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Abstract: In this article, we investigate some new positivity and negativity results for some families
of discrete delta fractional difference operators. A basic result is an identity which will prove to
be a useful tool for establishing the main results. Our first main result considers the positivity and
negativity of the discrete delta fractional difference operator of the Riemann-Liouville type under two
main conditions. Similar results are then obtained for the discrete delta fractional difference operator
of the Liouville-Caputo type. Finally, we provide a specific example in which the chosen function
becomes nonincreasing on a time set.
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1. Introduction

Discrete fractional operators (DFOs) provide a rich source of interaction between continuous and
nonfractional-order operators (see, for example, [1,2]). In many scientific applications, DFOs are of
key importance and they have achieved remarkable success in a number of domains including
mathematical modeling [3, 4], stability analysis [5, 6], mathematical physics [7, 8], and uncertainty
theory [9, 10]. In fact, there are many real-world applications of fractional difference equations and
fractional discrete time systems, which are capable of addressing many problems that fractional
differential equations cannot address. For example, we can mention such application areas as
fractional chaotic maps for image encryption [11], variable-order recurrent neural networks [12],
tempered fractional discrete systems [13], discrete fractional calculus for fuzzy and interval-valued
functions [14], and so on. Many other domains of related studies, which are based upon discrete
fractional calculus, can be found in [15-20] and also in the references cited therein.

There have been many recent works concerned with the DFOs of the standard kernel such as the
discrete Riemann-Liouville fractional operators. These DFOs were extended and examined by many
researchers [1, 21, 22]. Similar to the present work, these discrete Riemann-Liouville fractional
operators have gained a lot of attention because of their connections to other types of DFOs, such as
the discrete Liouville-Caputo fractional operators (see, for example, [23,24]).

The discrete fractional operators are useful in studying monotonicity and positivity of the nabla and
delta analyses described in terms of discrete fractional sum or difference operators (see, for details,
[25-28]).

In an earlier influential work, Liu et al. [29] suggested that, if the discrete nabla fractional difference
operator of the Riemann-Liouville type satisfies (IZ%VZ ) (x) £ 0or (2 0) and the Liouville-Caputo type

satisfies (;;VZ‘ f ) (x) £0or (2 0), (A,f)(x) could be nonpositive or nonnegative by analysing the nabla
fractional differences.

Based on the above-mentioned article by Liu et al. [29], the goal here is to analyse the discrete
delta fractional difference operators of the Riemann-Liouville and Liouville-Caputo types for classes
of discrete delta operators which induce (A, f)(x). Our objective is twofold:

e Establish and analyse the positivity and negativity of (A, f)(x) via the positivity and negativity
of the corresponding discrete delta fractional differences in the sense of the Riemann-Liouville
operators together with an initial condition.

e Establish and analyse the positivity and negativity of (A, f)(x) via the positivity and negativity
of the corresponding discrete delta fractional differences in the sense of the Liouville-Caputo
operators combined with an initial condition.

The outline of this study is as follows. First, in Section 2, we give a brief summary of the discrete
delta fractional Riemann-Liouville and Liouville-Caputo type operators. In Section 3, we demonstrate
our main theorems and corollaries concerning the positivity and negativity of the discrete delta
fractional difference operators by using some conditions. Next, in Section 4, we consider a test
example to illustrate the theory which we have presented in this paper. Finally, in our last Section 5,
we include our conclusions and comments on further study.
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2. Discrete delta fractional operators

The related concepts regarding the discrete delta fractional sums and differences used in this study
are recalled in this section.

Definition 2.1 (see [23,24]). Let us denote the set {ay, ap + h, ap + 2h, ...} by N, , with a starting point
ap € R. Assume that f is defined on N, ;. Then the A, Riemann-Liouville fractional sum of order «
(> 0) is expressed as follows:

(a2 f) 0 = @ )Z(x (r+ D) f(rh) - for x in Nyyya i 2.1)

r= h

where x[“] is defined by

[a/] ha F(%)

(o)

for x and a in R, (2.2)

and we use the convention that x[a] = 0 for "”’ — a to not be a nonpositive integer and x;l“—h to be a
nonpositive integer.

Definition 2.2 (see [24]). Let f be defined on N, ;. Then the A, difference operator is given by

1 )
(Anf) (x) = E{f(x +h) = f(0)}  for xin Ny .
Moreover, the A, Riemann-Liouville fractional difference of order @ (0 < @ < 1) is defined by

(%Agf ) (x) = (Ah aOA;(l_“) f) (x)
+a 1

Z (x = (r+ D), frhy| - for x in Nugsi-aym-

r= h

_ h
T -a)

An equivalent definition to Definition 2.2 is stated in the following theorem.

Theorem 2.1 (see [25]). The A;, Riemann-Liouville fractional differences of order a (0 < a@ < 1) can
be expressed as follows:

h Xt

(*eAsf) (x) = Z(x (r+ DU f (k) for x in Ny _gn- (2.3)

Definition 2.3 (see [24]). For a function f defined on N, ;, the A, Liouville-Caputo type fractional
difference of order @ (0 £ @ < 1) is defined by

(i) (0 = (aoA,:“‘“> Bif) ()

+w 1

Z (x = (r + D) ARrR)  for x in Nygyar-ayn-

=3

T —a/)
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Lemma 2.1 (see [25, Lemma 1]). For positive values of « and h, the following result holds true:

Ah( EI‘Z]) = ozx}[;’ 1]

b
for each x in N,

The following proposition gives the relationship between the A, Riemann-Liouville and Liouville-
Caputo fractional differences.

Proposition 2.1 (see [25, Proposition 1]). For a € (0, 1), we have

1

[-a]
F & @, 2.4)

(Sanf) ) = (Basf) (o) -

Sor x in Ny -aynn
Lemma 2.2 (see [1, Theorem 2.40]). Let « € (0,1), h > 0 and u > —1. Then

T(u+1)
“Tu+l-a)

RL
ao+uh Aa (x aO)

(x — ap)"™, (2.5)

Jor x € Ny uiv1-ayhh-

3. Positivity and main results

Let’s start our main results on the Riemann-Liouville and Liouville-Caputo differences. Moreover,
the following identity is the main lemma to start off our work here.
Lemma 3.1. Leta € (0,1) and h > 0. Then

Ma+) o T@ty+ D)

[—a—1] -~ J 7
Z(fh ah = Eh, T@I(¢+1) L(@I'(y+2)

1"(— )
for j € N.

Proof. According to Lemma 2.2, we have

L —h—ap™! NEENCIES))
(aoféiA o ](x)—[ao+h+<a 5T (x)

_ -1 _
_F(O)(x h — ay),

for x € Ny 4. Considering Theorem 2.1, it follows that

e (= h—ap) ™" oK o (P = = ap)
(WhA TR =l Z (x=(r+ Dh, o
h® e r (r — %’)
I'(~a) rz%:w(x (r+ Doy T (r-%-a+1)
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At x =ag + (J + 1)h, we get

D ra+y+l ag
he r—-=
0= Z (a0+]h—rh)[al] ( h)
M) &, F@r(r-%-a+1)
J+1
@ T(a+ 0)
= h—ah—Ch)}, " ————
T(—a) ;(] « b R+ )

_IF((1+]+1) h“

o) T@+0)
Tl +2) T a)Z(Jh ah=th, T+ 1)

which rearranges to the required result.

Theorem 3.1. Suppose that f : Ny .onn — R satisfies the following conditions:

(1) (aOJﬁA“ f) (x) £0 for each x € Ny,
T+ 0+1
Gi)  flao+ (a + O)h) 2 % Flag +ah) for £ €N,

for a € (0,1]. Then (Anf)(x) = 0 for x € Ny sann-

Proof. The case when a = 1 it is straightforward. For 0 < a < 1, we firstly try to show that f(ag + (@ +

ATt f(ap + ah) by strong induction process for £ € Ny. From the assumption and Theorem
2.1 (Eq(2.3))atx =ayp+ h,wehavefor0 <a < 1:

ag
5 tatl

(REATf) (o + h) = (h ) Z (ao + h — (r + DRV f(rh)

a4
=7

= "*{~af(ao + ah) + f(ag + ah + h)| <0,
which implies that

flag + ah + h) < af(ap + ah).
On the other hand, by using condition (ii) at £ = 0, we have

f(ap + ah) =z a f(ay + ah).
Thus,

(Anf)(x) _ flag + (@ + Dh) - f(ao + ah)

x=ap+ah h

< —laf(ag + ah) — af(ag+ ah)] =0

S| =

By using Eq (2.3) at x = ay + 2h and the assumption, we have forO < o < 1 :

0 +a+2

(REAGF) (ao + 2h) = L D (ao+ 20 = (r+ D}~ f(rh)

a,
r=L+a
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o0 -—a)(-a
_h {—2
which leads to
Ta+2)
f(a() +ah + 2h) £ Wf(ao + ah).

On the other hand, considering condition (ii) at £ = 1 to get

C(a +2
Flap + (a + Dh) 2 % F(ap + ah).

Therefore,

_ flao + (@ +2)h) — f(ao + (@ + 1h)

x=ap+(a+1)h B h

F(a + 2) by
(@ )r(3)f(ao ah) — f(ag + (@ + 1)h) Eq%.l) 0.

(Anf)(x)

IIA

1
h

Now, we suppose that

I £
Flao + (@ + Oh) < %ﬂ% + ah),

f(ag + ah) + (—a)f(ag + ah + h) + f(ap + ah + 2h)} <0

(3.1)

(3.2)

for £ = 0,1,...,7and some j € Ny. Then, we will try to show that the rule is true at £ = j + 1. By

using Eq (2.3) at x = ay + (J + 1)h and the assumption, we have:

4o
5 taty+l

h
(%-Aw f) (ao + 2h) = Z (ao + jh = r)=* Y £ (rh)
Draty

=17 flag + @+ j+ Dh) + = Z (ao + jh— rh); " f(rh)

=h“f(ap+ @+ j+ 1h)+ F(—a) 24

which is equivalent to

a+

f(a0+(a/+]+1)h)< Z(]h ah —Ch) " flag + (@ + Oh)

—@)

o [—a-1]
5 Mo tah)y = ;;(Jh ah=Chy o+ D

by Dla+y+1)

Lemma 31 T(@)T( +2)7 @0+ @)

ettt [(a+¢)

Z( Jh—ah =€) flag + (@ + O)h) 20,

Electronic Research Archive Volume 30, Issue 8, 3058-3070.
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which gives that f(ap + (@ + j + 1)h) < Fr(g;;(,;;lz)) f(ap + ah). Thus, by using this together with the
Condition (ii), we have ‘

_ flag+ (@ + j+ 1h) — f(ao + (@ + ph)
(Anf)(x) s h
I {T(@+7+1)
< E[mf(ao+ah)—f(ao+(a+])h) <0,

for j € Ny. Consequently, we have (A, f)(x) < 0 for all x € N, 41
Corollary 3.1. If the function f : Ny .onn — R satisfies the following conditions:

@ (spenArf) ()2 0 for each x € Ny

T(a+ €+ 1
(i) f(ap+ (@ +0Oh) £ % f(ay + ah) for £ € Ny,

for @ € (0, 1], then (A,.f)(x) = 0 for x € N4 qnn-

Proof. Define g := —f. Thus, the proof follows immediately from Theorem 3.1 by applying it for the
function g.

Theorem 3.2. Suppose that f : Ny .qnn — R satisfies the following conditions:

@ (sprarAif) () 0 for each x € Nyyson,

[0

() (1 -a)f(ag+ (@ +Oh) 2 (€ + Dh = ah)l" f(ay + ah)
(1 -a)

ha+l -1
gy (th —rh — ah)l " f(ag + (@ + r)h)  for £ € N,
—
r=0

for a € (0,1]. Then (A,f)(x) £ 0 for x € Ny ias1ynn

Proof. The result is clear for « = 1. Let @ € (0, 1). Then, according to Proposition 2.1, Theorem 2.1
and the assumption, one can have

1 —a
(cosaif) (90 = (agsGi5.1) ) = o (6 = @ = )" flao + )

X
Fta

h 1
= o Z (= D) = s e = a = ) fao + ) 0.

(3.3)
For x = ag + 2h, it follows that
n Dya+2 |
(aosanf) a0 +2) = == Z (o + h = ri) " flrh) = s 2 = ah) " flao + ah)
=% ra

— h—w{(l - C;)(_a)f(ao + ah) + (—a/)f(ao +ah+h)+ f((l() + ah + Zh)}
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_ h_aWﬂao +ah) <0,
which leads to
flap+ (@+2)h) £ (1 —a)f(ag + ah) + a f(ap + (@ + 1)h). (3.4)

On the other hand, by considering condition (ii) at £ = 0, we have

flap+ah + h) £ f(ag + ah). (3.5
Therefore, both inequalities (3.4) and (3.5) imply that
_ flao + (@ +2)h) — f(ap + (a + 1)h)

x=ap+(a+1)h - h

[(1 = a)f(ag + ah) + a f(ag + ah + h) — f(ay + (@ + 1)h)]

(Anf)(x)

1
h
< ( [f(ao+ah) f(ag +ah +h) £0.

By substituting x = ag + (7 + 1)k int (3.3), we obtain

h D ety
(apraaif) (o + (7 + D) = Z (ao + Jh — )"V F(rh)
1 [—a]
B a)((] + Dh —ah), ™ f(ao + ah)

J+1

h
= ﬁ Z(Jh —ah— ) flag + (@ + D)

m )((] Dh — ah)" f(aq + ah)

=h“f(ap+ (@+ j+ 1h) +

" )Zw ah = 1) f(ao + (@ + ph)

((J+ Dh—ah) f(ay + ah) < 0,

T -a)
which implies that

a

flap+ (@+ 7+ Dh) =

S s )((] + Dh — ah)" f(ag + ah)

a+1 J

- ;(Jh —ah— ), flag + (@ + Jh)

a

“T(-a)

(7 + Dh = ah) " f(ay + ah) + @ f(ap + (@ + )h)

Electronic Research Archive Volume 30, Issue 8, 3058-3070.
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a+l Il

" T 24 (Jh—ah = R) " f(ag + (@ + ph). (3.6)

Hence, by using inequality (3.6) combined with the condition (i1), we have

R flao+(@+)+ 1)}2 Flao + @+ ph)
< 2| D= e + ) = (1 =) flan + G+ )
ha+l J-1 "
gy 2. (jh—ah—-¢ h)El—a—ﬂ flaop + (@ + ph) < 0,

condition (ii)

for j € Ny. Thus, we get (A,f)(x) < 0 for all x € Nyt +1ynn-
Corollary 3.2. If the function f : Ny ionn — R satisfies the following conditions:

D) (asarif) ()20 for each x € Nyyuonss

a

(i) (1 -a)f(a+ (@+Oh) < (€ + Dh — ah)™ f(ag + ah)
T(1l - )

ha+1 -1
" Ty 2k rh - ah) = f(ag + (@ +r)h) for £ € Ny,
-
r=0

for a € (0, 1], then (A,f)(x) = 0 for x € Nyji(a+1ynn-

Proof. First, we define define g := —f. Therefore, the proof follows immediately from Theorem 3.2
applying for the new defined function g.

4. Application: A specific example

This section provides a specific example to illustrate our previous theoretical results.
Consider the function

2\*
f(X) = (5) for x € Naoﬂyh’h.

At first, we will try to show that (,, ,AZ £) (x) < O for x € {ag+h,ag+2h), @ = L,y =0 and h = 1.
From Definition (2.3) at x = ay + h, we have

)
- tatl

(ao +h— (r+ D) f(rh)

a,
r=P+a

= "*{-af(ao + ah) + f(ag + ah + h)}

L2,y s,
215 5] 4443 =7

(*eauf) (ao + h) = r(%a)

Electronic Research Archive Volume 30, Issue 8, 3058-3070.
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which leads to
f(ag + (@ + )h) £ af(ay + ah). “4.1)

Moreover, Definition (2.3) at x = ay + 2h gives

D a2

h Z (o + 2k — (r + D)V f(rh)

(REA£) (o + 2) =

= h‘“{w flag + ah) + () f(ao + ah + h) + f(ao + h + 2h)}

2
1 3 5
1/2\2 1/(2)? 2\2 496
=—3|z N e +1= = A5 é 07
8\5 2\5 5 4753
which implies that
I'a +2) a/(a +1)
2)h) £ h) = h 4.2
Sflao + (@ + ))—F( )r(3)f(ao ah) = flao + ah). 4.2)
On the other hand, we will test the condition:
I'a+€+1)

flap + (@ + Oh) 2 mf(ao + ah),

at£{=0,1. At £ = 0, it follows that

1 1

2 (%)2 = a f(ap + ah),

2 1
(5) :f(ao+afh)25 5

which means that
f(ap + ah) =z a f(ay + ah). 4.3)

Moreover, at £ = 1, it follows that

509 (2)}
00 (g) = f(ap + (@ + Dh)
(@ +2) C3(2) 171
2 Tr@)/ @b =3 (5) BEZT
which is equivalent to
Flao+ @+ 2 B e 4o, (4.4)

Thus, inequalities (4.1)—(4.4) conclude that

flao+ @@+ ) £ 2O

f(ao + ah)
< f(ao + (@ + Dh) £ af(ap + ah) £ f(ap + ah).

These inequalities imply that f is nonincreasing on the time set {ay + ah, ag + (@ + 1)h}.
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5. Concluding remarks

In this article, new positivity and negativity results for the discrete delta fractional difference
operators of the Riemann-Liouville and Liouville-Caputo types have been established on N ;-
These results can be summarized as follows:

¢ An identity has been obtained in Lemma 3.1, which has been used in establishing the main results.

o (Ayf)(x) 20 (or 2 0) for x € N, 0, under the conditions given by (ao JjﬁAZ f) (x) £0(orz0)
for each x € Ny, 44 and f(ag + (@ +O)h) 2 0 (or £ 0)F 553 flag +ah) for € € No and « € (0, 1]
in Theorem 3.1 and Corollary 3.1.

o (Anf)(x) =0 (or 2 0) for x € Ny 1 (a+1)n under the following conditions: ( CAZ f) (x) £0 (or

ap+ah
2 0) for each x € Nyyuons and (1 — @) f(ao + (@ + O)h) 2 0 (or < 0)gi=((£ + 1)h — ), f(ao +
ah) = £ S (h - rh— ah) " f(ag + (a + r)h) for £ € Ny and @ € (0, 1] in Theorem 3.2 and

Corollary 3.2.

Finally, we have dedicated the last section to show that a function is nonincreasing under the above
conditions on the time set {ay + ah, ag + (o + 1)h}.
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