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 In this paper, a new approach of analytical solutions is carried out on the thermal 
transport phenomena of Brinkman fluid based on Prabhakar's fractional derivative 
with generalized Fourier's law. The governing equations are obtained through 
constitutive relations and analytical solutions obtained via Laplace transform 
technique. Solutions for temperature and velocity field were analyzed through 
graphical description by MathCad software. The fluid properties revealed various 
aspects for different flow parameters as well as fractional parameter values and 
found important results. As a result, it is found that fluid properties can be en-
hanced by increasing the values of fractional parameters and can be useful in some 
experimental data where suitable.  
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Introduction 

It is found that the mathematical models of integer-order derivatives and, counting 

non-linear models does not work on streamline properly in different aspects. Fractional calculus 

has many applications in the field of viscoelasticity, signals processing, electromagnetics, fluid 

mechanics and optics. Though in the current scenario the models of fractional calculus has been 

widely used in the field of engineering, where these are described by fractional differential 

equation. The main crux of fractional derivative is to sort out the modeling in an appropriate 

way. Some of the most prominent area of research regarding to the above applications can be 

found in [1-8].  

The non-Newtonian fluids are the wider class of fluids having many practical appli-

cations like cell isolation, drug transport, positron emission tomography, thermal management, 

cooling, and dynamic sealing. Because of the extensive applications of ferro-nanofluids, schol-

ars' primary goal is to devote their full attention to revealing even more qualities. The scientist 
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in the beginning which introduced nanofluid in 1995 was Choi [9], he also sums up those na-

noscaled particles which have a diameter less than (100 nm) diameter. He also investigated the 

stretching sheet having properties of thermal transport and wide applications of nanofluid in a 

science field such as cancer therapy and many more. Some related applications of different 

kinds of fractional derivatives with nanofluids can be seen in [10-14]. 

In the mentioned literature problems are modeled and solved with C, CF, and ABC, 

with artificial replacement approach. Present problem deals with governing equations for the 

fluid-flow are obtained by means of generalized Fourier law with Prabhakar fractional deriva-

tives with kernel Mittage-Leffler function of three parameters. Recently, the same approach 

worked out by Elnaqeeb [15] for viscous fluid. Our intention is to extend to non-Newtonian 

fluid namely Brinkman fluid under different thermal and geometric conditions and water based 

silver nanoparticles. In the existing literature there is no result exist for considered assumptions. 

Mathematical formulation 

Let us consider a vertical plate on a rectangular co-ordinate system consisting thermal 

transportation of an incompressible fractional nanofluid placed at the plane y = 0, at temperature 
.T  At time t = 0, both the plate and fluid are in rest state. After passing some time the temper-

ature of the wall raised to w( ) ( )T T T f t    and plate moves with a constant velocity in its 

own plan. All the flow properties are of function of y and t only. Further assumes that momen-

tum equation contains no pressure gradient and thermal equation without the effect of viscous 

dissipation term. Then the governing equations are: 

– The PDE of velocity: 

 2
nf nf nf nf 0 nf( , ) ( , ) [ ( , ) ]g( ) ( , ) ( , )t p T yyu y t u y t T y t T B u y t u y t           (1) 

– The heat equation: 
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– Classical Fourier's law:  

 nf( , ) ( , )tq y t k T y t   (3) 

Boundary conditions are written: 

 w( ,0) , 0, (0, ) ( ) , 0, ( , ) asT y T y T t T T T t t T y t T y             (4) 

 ( ,0) 0, 0, (0, ) 0, 0, ( , ) 0, asu y y u t t u y t y       (5) 

The thermophysical parameters of nanofluid are [16]. 

Introducing dimensionless quantities to make a problem-free flow regime: 
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into eqs. (1)-(5), after neglecting the star notations we have: 

 3 3 5 4( , ) ( , ) ( , ) Gr ( , ) ( , )t yy pu y t u y t u y t T y t u y t         (7) 

 6 Pr ( , ) ( , )t yT y t q y t    (8) 

 7( , ) ( , )yq y t T y t   (9) 

With dimensionless boundary conditions: 

 ( ,0) 0, 0, (0, ) , 0, ( , ) 0, asT y y T t t t T y t y       (10) 

 ( ,0) 0, 0, (0, ) 0, 0, ( , ) 0, asu y y u t t u y t y       (11) 

In our problem, we considered a new model with Prabhakar's fractional derivative 

based upon generalized Fourier's law [15]: 

 7, ,( , ) D ( , )C
yq y t T y t

     (12) 

Solution of fractional model  

In the recent paper, we suppose [0,1)  in eq. (12), m is zero. By utilizing the Laplace 

transform method and using it to eqs. (8), (10), and (12) we attain transformed form of the 

temperature field: 

 6 Pr ( , ) ( , )ysT y s q y s     (15) 

 7( , ) (1 ) ( , )yq y s s as T y s       (16) 
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By solving eq. (16) in eq. (15) and rearranging, we attain the following differential 

equation: 

 8 Pr
( , ) ( , )

(1 )
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T y s T y s
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Result of eq. (18), with the help of eq. (17) is: 
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The series form of eq. (19): 
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The Laplace inverse of eq. (20) is: 
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Solution of fluid velocity 

The Laplace transform of eqs. (7) and (11) we attain the velocity field: 
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 (22) 

where 
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Numerical results and discussion 

To see the physical insight of fractional parameters α, β, and γ on-field variable fig. 1 

is depicted. The Ag is considered as nanoparticle and water is taken as base fluid. By fixing 

other parameters constant and vary the values of fractional parameters α, β, and γ, respectively. 

It is observed that for t = 1, field variable temperature can be enhanced for larger values of α, 

β, and γ, respectively. In fig. 2 by fixing other parameters constant and varies the value of frac-

tion parameter ϕ it can be observed that field variable temperature can be enhanced for a large 

value of volume fraction ϕ. Physically, increases in volume fraction ϕ causes increase in thermal 

conductivity and fluid becomes more heated and whenever the profile of temperature increased, 

  

Figure 1. Temperature profile against y  
due to α, β, and γ 

Figure 2. Temperature profile against y due to φ 
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this means that the transfer of heat is also increased. Figure 3 shows how fractional parameters 

α, β, and γ effects velocity profile. If we increase the value of fractional parameters the velocity 

of fluid increases. Since with the increase in fractional parameter’s momentum layers increase 

which causes the increase in the velocity profile. Via fig. 4 it can be seen that how the volume 

fraction ϕ influences the fluid velocity. It can be seen that variable fluid velocity cannot be 

enhanced because for large values of ϕ fluid becomes more viscous which causes decrement in 

fluid velocity. 

  

Figure 3. Velocity profile against y  

due to α, β, and γ 

Figure 4. Velocity profile against y due to φ 

Conclusions 

The key resolution of this article is to introduce the unsteady thermal transport flow 

of Brinkman nanofluids with generalized Mittag-Leffler. In this model, we introduced fraction-

alized heat equation by applying Prabhakar fractional derivative with generalized Fourier’s law 

and analytical solutions are obtained with Laplace transform. Some useful results of the present 

work: 

 Temperature and velocity of water based silver nanoparticles can be enhanced away from 

the plate in the main stream region by increasing values of fractional parameters  

α, β, and γ. 

 Further, noticed that thermal as well as momentum boundary layer thickness increases 

which is responsible for increasing behavior of the fluid properties by larger values of α, β, 

and γ. 

 By increasing volume concentration of nanoparticles temperature and velocity show oppo-

site trend and momentum boundary layer decreases.  
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