-\vartheta\},$$

for each $\vartheta \in \mathbb{I}^{\circ}$ and $u_1, \ldots, u_n \in U$. Then, we have the following:

(I) Let $u_1, \ldots, u_n, w_1, \ldots, w_n \in U$. For every $1 \in \mathbb{J}^{\circ}$, there exists $\vartheta \in \mathbb{J}^{\circ}$ such that

$$\Xi_{1,\zeta}(u_1,\ldots,u_n)\leq \sum_{i=1}^n\Xi_{\vartheta,\zeta}(u_j,w_j,w_j,\ldots,w_j)+\Xi_{\vartheta,\zeta}(w_1,\ldots,w_n);$$

- (II) The sequence $\{u_k\}$ is convergent with respect to the Gn-Menger metric ζ , if and only if $\Xi_{\vartheta,\zeta}(u,u_k,\ldots,u_k) \to 0$. Moreover, the sequence $\{u_k\}$ is a Cauchy sequence with respect to the Gn-Menger metric ζ , if and only if it is a Cauchy sequence in $\Xi_{\vartheta,\zeta}$;
- (III) Let $u_{k_1}, u_{k_2}, \ldots, u_{k_n} \in U$, where $k_1, \ldots, k_n \in \mathbb{N}$. For every $1 \in \mathbb{J}^\circ$ there exists $\vartheta \in \mathbb{J}^\circ$ such that for $n \geq 3$,

$$\Xi_{1,\zeta}(u_{k_1},u_{k_2},\ldots,u_{k_n})\leq \sum_{i=1}^{n-2}j\Xi_{\vartheta,\zeta}(u_{k_j},u_{k_{j+1}},\ldots,u_{k_{j+1}})+\Xi_{\vartheta,\zeta}(u_{k_{n-1}},u_{k_n},\ldots,u_{k_n});$$

(IV) A sequence $\{u_k\}$ in the Gn-Menger space U is Cauchy, if and only if, for every $\epsilon \in \mathbb{J}^{\circ}$, there exists a positive integer N such that for every $\epsilon > 0$,

$$\Xi_{1,\zeta}(u_{k_1}, u_{k_2}, \dots, u_{k_2}) \le \epsilon, \tag{5}$$

for all $k_1, k_2 \ge N$.

Proof. (I). For every $l \in \mathbb{I}^{\circ}$, we can find a $\vartheta \in \mathbb{I}^{\circ}$ such that

$$\overbrace{(1-\vartheta)*\cdots*(1-\vartheta)}^{n+1} > 1-1,$$

due to the (D) property. Using ($\zeta 4$), we infer

$$\zeta_{j=1}^{u_1,\dots,u_n} \Xi_{\vartheta,\zeta}(u_j,w_j,w_j,\dots,w_j) + \Xi_{\vartheta,\zeta}(w_1,\dots,w_n) + (n+1)\omega$$

$$\geq \zeta_{\Xi_{\vartheta,\zeta}(u_1,w_1,\dots,w_1)}^{u_1,w_1,\dots,w_1} + \omega * \zeta_{\Xi_{\vartheta,\zeta}(u_2,w_2,\dots,w_2)}^{u_2,w_2,\dots,w_2} + \omega \cdot \cdot \cdot * \zeta_{\Xi_{\vartheta,\zeta}(u_n,w_n,\dots,w_n)}^{u_n,w_n,\dots,w_n} * \zeta_{\Xi_{\vartheta,\zeta}(w_1,w_2,\dots,w_n) + \omega}^{u_1,w_2,\dots,w_n}$$

$$\geq \underbrace{(1-\vartheta)*\dots*(1-\vartheta)}_{1-1}$$

$$> 1-1.$$

for each $\omega \in \mathbb{J}^{\circ}$. Hence,

$$\Xi_{1,\zeta}(u_1,\ldots,u_n)\leq \sum_{i=1}^n\Xi_{\vartheta,\zeta}(u_j,w_j,w_j,\ldots,w_j)+\Xi_{\vartheta,\zeta}(w_1,\ldots,w_n)+(n+1)\omega.$$

Letting ω tend to 0, we get

Mathematics 2022, 10, 2958 6 of 11

$$\Xi_{t,\zeta}(u_1,\ldots,u_n)\leq \sum_{j=1}^n\Xi_{\vartheta,\zeta}(u_j,w_j,w_j,\ldots,w_j)+\Xi_{\vartheta,\zeta}(w_1,\ldots,w_n).$$

- (II). We have $\zeta_{\tau}^{u_1,\dots,u_n} > 1 1 \iff \Xi_{\vartheta,\zeta}(u_1,\dots,u_n) < 1 \text{ for every } 1 \in \mathbb{J}^{\circ}.$
- (III). For every $1 \in \mathbb{I}^{\circ}$, we can find a $\vartheta \in \mathbb{I}^{\circ}$ such that for $n \geq 3$,

$$\underbrace{(1-\vartheta)*\cdots*(1-\vartheta)}_{\underline{2}} > 1-1.$$

Then, we use a similar method in (I) to complete the proof.

(IV). It follows immediately from (II) and (III). □

We let Θ be the family of all onto and strictly increasing mappings $\theta: \mathbb{J}^{\circ} \to \mathbb{J}^{\circ}$ such that $\theta(\rho) < \rho$ for all $\rho \in \mathbb{J}^{\circ}$, and let all distributional maps be in ∂_{+}^{+} . Since $\zeta \in \partial^{+}$ and (ζ 1), we get in a *Gn*-Menger space $(U, \zeta, *)$ that

$$\zeta_{\tau}^{u_1,\dots,u_n} = C$$
, for all $\tau \in \mathbb{J}^{\circ}$ implies $C = \wp_{\tau}^0$.

Lemma 3. Consider the Gn-Menger space $(U, \zeta, *)$ in which * is a CTND. Assume that $\theta \in \Theta$. Then, for $\tau \in \mathbb{J}^{\circ}$

$$\inf\{\theta^k(\tau)\in\mathbb{J}^\circ:\zeta_{\tau}^{u_1,\dots,u_n}>1-\vartheta\}\leq\theta^k(\inf\{\tau\in\mathbb{J}^\circ:\zeta_{\tau}^{u_1,\dots,u_n}>1-\vartheta\}),$$

for each $u_1, \ldots, u_n \in U$, $\vartheta \in \mathbb{I}^\circ$ and $k \in \mathbb{N}$.

Proof. Let $\tau \in \mathbb{J}^{\circ}$ be arbitrary and fixed with $\zeta_{\tau}^{u_1,\dots,u_n} > 1 - \vartheta$. Then, $\theta^k(\tau) \in \mathbb{J}^{\circ}$, and

$$\theta^k(\tau) \ge \inf\{\theta^k(t) \in \mathbb{J}^\circ : \zeta_t^{u_1,\dots,u_n} > 1 - \vartheta\}.$$

This implies that

$$\tau \ge (\theta^k)^{-1} (\inf\{\theta^k(1) \in \mathbb{J}^\circ : \zeta_1^{u_1,\dots,u_n} > 1 - \vartheta\}),$$

as θ^k is onto and strictly increasing. Thus,

$$\inf\{\tau\in\mathbb{J}^{\circ}:\zeta_{1}^{u_{1},\dots,u_{n}}>1-\vartheta\}\geq (\theta^{k})^{-1}(\inf\{\theta^{k}(\mathfrak{k})\in\mathbb{J}^{\circ}:\ \zeta_{1}^{u_{1},\dots,u_{n}}>1-\vartheta\}),$$

which shows that

$$\inf\{\theta^k(\tau)\in\mathbb{J}^\circ:\ \zeta_\tau^{u_1,\dots,u_n}>1-\vartheta\}\leq\theta^k(\inf\{\tau\in\mathbb{J}^\circ:\ \zeta_\tau^{u_1,\dots,u_n}>1-\vartheta\}).$$

Lemma 4. Consider the Gn-Menger space $(U, \zeta, *)$ in which * is a CTND. Assume that $\theta \in \Theta$ and $\{u_k\} \subseteq U$ such that

$$\zeta_{\theta^k(\tau)}^{u_k,u_{k+1},\dots,u_{k+1}} \ge \zeta_{\tau}^{u_1,u_2,\dots,u_2},$$

for all $\tau \in \mathbb{J}^{\circ}$. Then, $\{u_k\}$ is a Cauchy sequence.

Proof. From Lemma 3 and our assumption, we arrive at

$$\begin{split} \Xi_{\mathfrak{k},\zeta}(u_{k},u_{k+1},\ldots,u_{k+1}) &= &\inf\{\theta^{k}(\tau)\in\mathbb{J}^{\circ}:\zeta_{\theta^{k}(\tau)}^{u_{k},u_{k+1},\ldots,u_{k+1}}>1-\mathfrak{k}\}\\ &\leq &\inf\{\theta^{k}(\tau)\in\mathbb{J}^{\circ}:\zeta_{\tau}^{u_{1},u_{2},\ldots,u_{2}}>1-\mathfrak{k}\}\\ &\leq &\theta^{k}(\inf\{\tau\in\mathbb{J}^{\circ}:\zeta_{\tau}^{u_{1},u_{2},\ldots,u_{2}}>1-\mathfrak{k}\})\\ &= &\theta^{k}(\Xi_{\mathfrak{k},\zeta}(u_{1},u_{2},\ldots,u_{2}))\to 0, \end{split}$$

Mathematics 2022, 10, 2958 7 of 11

for every $1 \in \mathbb{I}^{\circ}$. Applying Lemma 2 (II), (III) and (IV), we conclude that $\{u_k\}$ is a Cauchy sequence. \square

We are now ready to present a fixed-point (FP) theorem, with a controller $\theta \in \Theta$, in a complete Gn-Menger space $(U,\zeta,*)$ in which * is a CTND. We say a mapping $\Omega:U\to U$ is a Gn-Menger- θ -contraction if

$$\zeta_{\rho}^{\Omega(\alpha_1),\dots,\Omega(\alpha_n)} \ge \zeta_{\theta(\rho)}^{\alpha_1,\dots,\alpha_n},\tag{6}$$

for every $\rho \in \mathbb{J}^{\circ}$.

Theorem 1. Consider the complete Gn-Menger space $(U, \zeta, *)$ in which * is a CTND. Let the Gn-Menger- θ -contraction Ω satisfy (6) in which $\theta \in \Theta$. Then, Ω has a unique fixed point in U.

Proof. From Lemma 4 and inequality (6), we have that, for each $\alpha \in U$, the sequence $\{\Omega^n(\alpha)\}_{n=1}^{+\infty}$ is Cauchy and $\lim_{k\to +\infty} \Omega^k(\alpha) = \delta \in U$ since U is complete. Applying the following inequality

$$\zeta_{\rho}^{\Omega(\alpha_{1}),\dots,\Omega(\alpha_{n})} \geq \zeta_{\theta(\rho)}^{\alpha_{1},\dots,\alpha_{n}}$$
$$\geq \zeta_{\rho}^{\alpha_{1},\dots,\alpha_{n}}$$

for all $\alpha_1, \ldots, \alpha_n \in U$ and $\rho \in \mathbb{J}^{\circ}$, we conclude the continuity of Ω and so we get

$$\delta = \lim_{n \to +\infty} \Omega^{n+1}(\alpha) = \lim_{n \to +\infty} \Omega(\Omega^n(\alpha)) = \Omega(\lim_{n \to +\infty} \Omega^n(\alpha)) = \Omega(\delta).$$

In addition, inequality (6) also infers the uniqueness. \Box

3. Application to the Gn-Menger-Fractal Space

In [20], Hutchinson considered fractal theory, which was further investigated and generalized by Barnsley [21], Bisht [22], Imdad [23], and Ri [24]. The basic concept of fractal theory is that the iterated function system (IFS) serves as the main generator of fractals. This consists of a finite set of Gn-Menger- θ -contractions $\{\Omega_1, \Omega_2, \ldots, \Omega_m\}$ with $\{m \geq 2\}$, defined in a complete Gn-Menger space $\{U, \zeta, *\}$, satisfying inequality (6). For such an IFS, there is always a unique nonempty compact subset Γ of the complete Gn-Menger space $\{U, \zeta, *\}$, such that $\Gamma = \bigcup_{i=1}^m \Omega_i(\Gamma)$, wherein Γ is a fractal set called the attractor of the respective IFS.

Now, we denote $\mathcal{H}(U)$ as the set of all nonempty compact subsets of the *Gn*-Menger space $(U, \zeta, *)$.

Let $V_j \neq \emptyset$ (j = 1, ..., n-1) be subsets of the *Gn*-Menger space $(U, \zeta, *)$, $u \in U$ and $\tau \in \mathbb{J}^{\circ}$. We define the *Gn*-Menger distance between u and $\{V_1, ..., V_{n-1}\}$ as

$$\zeta_{\tau}^{u,V_{1},\dots,V_{n-1}} = \sup_{v_{j} \in V_{j}, j=1,2,\dots,n-1} \zeta_{\tau}^{u,v_{1},\dots,v_{n-1}}.$$
 (7)

Lemma 5. Consider the Gn-Menger space $(U,\zeta,*)$. Then, for every $u \in U$, $V_j \subset \mathcal{H}(U)$ $(j=1,\ldots,n-1)$ and $\tau \in \mathbb{J}^{\circ}$, we can find $v_{j,0} \in V_j$ such that

$$\zeta_{\tau}^{u,V_{1},\dots,V_{n-1}} = \zeta_{\tau}^{u,v_{1,0},\dots,v_{n-1,0}}.$$
(8)

Proof. Suppose that $u \in U$, $V_j \subset \mathcal{H}(U)$ (j = 1, ..., n-1) and $\tau \in \mathbb{J}^{\circ}$. Since ζ is continuous from Lemma 1, the compactness of V_j (j = 1, ..., n-1) implies that we can find $v_{j,0} \in V_j$ such that

$$\sup_{v_j \in V_j, j=1, 2, \dots, n-1} \zeta_{\tau}^{u, v_1, \dots, v_{n-1}} = \zeta_{\tau}^{u, v_{1,0}, \dots, v_{n-1,0}}, \tag{9}$$

Mathematics 2022, 10, 2958 8 of 11

so

$$\zeta_{\tau}^{u,V_{1},\dots,V_{n-1}} = \zeta_{\tau}^{u,v_{1,0},\dots,v_{n-1,0}}.$$

Lemma 6. Consider the Gn-Menger space $(U, \zeta, *)$. Let $u \in U$, $V_j \subset \mathcal{H}(U)$ (j = 1, ..., n - 1), $\emptyset \neq W \subseteq U$ and $\tau, \zeta \in \mathbb{J}^{\circ}$. Then,

$$\zeta_{\tau+\zeta}^{u,V_{1},\dots,V_{n-1}} \ge \zeta_{\tau}^{u,W,W,\dots,W} * \zeta_{\zeta}^{w_{u},V_{1},\dots,V_{n-1}}, \tag{10}$$

where $w_u \in W$ satisfies $\zeta_{\tau}^{u,W,V_2,...,V_{n-1}} = \zeta_{\tau}^{u,w_u,V_2,...,V_{n-1}}$.

Proof. From Lemma 5, we can find a $w_u \in W$ such that

$$\zeta_{\tau}^{u,W,\dots,W}=\zeta_{\tau}^{u,w_{u},\dots,w_{u}},$$

for every $\tau \in \mathbb{J}^{\circ}$. From Lemma 5 again and ($\zeta 4$), we have

$$\zeta_{\tau+\varsigma}^{u,v_{1},\dots,v_{n-1}} = \zeta_{\tau+\varsigma}^{u,v_{1},v_{2},\dots,v_{n-1}}
\geq \zeta_{\tau}^{u,w_{u},\dots,w_{u}} * \zeta_{\varsigma}^{w_{u},v_{1},\dots,v_{n-1}}
= \zeta_{\tau}^{u,W,\dots,W} * \zeta_{\varsigma}^{w_{u},v_{1},\dots,v_{n-1}}.$$
(11)

Then, the result follows immediately from taking the supremum over $v_j \in V_j$, j = 1, 2, ..., n-1 and inequality (11). \square

We now define the *Gn*-Menger Hausdorff–Pompeiu distance among E_j , j = 1, ..., n, in $\mathcal{H}(U)$ as:

$$Y^{E_{1},...,E_{n}} \zeta^{\alpha}_{\rho}$$

$$= \inf_{\alpha_{1} \in E_{1}} \sup_{\alpha_{j} \in E_{j}, j=2,3,...,n} \zeta^{\alpha_{1},...,\alpha_{n}}_{\rho}$$

$$*_{M} \inf_{\alpha_{2} \in E_{2}} \sup_{\alpha_{j} \in E_{j}, j=1,3,4,...,n} \zeta^{\alpha_{1},...,\alpha_{n}}_{\rho}$$

$$*_{M} \dots$$

$$*_{M} \inf_{\alpha_{n} \in E_{n}} \sup_{\alpha_{j} \in E_{j}, j=1,2,...,n-1} \zeta^{\alpha_{1},...,\alpha_{n}}_{\rho},$$

$$(12)$$

for every $\rho \in \mathbb{J}^{\circ}$, which is equivalent to

$$Y_{\zeta_{\rho}}^{E_{1},...,E_{n}} \xi_{\rho}$$

$$= \inf_{\alpha_{1} \in E_{1}} \zeta_{\rho}^{\alpha_{1},E_{2},E_{3},...,E_{n}}$$

$$*_{M} \inf_{\alpha_{2} \in E_{2}} \zeta_{\rho}^{\alpha_{2},E_{1},E_{3},...,E_{n}}$$

$$*_{M} \dots$$

$$*_{M} \inf_{\alpha_{n} \in E_{n}} \zeta_{\rho}^{E_{1},E_{2},...,E_{n-1},\alpha_{n}},$$
(13)

for every $\rho \in \mathbb{J}^{\circ}$.

Example 3. Consider Example 1 in which $U = \mathbb{R}$. Let $* = *_M$, $E_1 = [e_1, f_1]$, $E_2 = [e_2, f_2]$ and $E_3 = [e_3, f_3]$. Define the Gn-Menger Hausdorff distance as

$$Y_{\rho}^{E_1,E_2,E_3} = \exp\left(-\frac{\max_{i,j\in\{1,2,3\}}\{|e_i - e_j|,|f_i - f_j|\}}{\rho}\right),$$

for all $\rho \in \mathbb{J}^{\circ}$. Then, $(\mathcal{H}(U), Y^{\dot{\zeta}}, *)$ is a Gn-Menger space.

Mathematics 2022, 10, 2958 9 of 11

Clearly, the classical Hausdorff–Pompeiu distance for compact sets $E_1 = [e_1, f_1]$, $E_2 = [e_2, f_2]$ and $E_3 = [e_3, f_3]$ is

$$\max_{i,j \in \{1,2,3\}} \{|e_i - e_j|, |f_i - f_j|\}.$$

Now, using (12), (13), Example 1 and a similar method in ([25] Proposition 3), we have that the *Gn*-Menger Hausdorff distance $Y = \frac{E_1, E_2, E_3}{\zeta}$ is a *Gn*-Menger distance.

Lemma 7. Consider the Gn-Menger space $(U, \zeta, *)$. Then, $(\mathcal{H}(U), Y^{\dot{\zeta}}, *)$ is a Gn-Menger space.

Proof. Clearly, $(\zeta 1)$, $(\zeta 2)$ and $(\zeta 3)$ are straightforward. It only remains to prove $(\zeta 4)$. Suppose that $E_j \in \mathcal{H}(U)$, j = 1, ..., n, $u \in E_1$, and ς , $\tau \in \mathbb{J}^{\circ}$. Let $\emptyset \neq W \subseteq U$. From Lemma 6, we have

$$\zeta_{\tau+\varsigma}^{u,E_2,\dots,E_n} \ge \zeta_{\varsigma}^{u,W,W,\dots,W} * \zeta_{\tau}^{w_u,E_2,\dots,E_n}, \tag{14}$$

where $w_u \in W$ satisfies $\zeta_{\tau}^{u,W,E_2,...,E_n} = \zeta_{\tau}^{u,w_u,E_2,...,E_n}$. Let $\alpha_j \in E_j$, j = 1,2,...,n, and from (ζ 4) we have

$$Y = \prod_{\substack{\alpha_1 \in E_1 \\ \zeta_1 + \tau}} \zeta_{\zeta_1 + \tau}^{\alpha_1, E_2, E_3, \dots, E_n}$$

$$= \inf_{\substack{\alpha_1 \in E_2 \\ \alpha_1 \in E_2 \\ \zeta_2 + \tau}} \zeta_{\zeta_2 + \tau}^{\alpha_2, E_1, E_2, \dots, E_n}$$

$$*_M \inf_{\alpha_2 \in E_2} \zeta_{\zeta_2 + \tau}^{\alpha_2, E_1, E_2, \dots, E_{n-1}, \alpha_n}$$

$$\geq \inf_{\substack{\alpha_1 \in E_1 \\ \zeta_2 \in \mathcal{I}}} \left[\zeta_{\zeta_2}^{\alpha_1, W, W, \dots, W} * \zeta_{\tau}^{w_{\alpha_1}, E_2, E_3, \dots, E_n} \right]$$

$$*_M \inf_{\alpha_2 \in E_2} \left[\zeta_{\zeta}^{\alpha_2, W, W, \dots, W} * \zeta_{\tau}^{w_{\alpha_2}, E_1, E_3, \dots, E_n} \right]$$

$$*_M \dots$$

$$*_M \inf_{\alpha_n \in E_n} \left[\zeta_{\zeta}^{W, W, \dots, W, \alpha_n} * \zeta_{\tau}^{E_1, E_2, \dots, E_{n-1}, w_{\alpha_n}} \right]$$

$$\geq \left[\inf_{\alpha_1 \in E_1} \zeta_{\zeta}^{\alpha_1, W, W, \dots, W} * \inf_{\alpha_2 \in E_2} \zeta_{\zeta}^{\alpha_2, W, W, \dots, W} * \dots * \inf_{\alpha_n \in E_n} \zeta_{\zeta}^{W, W, \dots, W, \alpha_n} \right]$$

$$*_M \left[\zeta_{\tau}^{w_{\alpha_1}, E_2, E_3, \dots, E_n} * \zeta_{\tau}^{w_{\alpha_2}, E_1, E_3, \dots, E_n} * \dots * \zeta_{\tau}^{w_{\alpha_2}, E_1, E_3, \dots, E_n} \right],$$

which gives

$$Y^{E_{1},...,E_{n}} \atop \zeta \atop \zeta \atop \xi^{+\tau} \atop \xi^{-\tau} \atop \zeta} \\ \geq \left[Y^{E_{1},W,...,W}_{\zeta} \right] \atop *_{M} \left[\zeta_{\tau}^{w_{\alpha_{1}},E_{2}^{\zeta},E_{3},...,E_{n}} * \zeta_{\tau}^{w_{\alpha_{2}},E_{1},E_{3},...,E_{n}} * \cdots * \zeta_{\tau}^{w_{\alpha_{2}},E_{1},E_{3},...,E_{n}} \right]. \tag{16}$$

Taking the supremum over (16) for all $w \in W$, we arrive at

Lemma 8. Assume that $(U, \zeta, *)$ is a complete Gn-Menger space. Suppose that $\theta \in \Theta$ and Ω is a Gn-Menger- θ -contraction. Then,

$$Y_{\substack{\zeta \\ \zeta \\ \rho}}^{\Gamma_{\Omega}(E_{1}),\dots,\Gamma_{\Omega}(E_{n})} \geq Y_{\substack{\zeta \\ \theta(\rho)}}^{E_{1},\dots,E_{n}},$$

Mathematics 2022, 10, 2958 10 of 11

for every $E_1, ..., E_n \in \mathcal{H}(U)$ and $\rho \in \mathbb{J}^{\circ}$, and $\Gamma_{\Omega} : \mathcal{H}(U) \to \mathcal{H}(U)$ is also a Gn-Menger- θ -contraction, where $\Gamma_{\Omega}(G) := \Omega(G)$ for every $G \in \mathcal{H}(U)$.

Proof. Consider E_1, \ldots, E_n in $\mathcal{H}(U)$. Using inequality (6) and definition (12), we get

$$\begin{array}{lll} \mathbf{Y}^{\Gamma_{\Omega}(E_{1}),\ldots,\Gamma_{\Omega}(E_{n})} & = & \mathbf{Y}^{\Omega(E_{1}),\ldots,\Omega(E_{n})} \\ \boldsymbol{\zeta}^{\boldsymbol{\zeta}}_{\boldsymbol{\rho}} & = & \inf_{\boldsymbol{\Omega}(\alpha_{1})\in\Omega(E_{1})}\sup_{\boldsymbol{\Omega}(\alpha_{j})\in\Omega(E_{j}),j=2,3,\ldots,n} \boldsymbol{\zeta}^{\Omega(E_{1}),\ldots,\Omega(E_{n})}_{\boldsymbol{\rho}} \\ & = & \inf_{\boldsymbol{\Omega}(\alpha_{2})\in\Omega(E_{2})}\sup_{\boldsymbol{\Omega}(\alpha_{j})\in\Omega(E_{j}),j=2,3,\ldots,n} \boldsymbol{\zeta}^{\Omega(E_{1}),\ldots,\Omega(E_{n})}_{\boldsymbol{\rho}} \\ & *_{M} & \inf_{\boldsymbol{\Omega}(\alpha_{2})\in\Omega(E_{2})}\sup_{\boldsymbol{\Omega}(\alpha_{j})\in\Omega(E_{j}),j=1,3,4,\ldots,n} \boldsymbol{\zeta}^{\Omega(E_{1}),\ldots,\Omega(E_{n})}_{\boldsymbol{\rho}} \\ & *_{M} & \inf_{\boldsymbol{\alpha}_{1}\in E_{1}}\sup_{\alpha_{j}\in E_{j},j=2,3,\ldots,n} \boldsymbol{\zeta}^{\Omega(E_{1}),\ldots,\Omega(E_{n})}_{\boldsymbol{\rho}} \\ & *_{M} & \inf_{\boldsymbol{\alpha}_{2}\in E_{2}}\sup_{\boldsymbol{\Omega}(\alpha_{j})\in\Omega(E_{j}),j=1,3,4,\ldots,n} \boldsymbol{\zeta}^{\Omega(E_{1}),\ldots,\Omega(E_{n})}_{\boldsymbol{\rho}} \\ & *_{M} & \inf_{\boldsymbol{\alpha}_{3}\in E_{n}}\sup_{\boldsymbol{\Omega}(\alpha_{j})\in\Omega(E_{j}),j=1,2,\ldots,n-1} \boldsymbol{\zeta}^{\Omega(E_{1}),\ldots,\Omega(E_{n})}_{\boldsymbol{\rho}} \\ & \geq & \inf_{\boldsymbol{\alpha}_{1}\in E_{n}}\sup_{\boldsymbol{\alpha}_{1}\in E_{n},j=2,3,\ldots,n} \boldsymbol{\zeta}^{\alpha_{1},\ldots,\alpha_{n}}_{\boldsymbol{\theta}(\boldsymbol{\rho})} \\ & *_{M} & \inf_{\boldsymbol{\alpha}_{2}\in E_{2}}\sup_{\boldsymbol{\alpha}_{j}\in E_{j},j=1,3,4,\ldots,n} \boldsymbol{\zeta}^{\alpha_{1},\ldots,\alpha_{n}}_{\boldsymbol{\theta}(\boldsymbol{\rho})} \\ & *_{M} & \cdots \\ & *_{M} & \inf_{\boldsymbol{\alpha}_{n}\in E_{n}}\sup_{\boldsymbol{\alpha}_{j}\in E_{j},j=1,2,\ldots,n-1} \boldsymbol{\zeta}^{\alpha_{1},\ldots,\alpha_{n}}_{\boldsymbol{\theta}(\boldsymbol{\rho})} \\ & = & \mathbf{Y}^{E_{1},\ldots,E_{n}}_{\boldsymbol{\theta}(\boldsymbol{\rho})}, \end{array}$$

for every $\rho \in \mathbb{J}^{\circ}$. \square

Theorem 2. Assume that $(U, \zeta, *)$ is a complete Gn-Menger space in which * is a CTND. Suppose that $\theta \in \Theta$ and Ω is Gn-Menger- θ -contractive. Then, $\Gamma_{\Omega} : \mathcal{H}(U) \to \mathcal{H}(U)$ has a unique fixed point.

Proof. From Lemma 8, Γ_{Ω} is *Gn*-Menger- θ -contractive on $\mathcal{H}(U)$ and so by Theorem 1, Γ_{Ω} has a unique fixed point. \square

Example 4. Consider the complete Gn-Menger space defined in Example 1. Suppose that $\theta(\tau) = \frac{\tau}{1+\tau}$, $\Omega(u) = \frac{u}{3}$ and $\Gamma_{\Omega}[-u,u] = [-\frac{u}{3},\frac{u}{3}]$. It is easy to show that Ω is Gn-Menger- θ -contractive. Furthermore, Γ_{Ω} has a unique fixed point $\{0\}$.

4. Conclusions

We defined a new version of the probabilistic Hausdorff–Pompeiu distance using the concept of Gn-Menger space and we presented a new fixed-point theorem for Gn-Menger- θ -contractions in Gn-Menger fractal spaces. In the future, we hope to consider our results to get more common fixed-point theorems to investigate the existence and uniqueness of solutions for differential and integral equations.

Author Contributions: D.O., project administration, writing and editing; R.S., writing—original draft preparation and supervision and project administration; C.L., methodology and editing; F.J., editing. All authors have read and agreed to the published version of the manuscript.

Mathematics 2022, 10, 2958 11 of 11

Funding: Chenkuan Li is supported by the Natural Sciences and Engineering Research Council of Canada (grant no. 2019-03907).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were required for this manuscript.

Acknowledgments: The authors are thankful to anonymous referees for giving valuable comments and suggestions.

Conflicts of Interest: The authors declare that they have no competing interest.

References

- 1. Schweizer, B.; Sklar, A.; Schweizer, B.; Sklar, A. Probabilistic metric spaces; North-Holland Publishing Co.: New York, NY, USA, 1983.
- 2. Šerstnev, A.N. Best-approximation problems in random normed spaces. Dokl. Akad. Nauk SSSR 1963, 149, 539–542.
- 3. Saadati, R. Random Operator Theory; Elsevier/Academic Press: London, UK, 2016.
- Hadžić, O.; Pap, E. Mathematics and Its Applications, 536; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001.
- 5. Soleimani Rad, G.; Shukla, S.; Rahimi, H. Some relations between n-tuple fixed point and fixed point results. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM* **2015**, *109*, 471–481. [CrossRef]
- 6. Bakery, A.A.; Mohammed, M.M. On lacunary mean ideal convergence in generalized random *n*-normed spaces. *Abstr. Appl. Anal.* **2014**, 2014, 101782. [CrossRef]
- 7. De la Sen, M.; Karapinar, E. Some results on best proximity points of cyclic contractions in probabilistic metric spaces. *J. Funct. Spaces* **2015**, 2015, 470574. [CrossRef]
- 8. Jebril, I.H.; Hatamleh, R.E. Random *n*-normed linear space. *Int. J. Open Probl. Comput. Sci. Math.* **2009**, 2, 489–495.
- 9. Khan, K.A. Generalized *n*-metric spaces and fixed point theorems. *J. Nonlinear Convex Anal.* **2014**, *15*, 1221–1229.
- 10. Lotfali Ghasab, E.; Majani, H.; De la Sen, M.; Soleimani Rad, G. e-Distance in Menger PGM Spaces with an Application. *Axioms* **2021**, *10*, 3. [CrossRef]
- 11. Mustafa, Z.; Jaradat, M.M.M. Some remarks concerning *D**-metric spaces. *J. Math. Comput. Sci.-JMCS* **2021**, 22, 128–130. [CrossRef]
- 12. Akram, M.; Mazhar, Y. Some fixed point theorems of self-generalized contractions in partially ordered G-metric spaces. *J. Math. Comput. Sci.-JMCS* **2017**, *17*, 317–324. [CrossRef]
- 13. Hashemi, E.; Ghaemi, M.B. Ekeland's variational principle in complete quasi-*G*-metric spaces. *J. Nonlinear Sci. Appl.* **2019**, 12, 184–191. [CrossRef]
- 14. Sadeghi, Z.; Vaezpour, S.M. Fixed point theorems for multivalued and single-valued contractive mappings on Menger PM spaces with applications. *J. Fixed Point Theory Appl.* **2018**, 20, 114. [CrossRef]
- 15. Gupta, V.; Saini, R.K.; Deep, R. Some fixed point results in G-metric space involving generalised altering distances . *Int. J. Appl. Nonlinear Sci.* **2018**, *3*, 66–76. [CrossRef]
- 16. Alihajimohammad, A.; Saadati, R. Generalized modular fractal spaces and fixed point theorems. *Adv. Differ. Equ.* **2021**, *383*, 10. [CrossRef]
- 17. Abdeljawad, T.; Kalla, K.S.; Panda, S.K.; Mukheimer, A. Solving the system of nonlinear integral equations via rational contractions. *AIMS Math.* **2021**, *6*, 3562–3582.
- 18. Alihajimohammad, A.; Saadati, R. Generalized fuzzy GV-Hausdorff distance in GFGV-fractal spaces with application in integral equation. *J. Inequal. Appl.* **2021**, *143*, 15 . [CrossRef]
- 19. Tian, J.-F.; Ha, M.-H.; Tian, D.-Z. Tripled fuzzy metric spaces and fixed point theorem. Inform. Sci. 2020, 518, 113–126. [CrossRef]
- 20. Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [CrossRef]
- 21. Barnsley, M. Fractals Everywhere; Academic Press, Inc.: Boston, MA, USA, 1988.
- 22. Bisht, R.K. Comment on: A new fixed point theorem in the fractal space. Indag. Math. 2018, 29, 819-823. [CrossRef]
- 23. Imdad, M.; Alfaqih, W.M.; Khan, I.A. Weak *θ*-contractions and some fixed point results with applications to fractal theory. *Adv. Differ. Equ.* **2018**, *439*, 18. [CrossRef]
- 24. Ri, S.-i. A new fixed point theorem in the fractal space. *Indag. Math.* 2016, 27, 85–93. [CrossRef]
- 25. Rodriguez-Lopez, J.; Romaguera, S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Syst. 2004, 147, 273–283. [CrossRef]