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a b s t r a c t 

The main purpose of the present paper is to conduct a detailed and thorough study on the Korteweg- 

de Vries–Caudrey–Dodd–Gibbon (KdV-CDG) dynamical model. More precisely, after considering the inte- 

grable KdV-CDG dynamical model describing certain properties of ocean dynamics, its conservation laws, 

solitons, and complexiton are respectively derived using the Ibragimov, Kudryashov, and Hirota methods. 

Several numerical simulations in two and three-dimensional postures are formally given to analyze the 

effect of nonlinear parameters. It is shown that nonlinear parameters play a key role in the dynamical 

properties of soliton and complexiton solutions. 

© 2022 Shanghai Jiaotong University. Published by Elsevier B.V. 
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. Introduction 

The search for solitons of nonlinear partial differential equa- 

ions (NLPDEs) plays a fundamental role in a wide variety of non- 

inear sciences, as such a class of solutions is capable of giving 

elpful information regarding the phenomena under investigation. 

esearchers have devoted much effort to constructing new meth- 

ds for obtaining solitons of NLPDEs. Some of the methods that 

ave been able to attract the attention of many researchers are the 

odified Jacobi method [1–4] , the exponential method [5–8] , and 

he Kudryashov methods [ 9–15 ]. Nowadays, Kudryashov methods, 

s pioneer approaches, are frequently used to extract solitons of 

any NLPDEs. Very newly, Hosseini et al. [16] applied successfully 

udryashov methods to derive solitons of a fifth-order nonlinear 

ater wave equation that are classified as W -shaped and bright 

olitons. 

Today, many researchers deal with Lie groups and conservation 

aws of NLPDEs [17–22] which play a significant role in the solu- 
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conservation laws, solitons, and complexiton, Journal of Ocean Enginee
ion process of differential equations. As it turns out, researchers 

ace problems in applying Noether’s theorem as Euler–Lagrange 

quations are not available for all differential equations. To over- 

ome this shortcoming, Ibragimov [23] proposed a new conserva- 

ion theorem that is based on the formal Lagrangian equation, and 

onservation laws are related to Lie symmetries. Here are some 

ecent papers on the conservation laws of NLPDEs. Arnous et al. 

24] obtained conservation laws of the Chen–Lee–Liu equation us- 

ng the new conservation theorem. Akbulut et al. [25] employed 

he new conservation theorem to acquire conservation laws of the 

3 + 1)-dimensional Wazwaz–KdV equations. 

The main purpose of the present paper is to conduct a detailed 

nd thorough study on the following KdV-CDG model [26–31] 

 t + c 1 

(
u xx + 

1 

5 

u 

2 
)

x 
+ c 2 

(
1 

15 

u 

3 + uu xx + u xxxx 

)
x 

= 0 , (1) 

escribing certain properties of ocean dynamics, and obtain its 

onservation laws, solitons, and complexiton. Eq. (1) as a nonlinear 

volutionary equation includes the KdV and CDG equations which 

ave useful applications in nonlinear sciences. Wazwaz [26] uti- 

ized Hirota’s bilinear method to construct multiple solitons of the 

dV-CDG model. Biswas et al. [27] extracted soliton and other 

olutions of the KdV-CDG model through several effective meth- 
access article under the CC BY-NC-ND license 
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ds. Tu et al. [28] applied Hirota and Riemann methods to derive 

uasi-periodic and solitary waves of the KdV-CDG model. Akbar 

t al. [29] found a variety of solitons to the KdV-CDG model using 

he modified auxiliary equation method. Asjad et al. [30] exerted 

he hyperbolic function method to derive solitons of the KdV-CDG 

odel. Ma et al. [31] constructed soliton molecules, asymmetric 

olitons, and hybrid solutions of the KdV-CDG model by consid- 

ring its N-soliton solutions and applying the velocity resonance 

ethod. 

The rest of the present paper is as follows: In Section 2 , a de-

ailed review of the Ibragimov and Kudryashov methods is given. 

n Section 3 , conservation laws, solitons, and complexiton of the 

dV-CDG model are derived. Furthermore, Section 3 presents sev- 

ral numerical simulations in two and three-dimensional postures 

o analyze the effect of nonlinear parameters in the dynamics of 

oliton and complexiton solutions. The achievements are reviewed 

n the last section. 

. Ibragimov and Kudryashov methods: basic ideas 

In the current section, the authors are interested in a detailed 

eview of the Ibragimov and Kudryashov methods and their basic 

deas. 

.1. Ibragimov method 

Conservation theorem: Let us consider 

 ( u, u x , u t , . . . ) = 0 , (2) 

s a NLPDE where F is a polynomial. 

For Eq. (2) , the Lie point symmetry generator is 

 = ξ x ( x, t, u ) 
∂ 

∂x 
+ ξ t ( x, t, u ) 

∂ 

∂t 
+ η( x, t, u ) 

∂ 

∂u 

, (3) 

here ξ x ( x, t, u ) , ξ t ( x, t, u ) and η( x, t, u ) are the infinitesimals. For 

q. (3) , the k th prolongation of Eq. (3) is obtained as [ 32 , 33 ] 

 

( k ) = X + η( 1 ) 
i 

∂ 

∂u i 

+ ... + η( k ) 
i 1 i 2 ...i k 

∂ 

∂u i 1 i 2 ...i k 

, k ≥ 1 , 

here 

( 1 ) 
i 

= D i η −
(
D i ξ

j 
)
u j , 

( k ) 
i 1 i 2 ...i k 

= D i k 
η( k −1 ) 

i 1 i 2 ...i k −1 
−

(
D i k 

ξ j 
)
u i 1 i 2 ...i k −1 j 

. 

The formal Lagrangian is obtained by 

 = wF , 

here w ( x, t, u ) is the adjoint variable. Additionally, the adjoint 

quation is derived as 

 

∗ = 

δL 

δu 

, (4) 

here δ
δu 

is the variational derivative. 

Solving Eq. (4) results in conservation laws of Eq. (2) . 

Definition: Eq. (2) is said to be nonlinearly self-adjoint if there 

xists a function [ 34 , 35 ] 

 = φ( x, t, u ( x, t ) ) � = 0 , 

atisfying 

 

∗ = λ( x, t, u ( x, t ) ) F , (5) 

here λ is an undetermined coefficient. If we take w = φ(u ) in 

q. (5) , Eq. (2) is called quasi self-adjoint. If we take w = u , we say

hat Eq. (2) is strictly self-adjoint. 
2 
heorem 1. Every Lie point, Lie-Bäcklund, and nonlocal symmetry of 

q. (2) yields a conservation law. The conserved vector components 

re acquired by [ 18 , 19 ] 

 

i = ξ i L + W 

[
∂L 

∂u i 

− D j 

(
∂L 

∂u i j 

)
+ D j D k 

(
∂L 

∂u i jk 

)
− · · ·

]
+ D j ( W ) 

[
∂L 

∂u i j 

− D k 

(
∂L 

∂u i jk 

)
+ · · ·

]
+ D j D k ( W ) 

[
∂L 

∂u i jk 

]
+ · · · , (6) 

where W = η − ξ j u j . The conserved vectors extracted by 

q. (6) contain the arbitrary solutions of the adjoint equation. 

onsequently, some conservation laws for Eq. (2) are retrieved by 

 ( x, t, u ) . 

heorem 2. Generated conserved vectors using Eq. (6) are conserva- 

ion laws of Eq. (2) if [ 17 ] 

 i 

(
T i 

)
= 0 . 

.2. Kudryashov methods 

The KM I applies the following finite series 

 ( ε ) = a 0 + a 1 K ( ε ) + a 2 K 

2 ( ε ) + . . . + a N K 

N ( ε ) , a N � = 0 , (7)

s the solution of 

 

(
U ( ε ) , U 

′ ( ε ) , U 

′′ ( ε ) , . . . 
)

= 0 . (8) 

In the above equation, a i , i = 0 , 1 , ..., N are retrieved later, N is

erived by the balance principle, and K(ε) is of the form 

 ( ε ) = 

1 

1 + da ε 
, 

hich satisfies 

K 

′ (ε) = K (ε)( K (ε) − 1 ) ln (a ) . 

Based on Eqs. (7) and (8) , a nonlinear system of algebraic type 

s obtained, and by solving it, solitons of Eq. (8) are derived. 

The series solution of KM II is the same as that considered in 

M I. But, KM II benefits from considering 

 ( ε ) = 

1 

( A − B ) sinh ( ε ) + ( A + B ) cosh ( ε ) 
, 

s the solution of 

K 

′ ( ε ) 
)2 = K 

2 ( ε ) 
(
1 − 4 ABK 

2 ( ε ) 
)
. 

In a similar way to what was performed before, solitons of 

q. (8) are constructed. 

. KdV-CDG model: its conservation laws, solitons, and 

omplexiton 

In the current section, conservation laws, solitons, and com- 

lexiton of the KdV-CDG model are derived. Furthermore, several 

umerical simulations in two and three-dimensional postures are 

resented to analyze the effect of nonlinear parameters in the dy- 

amics of soliton and complexiton solutions. 

.1. KdV-CDG model and its conservation laws 

Based on the conservation theorem, the formal Lagrangian can 

e written as 

 = w 

(
u t + c 1 

(
u xx + 

1 

5 

u 

2 
)

x 
+ c 2 

(
1 

15 

u 

3 + uu xx + u xxxx 

)
x 

)
, (9) 

here w denotes the adjoint variable. 
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Table 1 

The commutator table for the acquired symmetries. 

[ X i , X j ] X 1 X 2 X 3 

X 1 0 0 − 4 c 2 1 

25 c 2 
X 2 + X 1 

X 2 0 0 1 
5 

X 2 

X 3 
4 c 2 1 

25 c 2 
X 2 − X 1 − 1 

5 
X 2 0 

φ

φ

w

t

t

ξ

ξ

η

w  

m

X

g

T

+

T

 

l

T

T

a

D

The adjoint equation is acquired by employing the variational 

erivative as 

 

∗ = −
(
w t + c 1 

(
w xxx + 

2 
5 

w x u 

)
+ c 2 

(
1 
5 

u 

2 w x + 2 w x u xx + 2 w xx u x + uw xxx + w xxxxx 

))
. 

(10) 

If we replace u by w in Eq. (10) , then Eq. (1) is not obtained.

hus, the KdV-CDG model is not self-adjoint. 

By considering w = φ(x, t, u (x, t)) , its derivatives are given by 

 t = φu u t + φt , 

 x = φu u x + φx , 

 xx = φu u xx + φuu u 

2 
x + 2 φux u x + φxx , 

 

 

 

Substituting derivatives of φ into Eq. (10) without ignoring 

q. (5) yields 

 

∗ = −c 1 φxxx − c 2 φxxxxx − 2 

5 

c 1 u x uφu − 1 

5 

c 2 u 

2 u x φu 

−3 c 2 uu x φxxu − 3 c 2 uu 

2 
x φxuuu 

−c 2 uu 

3 
x φuuu − 4 c 2 u x u xx φu − 3 c 2 uu xx φxu 

− c 2 uu xxx φu − φt − 3 c 1 u x φxxu − 3 c 1 u 

2 
x φxuu 

−c 1 u 

3 
x φuuu − 5 c 2 u x φxxxxu − 10 c 2 u 

2 
x φxxxuu 

−10 c 2 u 

3 
x φxxuuu − 5 c 2 u 

4 
x φxuuuu − c 2 u 

5 
x φuuuu 

−3 c 1 u xx φxu − c 1 u xxx φu − 10 c 2 u xx φxxxu − 10 c 2 u xxx φxxu 

−5 c 2 u xxxx φxu − c 2 u xxxxx φu 

−15 c 2 u 

2 
xx φxuu − u t φu − 3 c 2 uu x u xx φuu 

−15 c 2 u x u 

2 
xx φuuu − 10 c 2 u 

3 
x u xx φuuuu 

−10 c 2 u 

2 
x u xxx φuuu − 10 c 2 u xx u xxx φuu − 2 c 2 u xx φx − 3 c 1 u x u xx φuu 

−30 c 2 u x u xx φxxuu 

−30 c 2 u 

2 
x u xx φxuuu − 20 c 2 u x u xxx φxuu − 5 c 2 u x u xxxx φuu − 2 

5 

c 1 uφx 

−1 

5 

c 2 u 

2 φx − 2 c 2 u x φxx 

−4 c 2 u 

2 
x φxu − 2 c 2 u 

3 
x φuu − c 2 uφxxx = λ(u t + c 1 (u xx + 

1 

5 

u 

2 ) 
x 

+ c 2 ( 
1 

15 

u 

3 + uu xx + u xxxx ) 
x 
) . 

By comparing the coefficients of all derivatives, it is found that 

xu = 0 , 

x = 0 , 

t = 0 , 
3 
u = 0 . 

As a consequence, one can say that 

= σ1 

here σ1 is a constant. Therefore, w = 1 can be considered for ob- 

aining finite conservation laws. 

If we apply the fifth-order Lie symmetry generator to Eq. (1) , 

he following infinitesimals are derived: 

t = σ1 + σ3 t, 

x = σ2 + σ3 

(
1 

5 

x − 4 c 2 1 

25 c 2 
t 

)
, 

= −σ3 

(
2 c 2 u + 2 c 1 

5 c 2 

)
, 

here σ j ( j = 1 , 2 , 3) are constants. As a result, the Lie point sym-

etry generators admitted by Eq. (1) are obtained as follows 

 1 = 

∂ 
∂t 

, X 2 = 

∂ 
∂x 

, X 3 = 

(
1 
5 

x − 4 c 2 1 

25 c 2 
t 

)
∂ 
∂x 

+ t ∂ 
∂t 

−
(

2 c 2 u +2 c 1 
5 c 2 

)
∂ 
∂u 

. 

The commutator table for the acquired symmetries has been 

iven in Table 1 . 

Conservation laws of Eq. (1) can be formulated as follows 

 

x = ξ x L + W 

[
∂L 
∂u x 

− D x 

(
∂L 

∂u xx 

)
+ D 

2 
x 

(
∂L 

∂u xxx 

)
+ D 

4 
x 

(
∂L 

∂u xxxxx 

)]
+ D x ( W ) 

[
∂L 

∂u xx 
− D x 

(
∂L 

∂u xxx 

)
− D 

3 
x 

(
∂L 

∂u xxxxx 

)]
+ D 

2 
x ( W ) 

[
∂L 

∂u xxx 
+ D 

2 
x 

(
∂L 

∂u xxxxx 

)]
 D 

3 
x ( W ) 

[
−D x 

(
∂L 

∂u xxxxx 

)]
+ D 

4 
x ( W ) 

[
∂L 

∂u xxxxx 

]
, (11) 

 

t = ξ t L + W 

[
∂L 

∂u t 

]
. (12) 

Case 1: From Eqs. (9) , (11) , and (12) as well as X 1 , the following

ocal conservation laws are constructed 

 

x 
1 = −w 

(
2 

5 

c 1 uu t + 

1 

5 

c 2 u 

2 u t + c 2 u t u xx + c 1 u xxt + c 2 uu xxt + c 2 u xxxxt 

)
− w x ( c 2 u t u x −c 1 u xt − c 2 uu xt − c 2 u xxxt ) −w xx ( c 1 u t + c 2 uu t + c 2 u xxt ) 

−c 2 u t w xxxx + c 2 u xt w xxx , 

 

t 
1 = w 

(
c 1 

(
u xxx + 

2 

5 

uu x 

)
+ c 2 

(
1 

5 

u 

2 u x + u x u xx + uu xxx + u xxxxx 

))
, 

nd we have 

 x ( T 
x 

1 ) + D t 

(
T t 1 

)
= u t w t − w t u t = 0 . 
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It is clear that the divergence condition is satisfied. 

Assuming w = 1 leads to 

˜ 

 

x 
1 

= −c 1 

(
u xxt + 

2 

5 

uu t 

)
− c 2 

(
1 

5 

u 

2 u t + u t u xx + uu xxt + u xxxxt 

)
, 

˜ 

 

t 
1 

= c 1 

(
u xxx + 

2 

5 

uu x 

)
+ c 2 

(
1 

5 

u 

2 u x + u x u xx + uu xxx + u xxxxx 

)
, 

nd D x ( ̃  T x 
1 
) + D t ( ̃

 T t 
1 
) = 0 . If we transfer some terms from 

˜ T x 
1 

to ˜ T t 
1 

,

ero trivial conservation laws are obtained. 

Case 2: From Eqs. (9) , (11) , and (12) as well as X 2 , the following

ocal conservation laws are established 

 

x 
2 = wu t − w x 

(
c 2 u 

2 
x − c 1 u xx − c 2 uu xx − c 2 u xxxx 

)
−w xx ( c 1 u x + c 2 uu x + c 2 u xxx ) − c 2 u x w xxxx + c 2 u xx w xxx , 

 

t 
2 = −wu x . 

It can be demonstrated that the divergence condition is satis- 

ed. By using a similar procedure as above, we find ˜ 

 

x 
2 

= u t , 

˜ 

 

t 
2 

= −u x , 

nd so D x ( ̃  T x 
2 
) + D t ( ̃

 T t 
2 
) = 0 . If we transfer the term from 

˜ T x 
2 

to ˜ T t 
2 

,

ero trivial conservation laws are derived. 

Case 3: From Eqs. (9) , (11) , and (12) as well as X 3 , the following

ocal conservation laws are constructed 

 

x 
3 = 

4 

25 

c 2 1 t ( u x w xxxx − u xx w xxx + u xxx w xx − u xxxx w x 

+ c 1 
(
u 

2 
x w x + uu x w xx − uu xx w x 

))
+ 

4 c 2 1 

25 c 2 
( c 1 tu x w xx − c 1 tu xx w x − uw − wtu t ) 

+ 

1 

5 

c 2 
(
x 
((

uu x w xx −u 

2 
x w x + uu xx w x 

)
+ u xx w xxx + u xxxx w x −u x w xxxx 

)
−tu 

2 wu t − 6 uwu xx + uu x w x − 2 u 

2 w xx − 2 uw xxxx 

+3 u x w xxx − 6 wu xxxx − 4 u xx w xx ) 

+ 

1 

5 

c 1 ( xu xx w x − 6 wu xx − 4 uw xx − xu x w xx − 2 twuu t + u x w x ) 

+ c 2 ( u xxx w x + t ( u xt w xxx −u t w xxxx − u xxt w xx + u xxxt w x − u xxxxt w 

−uu t w xx + uu xt w x − uu xxt w − u t u x w x − u t u xx w ) ) 

−2 

5 

c 1 w xxxx + 

1 

5 

xwu t − 6 

25 

c 1 wu 

2 − 2 

25 

wc 2 u 

3 

−2 c 2 1 

5 c 2 
w xx + c 1 t ( u xt w x − u t w xx − u xxt w ) , 

 

t 
3 = w 

(
c 1 t 

(
u xxx + 

2 

5 

uu x + 

4 c 1 
25 c 2 

u x 

)
+ c 2 t 

(
1 

5 

u 

2 u x + u x u xx + uu xxx + u xxxxx 

))
−2 

5 

uw − 2 c 1 
5 c 2 

w − 1 

5 

xwu x . 

A discussion as mentioned in the previous cases regarding the 

bove conservation laws can be stated. 

.2. KdV-CDG model and its solitons 

To start, we apply a traveling wave transformation of the form 

 ( x, t ) = U ( ε ) , ε = x − v t, 
4

here v represents the soliton speed. After employing the above 

ransformation, we find from Eq. (1) 

−v U 

′ ( ε ) + c 1 
(
U 

′′ ( ε ) + 

1 
5 
U 

2 ( ε ) 
)′ 

+ c 2 
(

1 
15 

U 

3 ( ε ) + U ( ε ) U 

′′ ( ε ) + U 

( 4 ) ( ε ) 
)′ = 0 . 

(13) 

By integrating Eq. (13) w.r.t. ε and considering C as the constant 

f integration, we get 

−v U ( ε ) + c 1 

(
U 

′′ ( ε ) + 

1 

5 

U 

2 ( ε ) 
)

+ c 2 

(
1 

15 

U 

3 ( ε ) + U ( ε ) U 

′′ ( ε ) + U 

( 4 ) ( ε ) 
)

+ C = 0 . (14) 

.2.1. Applying KM I 

Based on the linear and nonlinear terms (U 

(4) (ε) and U 

3 (ε)) in 

q. (14) , the balance number is acquired as 

N + 4 = 3 N ⇒ N = 2 . 

The above balance number and Eq. (7) suggest the following 

nite series 

 ( ε ) = a 0 + a 1 K ( ε ) + a 2 K 

2 ( ε ) , a 2 � = 0 , (15)

s the solution of Eq. (14) . By considering Eqs. (14) and (15) as

ell as 

 

′ ( ε ) = K ( ε ) ( K ( ε ) − 1 ) ln ( a ) , 

he following system of algebraic type is derived 

1 

15 

c 2 a 
3 
0 + 

1 

5 

c 1 a 
2 
0 − v a 0 + C = 0 , 

c 2 a 1 ( ln ( a ) ) 
4 + a 1 ( a 0 c 2 + c 1 ) ( ln ( a ) ) 

2 

−a 1 

(
−1 

5 

a 2 0 c 2 −
2 

5 

a 0 c 1 + v 
)

= 0 , 

120 

(
−c 2 

(
7 

60 

a 1 − 2 

15 

a 2 

)
− 1 

120 

c 2 a 1 

)
( ln ( a ) ) 

4 

+6 

(
−1 

6 

a 1 ( a 0 c 2 + c 1 ) + 

1 

6 

a 2 1 c 2 −
(

1 

3 

a 1 − 2 

3 

a 2 

)
( a 0 c 2 + c 1 ) 

)
( ln ( a ) ) 

2 + 

1 

15 

(
3 a 2 0 a 2 + 3 a 0 a 

2 
1 

)
c 2 + 

1 

5 

a 2 1 c 1 −
(
−2 

5 

a 0 c 1 + v 
)

a 2 = 0 , 

120 

(
−c 2 

(
− 3 

10 

a 1 + 

19 

20 

a 2 

)
+ c 2 

(
7 

60 

a 1 − 2 

15 

a 2 

))
( ln ( a ) ) 

4 

+6 

(
−1 

6 

a 2 1 c 2 + 

(
1 

3 

a 1 − 2 

3 

a 2 

)
( a 0 c 2 + c 1 ) + 

1 

6 

a 1 c 2 a 2 

−
(

1 

3 

a 1 − 2 

3 

a 2 

)
c 2 a 1 − a 2 ( a 0 c 2 + c 1 ) 

)
( ln ( a ) ) 

2 + 

1 

15 

(
6 a 0 a 1 a 2 + a 3 1 

)
c 2 + 

2 

5 

a 1 a 2 c 1 = 0 , 

120 

(
−c 2 

(
1 

5 

a 1 − 9 

5 

a 2 

)
+ c 2 

(
− 3 

10 

a 1 + 

19 

20 

a 2 

))
( ln ( a ) ) 

4 

+6 

(
−7 

6 

a 1 c 2 a 2 + 

(
1 

3 

a 1 − 2 

3 

a 2 

)
c 2 a 1 + a 2 ( a 0 c 2 + c 1 ) 

−
(

1 

3 

a 1 − 2 

3 

a 2 

)
c 2 a 2 

)
( ln ( a ) ) 

2 + 

1 

15 

(
3 a 0 a 

2 
2 + 3 a 2 1 a 2 

)
c 2 

+ 

1 

5 

a 2 2 c 1 = 0 , 

120 

(
−c 2 a 2 + c 2 

(
1 

5 

a 1 − 9 

5 

a 2 

))
( ln ( a ) ) 

4 

+6 

((
1 

3 

a 1 −2 

3 

a 2 

)
c 2 a 2 + a 1 c 2 a 2 − c 2 a 

2 
2 

)
( ln ( a ) ) 

2 + 

1 

5 

c 2 a 1 a 
2 
2 = 0 , 
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Fig. 1. The first bright soliton for (a) Set 1, (b) Set 2, (c) Set 3, and (d) all sets when t = 0 . 

1

l

a

a

a

v

C

C

u

a

20 c 2 a 2 ( ln (a ) ) 4 + 6 c 2 a 
2 
2 
( ln (a ) ) 2 + 

1 
15 c 2 a 

3 
2 

= 0 . 

Applying a symbolic system like Maple yields the following so- 

utions for the above system: 

Case 1: 

 0 = −5 ( ln ( a ) ) 
2 
c 2 + c 1 

c 2 
, 

 1 = 60 ( ln ( a ) ) 
2 
, 

 2 = −60 ( ln ( a ) ) 
2 
, 

 = 

5 ( ln ( a ) ) 
4 
c 2 2 − c 2 1 

5 c 2 
, 

 = 

( 5 ( ln ( a ) ) 2 c 2 + c 1 )( 10 ( ln ( a ) ) 4 c 2 
2 
−5 ( ln ( a ) ) 2 c 1 c 2 + c 2 1 

) 

15 c 2 
. 
2 

5 
Based on the above results, the following soliton to the KdV- 

DG model is derived 

 1 ( x, t ) = − 5 ( ln ( a ) ) 
2 
c 2 + c 1 

c 2 
+ 60 ( ln ( a ) ) 

2 1 

1 + da 
x − 5 ( ln ( a ) ) 4 c 2 

2 
−c 2 

1 
5 c 2 

t 

−60 ( ln ( a ) ) 
2 

⎛ ⎝ 

1 

1 + da 
x − 5 ( ln ( a ) ) 4 c 2 

2 
−c 2 

1 
5 c 2 

t 

⎞ ⎠ 

2 

. 

Case 2: 

 1 = 30 ( ln ( a ) ) 
2 
, 
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a

v

C  1 . 

C

u

−

 

d

i

l

 

p

3

(
t(
A

(

i

a

a

v

C

C

 2 + 2 5 
a 0

a

a

a

v

C

C

g

i

 

p

3

i

μ

ν

a

q

1 

ν

ν

 2 = −30 ( ln ( a ) ) 
2 
, 

 = ( ln ( a ) ) 
4 
c 2 + ( ln ( a ) ) 

2 
a 0 c 2 + ( ln ( a ) ) 

2 
c 1 + 

1 

5 

a 2 0 c 2 + 

2 

5 

a 0 c 1 , 

 = 

2 

15 

c 2 a 
3 
0 + 

1 

5 

c 1 a 
2 
0 + a 0 ( ln ( a ) ) 

4 
c 2 + ( ln ( a ) ) 

2 
a 2 0 c 2 + a 0 ( ln ( a ) ) 

2 
c

Based on the above results, the following soliton to the KdV- 

DG model is obtained 

 2 ( x, t ) = a 0 + 30 ( ln ( a ) ) 
2 1 

1+ da 
x −( ( ln ( a ) ) 4 c 2 + ( ln ( a ) ) 2 a 0 c 2 + ( ln ( a ) ) 2 c 1 + 1 5 

a 2 
0 

c 2 + 2 5 
a 0 c 1 ) t 

30 ( ln ( a ) ) 
2 
(

1 

1+ da 
x −( ( ln ( a ) ) 4 c 2 + ( ln ( a ) ) 2 a 0 c 2 + ( ln ( a ) ) 2 c 1 + 1 5 

a 2 
0 

c 2 + 2 5 
a 0 c 1 ) t 

)2 

To analyze the effect of nonlinear parameters ( c 1 and c 2 ) in the

ynamics of the first bright soliton, several numerical simulations 

n two and three-dimensional postures are formally given. The fol- 

owing families 

Set 1: { c 1 = 0 . 4 , c 2 = 0 . 4 , a = 2 . 7 , d = 1 } , 
Set 2: { c 1 = 0 . 6 , c 2 = 0 . 4 , a = 2 . 7 , d = 1 } , 
Set 3: { c 1 = 0 . 4 , c 2 = 0 . 6 , a = 2 . 7 , d = 1 } , have been taken to

lot Fig. 1 . 

.2.2. Applying KM II 

By considering Eqs. (14) and (15) as well as 

K 

′ (ε) 
)2 = K 

2 (ε) 
(
1 − 4 ABK 

2 (ε) 
)
, 

he following nonlinear algebraic system is acquired 

AB − 1 

120 

a 2 

)(
AB − 1 

240 

a 2 

)
= 0 , 

 

2 B 

2 − 1 

12 

AB a 2 + 

1 

1920 

a 2 2 = 0 , 

1 
15 

c 2 
(
( −120 AB + 3 a 2 ) a 

2 
1 − 360 

(
AB − 1 

120 
a 2 

)
a 2 ( a 0 + 20 ) 

)
−24 

(
AB − 1 

120 
a 2 

)
c 1 a 2 = 0 , (

− 1 
120 

a 2 1 + 

(
− 1 

20 
a 0 − 5 

8 

)
a 2 + AB ( a 0 + 10 ) 

)
c 2 

+ c 1 
(
AB − 1 

20 
a 2 

)
= 0 , 

1 
15 

(
( 3 a 0 + 15 ) a 2 1 + 3 a 2 

(
a 2 0 + 20 a 0 + 80 

))
c 2 

+ 

1 
5 

a 2 1 c 1 − a 2 
(
− 2 

5 
a 0 c 1 + v − 4 c 1 

)
= 0 , 

a 2 0 + 5 a 0 + 5 

)
c 2 + 2 a 0 c 1 − 5 v + 5 c 1 = 0 , 

1 

15 

c 2 a 
3 
0 + 

1 

5 

c 1 a 
2 
0 − v a 0 + C = 0 . 

Employing a symbolic system like Maple results in the follow- 

ng solutions for the above system: 

Case 1: 

 1 = 0 , 

 2 = 120 AB , 

 = 

1 

5 

a 2 0 c 2 + 

2 

5 

a 0 c 1 + 4 a 0 c 2 + 4 c 1 + 16 c 2 , 

 = 

2 
15 c 2 a 

3 
0 

+ 

1 
5 c 1 a 

2 
0 + 4 a 2 0 c 2 + 4 a 0 c 1 + 16 a 0 c 2 . 

Based on the above results, the following soliton to the KdV- 

DG model is derived 

u 3 ( x, t ) 

= a 0 + 120 AB 

( 

1 

( A −B ) sinh 

(
x −

(
1 
5 

a 2 
0 

c 2 + 2 5 
a 0 c 1 +4 a 0 c 2 +4 c 1 +16 c 2 

)
t 

)
+ ( A + B ) cosh 

(
x −

(
1 
5 

a 2 
0 

c

6 
 

c 1 +4 a 0 c 2 +4 c 1 +16 c 2 

)
t 

)
) 2 

. 

Case 2: 

 0 = − c 1 + 20 c 2 
c 2 

, 

 1 = 0 , 

 2 = 240 AB , 

 = − c 2 1 − 80 c 2 2 

5 c 2 
, 

 = 

(c 1 +20 c 2 )(c 2 
1 
−20 c 1 c 2 +160 c 2 

2 
) 

15 c 2 
2 

. 

Based on the above results, the following soliton to the KdV- 

DG model is derived 

u 4 ( x, t ) = − c 1 +20 c 2 
c 2 

+240 AB 

⎛ ⎜ ⎜ ⎝ 

1 

( A −B ) sinh 

( 
x + 

( 
c 2 
1 

−80 c 2 
2 

5 c 2 

) 
t 

) 
+ ( A + B ) cosh 

( 
x + 

( 
c 2 
1 

−80 c 2 
2 

5 c 2 

) 
t 

) 
⎞ ⎟ ⎟ ⎠ 

2 

. 

Several two and three-dimensional representations are formally 

iven to investigate the effect of nonlinear parameters ( c 1 and c 2 ) 

n the dynamics of the fourth bright soliton. The following groups 

Set 1: { A = 1 , B = 2 , c 1 = 0 . 01 , c 2 = 0 . 01 } , 
Set 2: { A = 1 , B = 2 , c 1 = 0 . 04 , c 2 = 0 . 01 } , 
Set 3: { A = 1 , B = 2 , c 1 = 0 . 01 , c 2 = 0 . 06 } , have been adopted to

ortray Fig. 2 . 

.3. KdV-CDG model and its complexiton 

To extract the complexiton of the KdV-CDG model, the follow- 

ng assumptions are considered [ 36 , 37 ] 

= μ1 + iμ2 , 

= ν1 + iν2 , 

p(x, t) = xt + c 1 x 
4 + c 2 x 

6 . 

From 

p ( μ, ν) = 0 , 

p ( μ, ν) = 0 , 

nd exerting a few operations, a nonlinear algebraic system is ac- 

uired as follows 

6 c 2 μ
5 
1 μ2 + 4 

(
−5 c 2 μ

2 
2 + c 1 

)
μ2 μ

3 
1 + 

(
6 c 2 μ

5 
2 − 4 c 1 μ

3 
2 + ν2 

)
μ

+ μ2 ν1 = 0 , 

c 2 μ
6 
1 + 

(
−15 c 2 μ

2 
2 + c 1 

)
μ4 

1 + 

(
15 c 2 μ

4 
2 − 6 c 1 μ

2 
2 

)
μ2 

1 + μ1 ν1 

+ 

(
−c 2 μ

5 
2 + c 1 μ

3 
2 − ν2 

)
μ2 = 0 . 

Applying a symbolic system like Maple yields 

1 = −μ1 

(
c 2 μ

4 
1 − 10 c 2 μ

2 
1 μ

2 
2 + 5 c 2 μ

4 
2 + c 1 μ

2 
1 − 3 c 1 μ

2 
2 

)
, 

2 = −5 c 2 μ
4 
1 μ2 + 10 c 2 μ

2 
1 μ

3 
2 − c 2 μ

5 
2 − 3 c 1 μ

2 
1 μ2 + c 1 μ

3 
2 . 
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Fig. 2. The fourth bright soliton for (a) Set 1, (b) Set 2, (c) Set 3, and (d) all sets when t = 0 . 

a

t

r

u

w

ϑ

ν

ν

 

t

t

i

Through the command 

 12 = − p ( 2 iμ2 , 2 iν2 ) 

p ( 2 μ1 , 2 ν1 ) 
, 

he phase shift is found as 

a 12 

= −
−64 c 2 μ

6 
2 

+16 c 1 μ
4 
2 

−4 μ2 

(
−5 c 2 μ

4 
1 
μ2 +10 c 2 μ

2 
1 
μ3 

2 
−c 2 μ

5 
2 

−3 c 1 μ
2 
1 
μ2 + c 1 μ3 

2 

)
64 c 2 μ

6 
1 

+16 c 1 μ
4 
1 

−4 μ2 
1 

(
c 2 μ

4 
1 

−10 c 2 μ
2 
1 
μ2 

2 
+5 c 2 μ

4 
2 

+ c 1 μ2 
1 

−3 c 1 μ
2 
2 

) . 

Now, the following complexiton to the KdV-CDG model is de- 

ived 

 5 ( x, t ) = 30 ( ln ( f ( x, t ) ) ) xx , 

here 

f ( x, t ) = 1 + 2 e ϑ 1 cos ( ϑ 2 ) + a 12 e 
2 ϑ 1 , 
7 
 i = μi x + νi t, i = 1 , 2 , 

1 = −μ1 

(
c 2 μ

4 
1 − 10 c 2 μ

2 
1 μ

2 
2 + 5 c 2 μ

4 
2 + c 1 μ

2 
1 − 3 c 1 μ

2 
2 

)
, 

2 = −5 c 2 μ
4 
1 μ2 + 10 c 2 μ

2 
1 μ

3 
2 − c 2 μ

5 
2 − 3 c 1 μ

2 
1 μ2 + c 1 μ

3 
2 , 

a 12 = − −64 c 2 μ
6 
2 
+16 c 1 μ

4 
2 
−4 μ2 ( −5 c 2 μ

4 
1 
μ2 +10 c 2 μ

2 
1 
μ3 

2 
−c 2 μ

5 
2 
−3 c 1 μ

2 
1 
μ2 + c 1 μ3 

2 
) 

64 c 2 μ
6 
1 
+16 c 1 μ

4 
1 
−4 μ2 

1 
( c 2 μ

4 
1 
−10 c 2 μ

2 
1 
μ2 

2 
+5 c 2 μ

4 
2 
+ c 1 μ2 

1 
−3 c 1 μ

2 
2 
) 

.

To analyze the effect of nonlinear parameters ( c 1 and c 2 ) in 

he dynamics of the complexiton, several numerical simulations in 

hree-dimensional postures are formally given. The following fam- 

lies 

Set 1: { μ1 = 0 . 5 , μ2 = 0 . 5 , c 1 = 0 . 01 , c 2 = 1 } , 
Set 2: { μ = 0 . 5 , μ = 0 . 5 , c = 0 . 06 , c = 1 } , 
1 2 1 2 
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Fig. 3. The complexiton for (a) Set 1, (b) Set 2, and (c) Set 3. 
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Set 3: { μ1 = 0 . 5 , μ2 = 0 . 5 , c 1 = 0 . 01 , c 2 = 2 } , have been taken 

o plot Fig. 3 . 

. Conclusion 

In the current paper, the authors conducted a new and 

omplete investigation on the Korteweg-de Vries–Caudrey–Dodd–

ibbon dynamical model describing certain properties of ocean dy- 

amics. First, by adopting the Ibragimov method which is based 

n the formal Lagrangian equation, the local conservation laws of 

he KdV-CDG model were formally derived. Kudryashov and Hi- 

ota methods were then applied to the KdV-CDG model to derive 

ts solitons and complexiton. Several numerical simulations in two 

nd three-dimensional postures were formally presented to exam- 

ne the effect of nonlinear parameters in the dynamics of soliton 

nd complexiton solutions. It was observed that the change of non- 

inear parameters has a significant effect on the dynamical evo- 

ution of solitons and complexiton. As future works, the authors’ 

oncern is to adopt other well-designed methods [38–50] to con- 

truct other wave structures of the KdV-CDG model. 
8 
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