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Abstract: In the present study, we provide a new approximation scheme for solving stochastic
differential equations based on the explicit Milstein scheme. Under sufficient conditions, we prove
that the split-step (a,8)-Milstein scheme strongly convergence to the exact solution with order 1.0
in mean-square sense. The mean-square stability of our scheme for a linear stochastic differential
equation with single and multiplicative commutative noise terms is studied. Stability analysis shows
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the effectiveness of the theoretical results.
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1. Introduction

In this paper, we deal with the following It stochastic differential equations (SDEs)

P
dW, = A(W,, n)dt + Z B,(W,,Hdw?,t > 0. (1.1)

p=1

Here A, B, : R? X [ty, T] — R, are drift and diffusion functions, respectively. Also @/, p = 1,..., P
is an one-dimensional Wiener process. This type of SDE (1.1) are widely applied for describing many
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real-life phenomena such as economics, epidemiology, chemistry, meteorology and etc, see [1-8], for
example. For many of them, there is no analytical closed-form solution, so numerical techniques and
analysis will become important. For SDE (1.1), Milstein [9] proposed an explicit numerical scheme
with strong convergence order 1.0, namely

P P P
W = WY+ RAOW)™, 0y + " B,OWY 0T+ > 3" LBy, (W)™, 0T, (12)

p=1 p1=1 p2=1
with
t+h t1+h T
Iy = f dw,(r) = Aw), = \/Efp’ Lipipo) = f (f dwm(’?)) dw,(r1),
1 ] 1
and
4 0
L= Bip o
D1 Mil ?
i=1 awi,l
such that
BB]J . 6BR|
Bp2 1 d awxil ()W?/;il Bl,i
D1 Mil —_ . . . .
> B, WZZZ | Bmi= e
1 1 1 i=1 il i=1 | 0B14 0Bpg )
p1.p2= p1=1 pr= B,,4 ST Bp;

where t; = ty +lh, 1 = 0,1,...,N, a time step h = (T — ty)/N with a fixed natural number N and
&, ~ N(0, 1). Furthermore, drifting split-step backward Milstein (DSSBM) scheme is given by [10]

W, = W, + hA(W,, 1),
— P — L — (1.3)
Wi =W, + Z B,(W, 1)1 ) + Z Z LP'B,, (Wi, t)I (p, p)-

p=1 =1 pr=1

The drifting split-step Adams-Moulton Milstein scheme is another modification of the classical
Milstein scheme, which was initialized in [11]. Recently, Jiang el al. [12] propose a new split two-step
Milstein scheme as follow

—~— —~— —~— 0- —~—
Wi =W, = hB,AW_1) + hBoA(W)) — EhLlB(Wz), (14)
Wi =W, + B(WI)I(I) + LIB(VVI) (|I(1)|2 - h) ,

for autonomous stochastic differential systems with one-dimensional Wiener process. Especially, they
named method (1.4), Adams-Bashforth Milstein (ABM) scheme when 8, = 0, 8y = —1/2 and o = 1.
Furthermore, method (1.4) called Adams-Moulton Milstein (AMM) scheme if 8, = 5/12, 5y = —1/2
and o = 1/2. Also, the family of drift-implicit Milstein schemes has been found in [13, 14], which
is adapted for stiff stochastic problems. Other families of numerical schemes were also studied, for
instance [15-21]. We just mention some of them here and refer the readers to the references therein,
among others.

One way to judge numerical schemes is to use the mean-square (MS-) stability properties. Saito
and Mitsui [22] studied MS-stability properties of some numerical schemes for linear test equations,
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as well. Also, in [23] the same authors, analyzed the MS-stability of the Euler-Maruyama scheme for
linear systems of SDEs. For more study of the MS-stability of various linear systems of SDEs applied
to numerical schemes, the reader may refer to [24-27] and the references therein.

We emphasize that this paper is motivated by the Higham et al. [28], where proposed a new Milstein
scheme and they investigated its efficiency in many financial models.

For SDE (1.1), the numerical scheme for the split-step («, 8)-Milstein (SSABM) approximation is
defined by

W[ =W, + &hA(W[, ), (1.5a3)
S _
Wi =W - 38 ; L?B,(W,, 1), (1.5b)
. P . P P e
Wl+1 = W[ + hA(Wl, 1)+ Z BP(WZ, l’l)f(p) + Z Z LPIBPZ(W], l‘])_z-(p],pz), (ISC)
p=1 p1=1 pr=1

where @, B € [0,1]. By taking @ = 8 = 0 in (1.5) Milstein method [9] is obtained. We gives the
split-step theta-Milstein (SSTM) method [29], when @ = 6, 8 = 0. Furthermore if @ = 1, 8 = 0,
we obtain DSSBM scheme [10]. Obviously, deterministic equations (1.5a) and (1.5b) are implicit in
W; and Wl when @, B € (0, 1] must be solved to obtain the intermediate approximation W; and Wl,
respectively.

In this work the consider the strong convergence properties of the numerical scheme (1.5) in MS
sense, we shall follow [30-32], where assumed that the drift and diffusion coefficients function of
SDE (1.1) satisfies the following conditions.

Proposition 1.1. There exist constants €, > 0 and €, > 0 such that

-Lipschitz conditions:

[As1, ) = Alsa, )P vZ|B,,(s1,r> B, (52, )P vZZlLPIB,,2<s1,t> L7 By (52,0

p1=1 pr=1

(1.6)

< €1|S1 - S2| .

-Linear growth bounds:

A(s1, 1) vZ|B,,(s1,t)| v Z Z L7 B,,,(s1, 1) < 6(1 + 151, (1.7)

p1=1 pr=1

forall sy, s, € RY.

This paper is constructed as follows. We will devote to our main results about the MS convergence
of the numerical scheme (1.5) in Section 2. And then, the MS-stability properties of the SSABM
scheme (1.5) are established in Section 3. Section 4 contains examples. The conclusion is stated in
Section 5.
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2. Mean-square convergence analysis

To recover the strong convergence order 1.0 for the scheme (1.5), we need Proposition 1.1, following
Lemma and the local mean error and mean-square error Milstein scheme (1.2):

‘E [(W?ﬁ‘ - W(t;)) Ft] < KW 1+ |WP, (2.1a)
1
Wit - wa [ JF [ < k02 1+ i, (2.1b)

respectively.

Lemma 2.1. [33] Assume for a one-step discrete time approximation W that the local mean error and
mean-square error forall N = 1,2,...,and [ =0,1,...,N — 1 satisfy the estimates

|E[(Wi1 = Wy, ) IF| < KB {1+ WP (2.2)

1/2

< KW A1+ W), (2.3)
1/2

< K2 y1+ W, P

and

‘E[|Wl+l - Wll+1

2
|F,]

when %, > L and x; > %, + 1. Then

‘E“Wr - W,['1Fo|

holds for each r = 0,1,...,N.

Theorem 2.1. Suppose Proposition 1.1 holds. Then the numerical scheme SSABM (1.5) strongly
converges to SDE (1.1) in the MS sense with order 1.0.

Proof. First, we compute the local mean error of our scheme in the following

5, = ‘E [(W,+1 ~W,.) ‘Fl]

(2.4)
< \E (ot - w,..) \FIH + ‘E (Wi =03 ||| < K214 W + 02,
where
0y = ’E [(Wm - Wy Ft]'
,

= [E[Wi = W+ 1 (AW, 1) = AW, 1) + > (B, (Wi 1) = B,V 1) Ty

o p=1 (2.5)
+ 30 3 (L7 By (Wi 1)) = L7 By W, 1)) Ly, ||

pi1=1 pr=1

< hE Wi - W)
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Notice that for obtain of inequality (2.5), used global Lipschitz condition (1.6), E[I (p)] =
E [I(pl,pz)] = 0. Also, applying (1.5a), (1.5b), Proposition 1.1 and

\/L1+L2+...+LPS \/L—1+\/L_2+...+ LP, {L,},P:120,

yields
[W, - W] < [ -0, + [ Wi - . 2.:6)
where
‘\7\7, - Wl| < —Bih i Lpo(Wla 1)
=1
< %h Z ‘LPBP(VV,, 1) — L"B,(W,, fz)‘
Ph Z |L7B,(W,.1) ~ LB, (Wi, 11)' += Z |L7B, (W, 1)
gﬁ ‘w, w,‘+— ‘W, W1+—\/?2\/1+|Wz|,
and

(Wi = W) < [ah AW, )| < ah [AOR,, 1) - AW, )] + AW, 1)

< ah e [Wi- W) + ah BT+ WP

From the above inequalities, we conclude that

‘W, W,'<h - a\/_ 1+ WP, 2.7)
and VG
. 7

‘W,—Wl'sh PNG VI+ W (2.8)

2(1 - RENE) (1 - ha V)

Now for (1 =15 V&) (1 - har V&) > 0, we have from (2.4)~(2.8), %, = h*. Similarly by standard
arguments, Wwe can prove

5 3
53 = ’E [|Wl+l - Wt]+1 'F{l'
| | (2.9)
. 2 . 2
[IW?S‘B - W, 2|Ft]| + ]E[IWM —~ Wi F,] < K21+ Wi + vidal.
[ )|F,] < O(h), E[ o2 )IFI] < O(h?*) [6, Lemma 5.7.2] and inequality
(Li+Ly+ ...+ LpY < P(LT+ L3 +... +L}), (2.10)
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we can obtain

6, =E [|W,+1 — Wi |Ft]

P
- EHW, = WM+ B (AL 1) = AWM ) + > (B,(Wi. 1) = B,(W™, 1)) I,
p=1

P p — i 2
Z Z Lpprz(Wl, tl) - LplBPz(WlMll’ tl)) ](171,[72) Ft]
=1 ool (2.11)

P
<h(1+P+P) (h A1) - AW + > |B, Wiy - B, Wi 1)
p=1

P — 2
+h Y L7 By, (Wi 1) = L7 B, (W, 1) )
p=1

— 2
<h(1+21) (1+ P+ P2 & [W, - Wi
Using the (1.5a), (1.5b), Proposition 1.1 and inequality (2.10), we can gets:

(2.12)

2

‘W, —Wlf < 2'7\71 —W,r +2’W, _wl

where
2

h < .
< —'87 Z L?B,(W,, 1)

p=1

h)? — — — P
3p¥ 4) Z 7B, (Wi, 1) = 17 B,(W, 1)

[, - er

2

h
Z |78, (W) L9 B Wit + 3P(B i Z L7 B, (W, 1)

(,Bh)2 (Eh)2

<3P

2 'w, W,‘ +3P (52’)252(

A W,‘ +3P L+ WiP),

and
- 2 - 2 - 2
‘w, - wl‘ < 'ahA(W,, z,)‘ < 2(ah) ‘A(W,, 1) — AW, t,)‘ + 2(ah) AW, 1)
< 2(ah)’t 'Wl - W,‘z + 2k (1+ W),

From the above inequalities, we obtain

_ 2
‘W, _ Wl' < (1 + W, 2.13)

0‘—
— (ah)*¢,

and

S — PL(B)
Wi - W) < Shz 2P) (1 + W) (2.14)
4(1-3PE50) (1 - (ah)?t))
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.. _ . . _ 2pBh* _ 2 _ 3
Combining (2.9)—(2.14), implies that for (1 3P 51)(1 (ah) {’1) > 0, 2, = 5. Thus, we can

choose in Lemma 2.1 % = 2, %, = % and can prove that the strong order of SSABM scheme is 1.0. O
3. Linear mean-square stability

In this part of the paper, we consider the scalar linear SDE with a multi-dimensional Wiener process
of form

P
dW(t) = vW(r)dr + Z v,W(t)dw,(1), (3.1)
p=1
where v, v, € R, W(0) # 0 € R. We know that if the coeflicient of test Eq (3.1) is satisfied

P
2w+ Y2 <0, (32)
p=1

then the trivial solution is asymptotically MS-stable [7,22], i.e. limE [IW(I)IZ] = 0. If applied a
t—00
SSABM scheme (1.5) to test Eq (3.1), obtained the difference equation

Wl+1 = ®(U7 v, h) Wl’ (3'3)
with MS-stability function

P P P
vh + \/EZ Vpép + Z Z VoV L (p1.po)
p=1

p1=1 pa=1

P
(1- avh)[l + %hﬁz vi)
p=1

Theorem 3.1. For the test Eq (3.1) with a one-dimensional Wiener process (P = 1), the SSABM
scheme (1.5) is MS-stable, if and only if 3/2 < a + < 2.

Proof. The MS-stability function of SSABM scheme applied to the test Eq (3.1) with P = 1 reads

Dw,v,h) =1+ . (3.4)

vh + Vhvé + A€ - 1)
(1 —avh) (1+1hpv?)

Dw,v,h) =1+ 3.5)

The stochastic difference Eq (3.3) with (3.5) is MS-stable if and only if E [l@ (v, v, h) |2] < 1. So, we
can write
a+a+az+as <1, 3.6)

where

(vh + (1 = awh) (1 + 32) - Lin2)

2

a) =

(1 — avh)? (1 + %hﬁvz)z
h?

(1 - avhy (1 + hp?)

a, =

AIMS Mathematics Volume 8, Issue 2, 2576-2590.
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§h2v4
asz = - ok
(1 - avh)* (1 + 1hBv?)
h(vh+ (1 = avh) (1 + 1hBv?) - 1) 2
ag =

(1 — avh)? (1 + %hﬁvz)z

After a little algebra, the condition (3.6) becomes

vh((3 = 2a)u + Bv?) + 2u + v* — aB(vh)*V* + %h(vz —2U)(* + 2v) < 0. (3.7)

It is easy to deduce from (3.7) that 3 — 2 > 28. Also, we know « + S < 2. Thus we complete the
proof. O

Theorem 3.2. For the test Eq (3.1) with commutative noises, SSABM scheme (1.5) is MS-stable, if and
onlyif3/2<a+p <2

Proof. The commutativity condition on the diffusion coefficient of test Eq (3.1) reads as v, v,,, = v, ),

forall p;, p, = 1,2,..., P[6,25]. Together with the identity 7, ,,) +Z (p,.p1) = L p, L, the MS-stability
function of SSABM scheme in (3.4) converts to

vh + ‘/_Z Vp&pa + h Z Z Vo Vpapribps
Dw,v.h) =1+ i . (3.8)

(1- a/vh)[l + %hﬁz vf,]

p=1

According Theorem 3.1, our scheme is MS-stable for test Eq (3.1) with with commutative noises if
and only if

P P
1 1
2h+2v(1—a/vh)[1+ h,BZ ]+Zv +§Zvj,+z1 szp,v,,z 0,
p=1 p=1 p=1 p1=1p2=1
P1#DP2

which, this is equivalent to

P P P P P
vh[(3—2a)v+,82vf,]—aﬁ(vh)2;vi+2v+;vf}+%h(2v2—2v][2vi+2v] < 0.

p=1 p=1 p=1

It can be easily seen that the above inequality holds if 3—2a > 23, which implies the desired assertions.
O

In Figure 1, the behavior of the MS-stability functions of our scheme (3.7) and test Eq (3.2) are
compared when P = 1. Results of this figure show that the scheme is A-stable if 3/2 < a + 8 < 2.
Similarly, such results can be obtained for the state of commutative noises in Figure 2.

AIMS Mathematics Volume 8, Issue 2, 2576-2590.
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@=0.25, $=0.75 @=0.25, B=1 @=0.5, =0.25 @=0.5, f=0.5
kk Xi
TN TN
hv? o hv? o hv? o hv? o
\ \ R \
hv hv hv hv
‘ @=0.5, f=0.75 _@=05,p=1_ _a=0.75, f=0_ a=0.75, f=0.25
kk kk
TN TN
hv? o hv? o] hv? oo hv? ol
N \ \ N
hv hv hv hv
@=0.75, f=0.5 @=0.75, =0.75 a=0.75, B=1 a=1, B=0
kk Xi
TN TN
hv? o hv? o hv? o hv? o
N \ 1\ \
hv hv hv hv
‘ _a=1,$=025 _a=1,4=05_ _a=1, =075 =1, =1
Xl kk
TN TN
n? - hy2 o n? - hy2 o
N \ I\ N
hv hv hv hv

Figure 1. MS-stability

P=1.
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(m) a=0.75,=1.0 m) «=1.0,=0 (0) a=1.0,=0.25 (p) a=1.0,=0.5

(@ @=108=075 ®a=p=10

Figure 2. MS-stability regions for the SSABM scheme (1.5) applied to SDE (3.1) with
commutative noises.
AIMS Mathematics Volume 8, Issue 2, 2576-2590.
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4. Numerical results

In this section, we compare the convergence rate and the computational performance of our new
scheme (1.5) with various «,f, the Milstein and DSSBM (1.3) schemes. In this work, all the
computations are performed by using a MATLAB platform.

Example 4.1. Consider the one-dimensional nonlinear SDE,
2 2 2 1
AW () = —(a + W) (1 - W) dt + b (1 - W) dao(t), Wo = 5 4.1)

The exact solution is given by [6]

_ (1 + Wy)exp(—2at + 2bw (1)) + W, — 1
(1 + Wy)exp (=2at + 2bw(t)) — Wy + 1

W(z)

The means square errors (MSE) of the SSABM (1.5), Milstein, DSSBM (1.3) (SSTM with8 = 1 [29]),
ABM (1.4) and MMA (1.4) schemes can then be obtained in Figure 3. As shown in Figure 3, the
SSABM scheme has better than other schemes fora = b = 0.5 and ifitisa = 1.0 and b = 0.25 in (4.1),
ABM (1.4) has better than other schemes.

a=b=0.5 a=b=0.5 (zoom) a=1,b=0.25 a=1, b=0.25(zoom)
10°

MSE

—— Reference siope- 1

10? 107 10° 10° 10° 107 10" 10" 10 10 1072
h h h h

Figure 3. MSE estimations of the numerical schemes for nonlinear SDE (4.1).

Example 4.2. Consider the following stiff stochastic system [34]

dW (1) = 10W,(n)dt + 0.2 (W, (2) + W, (1)) dw(2),
dWi(2) = =10W (r)dr + 0.2 (W, (t) + W, (1)) dw(2), 4.2)
Wit =1, W) =0, te][0,20].

By choosing h = 0.01, Figure 4 depicts the numerical simulations of the SSABM and Milstein
schemes. These figures confirmed that the stability properties of the SSABM scheme are better than the
Milstein scheme.

AIMS Mathematics Volume 8, Issue 2, 2576-2590.
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Figure 4. Numerical simulation of the Milstein and SSABM (1.5) schemes for SDE system
(4.2).

5. Conclusions

This work has been devoted to the numerically solution to stochastic differential systems (1.1) by
the new implicit Milstein scheme. Under given conditions, the strong convergence of the approach has
been theoretically investigated and proved that the split-step («, 5)-Milstein scheme has a convergence
order of 1.0 in MS sense. Furthermore, the MS-stability of the SSABM scheme has been discussed in
this paper. For SDE (3.1) with a single noise term, we show that our scheme is mean-square A-stability
for any value 3/2 < a+ < 2. Also, this result satisfies for SDE (3.1) with multiplicative commutative
noise terms. In the last part of this article, the presented scheme has superior efficiency and accuracy
to the Milstein and DSSBM [10] schemes.
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