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Significance of nanoparticles 
aggregation on the dynamics 
of rotating nanofluid subject 
to gyrotactic microorganisms, 
and Lorentz force
Bagh Ali1,2, Imran Siddique3*, Rifaqat Ali4, Jan Awrejcewicze5, Fahd Jarad6,7* & 
Hamiden Abd El‑Wahed Khalifa8,9*

The significance of nanoparticle aggregation, Lorentz and Coriolis forces on the dynamics of spinning 
silver nanofluid flow past a continuously stretched surface is prime significance in modern technology, 
material sciences, electronics, and heat exchangers. To improve nanoparticles stability, the gyrotactic 
microorganisms is consider to maintain the stability and avoid possible sedimentation. The goal of 
this report is to propose a model of nanoparticles aggregation characteristics, which is responsible to 
effectively state the nanofluid viscosity and thermal conductivity. The implementation of the similarity 
transforQ1m to a mathematical model relying on normal conservation principles yields a related 
set of partial differential equations. A well‑known computational scheme the FEM is employed to 
resolve the partial equations implemented in MATLAB. It is seen that when the effect of nanoparticles 
aggregation is considered, the temperature distribution is enhanced because of aggregation, but 
the magnitude of velocities is lower. Thus, showing the significance impact of aggregates as well 
as demonstrating themselves as helpful theoretical tool in future bioengineering and industrial 
applications.

Nanofluids are made by suspending nanoparticles in a liquid carrier such as oil, argon, or ethylene  glycol1. The 
presence of nanomaterials in the host fluid has a significant impact on the thermophysical features of base fluids 
with low conductivity properties, according to theoretical and experimental  findings2–4. Due to their interest-
ing uses in every aspect of science and engineering, the convective nanofluid thermal transport flow attention 
a large number of researchers. To mention several, the ceramic nanomaterials and diamond are utilized to 
improve the mineral-oil dielectric properties, the liquid incorporated nanomaterials can be utilized for directly 
sunlight absorption in solar collectors, making them suitable for biomedical uses including cancer therapy and 
drug delivery etc.5–7. The several numerically computational have been studied to enhance the fluid thermal 
conductivity like, peristaltic pumping of a  nanofluid8, Casson fluid incorporated  nanoparticles9, magnetized 
nanoparticles subject to water as a host  fluid10, hybrid nanoparticles considered to enhance the performance of 
DC operated  micropump11, non-uniform heat source/sink with nanoparticles incorporated in the base fluid to 
observe the heat transfer  rate12, thermal enhancement through multi-twisted tape subject to tiny  particles13, and 
hydrothermal nanofluid analysis subject to wavy pipe  geometry14.
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The rotatory flow has wide range of applications in real life, such as turbine rotors, air cleaner devices, mix-
ing materials machinery, medical field, and power generation systems, etc.15,16. The first endeavor towards the 
rotating path of fluid was made by  Wang17. Many researchers are investigated the rotating flow under different 
aspects and geometries are given in Refs.18–21. The presence of a density gradient in the flow field causes the 
bio convective phenomenon. Consequently, the movement of the particles at the macroscopic level causes the 
improvement of the density stratification of the base liquid in one direction. Many researchers were interested in 
the existence of such Gyrotactic microorganisms in the nanofluid flow because of their potential applications in 
enzymes, biotechnology, biosensors, biofuels, and medication delivery. These applications prompted a number 
of investigators to do numerical simulations on bio convective nanofluid flow with microorganisms passing 
through a variety of flow fields. Chu et al.22 have used Homotopy Analysis Approach to evaluate numerically bio 
convection Maxwell nanofluid flow via bidirectional periodically moving plate under nonlinear radiation and 
heat source phenomena. Rao et al.23 scrutinized the bio convective flow in a conventional reactive nanofluid 
towards the isothermal upright cone with Gyrotactic microorganisms immersed in a permeable medium. Awais 
et al.24 investigated assisting and opposing bio convective nanofluid flow with motile microorganisms numerically 
via Adams–Bash forth approach (ABA). Abdelmalek et al.25 investigated bio-convective third-grade nanofluid 
stream over an extending sheet under Arrhenius activation energy by using bvp4c. Shafiq et al.26 investigated 
the chemically reactant bio-convective second grade nanofluid flow under buoyancy effect.

Numerous investigators came to the conclusion that particle  aggregation27,28, particle  motion29 and liquid-
layering30 are most valuable variables in thermal conductivity processes in nanofluids. The fact that particle 
aggregation can improve nanofluids’ efficient thermal conductivity has been demonstrated  experimentally30,31. 
According to Wang et al.32, particle clustering could have a noteworthy effect on the improvement of thermal 
conductivity of nanoliquid.  In33, authors proposed a mixture model to describe two-component heterogeneous 
structures. The particle aggregation form is invariable in their model that ignores the impact of aggregation shape 
on nanofluids effective thermal conductivity.

The extensive literature review stated above reveals that the minimal attention to the self-motile thermophile 
microorganisms ingrained nanofluid rotating flow across a stretching sheet with the impact of the external 
magnetic field subject to nanoparticles aggregation. According to the author’s insight, none of the listed articles 
discuss the detailed problem. The main objective of this study is to examine the heat and mass transport impacts 
of transitory hydromagnetic rotating nanofluid three-dimensional flows with Gyrotactic microbes. Numerous 
scholars have lately examined the hydromagnetics nanofluid flow for Newtonian and non-Newtonian  flow34–36 
by utilizing variational finite element technique. The coupled non-linear PDEs is resolved using a control vol-
ume technique with a weighted residual approach using a Galerkin  FEM37,38. The flow field characteristics for a 
variety of important parameter modifications are explored and illustrated graphically. The MATLAB code blocks 
yielded computational findings that were validated by existing literature and determined to have a reasonable 
correlation. This numerical analysis applies to gasoline, polymers, nutrition release precision, engine lubricants, 
paint rheology, Bio-Sensors, medicine delivery, and biofuels.

Research questions. The following relevant scientific research questions are examined in the study: 

1. To explore the impact of Coriolis force and Lorentz force on thermal, momentum, and concentration profiles 
in the presence and absence of nanoparticle aggregation?

2. What impact do the Coriolis and Lorentz forces have on mass transport rate, skin friction factor, and thermal 
efficiency presence and absence of nanoparticle aggregation?

3. What are the impacts of Brownian motion, thermophoresis, and time-dependent parameters on thermal 
distribution?

4. Evaluate how bio-convection affects the microorganisms profile in the presence and absence of nanoparticle 
aggregation?

Mathematical formulation
Consider a MHD three-dimensional rotating Maxwell nanofluid flow across a bidirectional stretching surface. 
Figure 1 depicts the fluid dynamic structure and three-dimensional the developed problem. The flow is limited 
to z ≥ 0 . The fixed origin O(x, y, z) has been chosen, with the x-axis depicting the stretching surface’s move-
ment, the y axis depicting the surface’s normal, and the z-axis depicting transverse to the xy plane. A static and 
uniform magnetic B0 field is applied in the axial direction (z-direction). Due to the low magnetic Reynolds 
number, a reduced magnetic field is created, hence Ohmic dissipation and Hall current are  negligible39. T∞ , 
Nw , C∞ , represents ambient temperature and concentration and Tw , Nw , Cw , signifies surface temperature and 
concentration. To avoid sedimentation, gyrotactic microorganisms is taken into account to maintain convection 
stability. V = (u1(x, y, z), u2(x, y, z), u3(x, y, z)) considers the velocity field in the current complicated situation. 
The physical properties of nanoparticles aggregation and without aggregation, and based fluid are mentioned in 
the Tables 1 and 2. The governing equations of continuity, momentum, temperature, concentration and biocon-
vection of the fluid flow are given  as40–42:

(1)u1x + u2y + u3z = 0,

(2)ρnf (u1t + u1u1x + u2u1y + u3u1z + 2�u2) = µnf u1zz − σnf B
2
0u1,
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where ρnf ,µnf ,αnf  , are the fluid density, dynamic viscosity and thermal diffusivity, C indicates the nanoparticles 
concentration, n symbolizes microorganisms concentration, T represnts the fluid temperature, DT , DN , and DB , 
are represents the thermophoretic diffusion coefficient, diffusivity of microorganisms, and Brownian diffusion 
coefficients, respectively. The boundary constraints  are43,44:

(3)ρnf (u2t + u1u2x + u2u2y + u3u2z − 2�u1) = µnf u2zz − σnf B
2
0u2,

(4)Tt + u1Tx + u2Ty + u3Tz = αnf Tzz + τ ∗{DbCzTz +
DT

T∞
T2
z },

(5)Ct + u1Cx + u2Cy + u3Cz = DbCzz +
DT

T∞
Tzz ,

(6)nt + u1nx + u2ny + u3nz +
bWc

(Cs − C∞)
[(nCz)z] = DmNzz ,

(7)t < 0 : u1 = 0, u2 = 0, u3 = 0, C = C∞, T = T∞, n = n∞,

(8)t ≥ 0 : u1 = ãx, u3 = u2 = 0, T = Ts , C = Cs , n = ns , as z = 0,

Figure 1.  Physical representation of problem.

Table 1.  Thermo-physical properties of water base fluid and  nanoparticles45.

Physical properties ρ (kg m −3) Cp (J/kg K) κ (W/m K)

H2O 0991.1 4179.0 00.613

TiO2 4250.0 686.20 8.9538

Table 2.  Thermo-physical attributes of base fluid and  nanoparticles45,46.

Properties With aggregation Without aggregation

viscosity (µ) µnf

µf
= (1− �ag

�m
)2.5�m

µnf

µf
= 1

(1−�)2.5

density (ρ) ρnf = ρf (1−�ag )+�agρs ρnf = ρf (1−�)+�ρs

Heat capacity(ρCp) (ρCp)nf = (ρCp)f (1−�ag )+�ag
(ρCp)s
(ρCp)f

(ρCp)nf = (ρCp)f (1−�)+�
(ρCp)s
(ρCp)f

Thermal conductivity(κ) knf
kf

= kag+2kf −2�ag (kf −kag )

kag+2kf +�ag (kf −kag )

knf
kf

= ks+2kf −2�(kf −ks)

ks+2kf +�(kf −ks)
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Similarity transformations  (see40,43):

In view of Eq. (10), Eq.  (1) is satisfied and Eqs. (2–9) becomes non-linear PDEs into transformed coordinate 
systems ( Ŵ, η).

where

and � = �
a  signifies rotating parameter, M =

√

σnf B
2
o

ρf ã
 deliberated the magnetic parameter, Pr = ν

αnf
 symbolize 

the Prandtl number, Sc = ν
Db

 is the Schmidt number Sb = ν
Dm

 represent bioconvection Schmidt number , 
Nb = τν−1DB(Cs − C∞) is the Brownian motion, Nt = DT (τTs−τT∞)

νT∞
 represent the thermophoresis , Pe = bWc

Dm
 

Peclet number, δ1 = n∞
ns−n∞

 is microorganism-concentration difference.
The following are the local skin friction coefficients, Sherwood coefficients, and Nusselt coefficients respec-

tively as follows:

Using Eq. (10), we derive the following results:

(9)t ≥ 0 : u1 → 0, u2 → 0, T → T∞, C → C∞, n → n∞, as z → ∞.

(10)
u1 = ãx

∂F1(Ŵ, η)

∂η
, u2 = ãxF2(Ŵ, η), u3 = −

√
ãνŴF1(Ŵ, η), Ŵ = 1− e−ζ , η =

�

ãxz2

Ŵν
,

ζ = ãt,
T − T∞
(Ts − T∞)

= �(Ŵ, η),
C − C∞

(Cs − C∞)
= �(Ŵ, η),

n− n∞
(ns − n∞)

= χ(Ŵ, η).



















(11)
1

χ1χ2
F ′′′1 + 0.5ηF ′′1 − 0.5ŴηF ′′1 + Ŵ(F1F

′′
1 − F ′21 −

M2

χ2
F ′1 + 2�F2)− Ŵ(1− Ŵ)

∂F1
′

∂Ŵ
= 0,

(12)
1

χ1χ2
F ′′2 + 0.5ηF ′2 − 0.5ŴηF ′2 + Ŵ(F1F

′
2 − 2�F1

′ −
M2

χ2
F2 − F ′1F2)− Ŵ(1− Ŵ)

∂F2

∂Ŵ
= 0,

(13)
χ3

χ4
�′′ + 0.5η(1− Ŵ)Pr�

′ + ŴPrF1�
′ + NbPr��+ NtPr�

′2 − Ŵ(1− Ŵ)Pr
∂�

∂Ŵ
= 0,

(14)�′′ + 0.5ηSc(1− Ŵ)�′ + ScŴF1�
′ + NtN

−1
b �′′ − Ŵ(1− Ŵ)Sc

∂�

∂Ŵ
= 0,

(15)χ ′′ +
Sb

2
(1− Ŵ)Sbχ

′ + ŴSbF1χ
′ − Pe�

′′(δ1 + χ)+ Peχ
′�′ = SbŴ(1− Ŵ)

∂χ

∂Ŵ
,

(16)

lim
η→0

F1(Ŵ, η) = 0, lim
η→0

F ′1(Ŵ, η) = 1, lim
η→0

F2(Ŵ, η) = 0, lim
η→0

�(Ŵ, η) = lim
η→0

�(Ŵ, η) = lim
η→0

χ(Ŵ, η) = 1, Ŵ ≥= 0,

lim
η→∞

F ′1(Ŵ, η) → 0, lim
η→∞

F2(Ŵ, η) → 0, lim
η→∞

�(Ŵ, η) → 0, lim
η→∞

�(Ŵ, η) → 0, lim
η→∞

χ(Ŵ, η) → 0, Ŵ ≥ 0,







χ1 =
(

1−
�ag

�m

)−2.5�m

, χ2 = (1−�ag )+�ag
ρag

ρf
, χ3 =

kag + 2kf − 2�ag (kf − kag )

kag + 2kf +�ag (kf − kag )
,

χ4 = (1−�ag )+�ag
(ρCp)ag

(ρCp)f
,

(17)Nu =
xqw

κ(Ts − T∞)
,

(18)Shr =
xqm

Db(Cs − C∞)
,

(19)Cfx =
τ xw

ρu21
,

(20)Cfy =
τ
y
w

ρu21
.
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Numerical procedure
The FEM is renowned for its ability to solve several types of DE. This process utilizes continuous piecewise 
approximation to reduce the amount of the  inaccuracy47. The critical phases and a wonderful depiction of 
this method are laid out by  Reddy48 and  jyothi49. Because to its precision and computability, experts believe 
this numerical approach is a particularly effective instrument for solving current engineering and industrial 
 challenges50,51. To solve Eq. (11) to (15) together with boundary condition (18), take this into consideration:

Equations (11)–(16) are simplified to a lower order:

The plate thickness η = 6.0 and length Ŵ = 1.0 are fixed for numerical computations. Equations (22)–(27) 
have a variational form that may be represented as:

Here wfs (s = 1, 2, 3, 4, 5, 6) indicates the trial functions. Let divide the input ( �e ) split into four nodded 
components (see Fig. 2). The following are finite element estimations:

(21)



















CfxRex
1/2 =

F1
′′(0)√
Ŵ

,CfyRex
1/2 =

F2
′(0)√
Ŵ

,

NuxRex
1/2 = −

�

�′(0)
�

√
Ŵ

, ShrxRex
1/2 = −

�

�′(0)
�

√
Ŵ

.

(22)F ′1 = H ,

(23)
1

χ1χ2
H ′′ + 0.5(1− Ŵ)ηH ′ + Ŵ(F1H

′ −H2 + 2�F2 −
M2

χ2
H) = Ŵ(1− Ŵ)

∂H

∂Ŵ
,

(24)
1

χ1χ2
F ′′2 +

1

2
(1− Ŵ)ηF2

′ + Ŵ(F1F2
′ −HF2 − 2�H −

M2

χ2
F2) = Ŵ(1− Ŵ)

∂F2

∂Ŵ
,

(25)
χ3

χ4
�′′ + 0.5η(1− Ŵ)Pr�

′ + PrŴF1�
′ + NbPr�

′�′ + NtPr�
′2 = PrŴ(1− Ŵ)

∂�

∂Ŵ
,

(26)�′′ + 0.5Sc(1− Ŵ)η�′ + ScŴF1�
′ + NtN

−1
b �′′2 = Ŵ(1− Ŵ)Sc

∂�

∂Ŵ
,

(27)χ ′′ +
Sb

2
(1− Ŵ)ηχ ′ + ŴSbF1χ

′ − Pe�
′′(δ1 + χ)+ Peχ

′�′ = SbŴ(1− Ŵ)
∂χ

∂Ŵ
,

(28)

lim
η→0

F1(Ŵ, η) = 0, lim
η→0

H(Ŵ, η) = 1, lim
η→0

F2(Ŵ, η) = 0, lim
η→0

�(Ŵ, η) = lim
η→0

�(Ŵ, η) = lim
η→0

χ(Ŵ, η) = 1, Ŵ ≥= 0,

lim
η→∞

H(Ŵ, η) → 0, lim
η→∞

F2(Ŵ, η) → 0, lim
η→∞

�(Ŵ, η) → 0, lim
η→∞

�(Ŵ, η) → 0, lim
η→∞

χ(Ŵ, η) → 0, Ŵ ≥ 0.







(29)

∫

�e

wf1 {F ′1 −H}d�e = 0,

(30)

∫

�e

wf2

{

1

χ1χ2
H ′′ +

1

2
(1− Ŵ)ηH ′ + Ŵ(F1H

′ −H2 + 2�H −M2H)− Ŵ(1− Ŵ)
∂H

∂Ŵ

}

d�e = 0,

(31)

∫

�e

wf3

{

1

χ1χ2
F ′′2 +

1

2
(1− Ŵ)ηF2

′ + Ŵ(F1F2
′ −HF2 − 2�H)− Ŵ(1− Ŵ)

∂F2

∂Ŵ

}

d�e = 0,

(32)

∫

�e

wf4

{

χ3

χ4
�′′ +

Pr

2
(1− Ŵ)η�′ + PrŴF1�

′ + NbPr�
′�′ + NtPr(�

′)2 − PrŴ(1− γ )
∂�

∂Ŵ

}

d�e = 0,

(33)

∫

�e

wf5

{

�′′ + 0.5Scη(1− Ŵ)�′ + ŴScF1�
′ +

Nt

Nb
(�′′)2 − Ŵ(1− Ŵ)Sc

∂�

∂Ŵ

}

d�e = 0,

(34)

∫

�e

wf6

{

χ ′′ +
Sb

2
(1− Ŵ)ηχ ′ + ŴSbF1χ

′ − Pe

(

�′′(δ1 + χ)+ χ ′�′
)

− Ŵ(1− Ŵ)Sb
∂χ

∂Ŵ

}

d�e = 0.
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Here, ϒj (j = 1,2,3,4) are the linear interpolation shapes functions for �e as:

The following is the developed finite element model of the equations:

where [Lmn] and [Rm] (m, n = 1, 2, 3, 4) matrices are written as:

(35)

F1 =
4

∑

j=1

F1jϒj(γ , η), H =
4

∑

j=1

Hjϒj(Ŵ, η), F2 =
4

∑

j=1

F2jϒj(Ŵ, η), � =
4

∑

j=1

�jϒj(Ŵ, η), � =
4

∑

j=1

�jϒj(Ŵ, η).

(36)
ϒ1 =

(Ŵe+1 − Ŵ)(ηe+1 − η)

(Ŵe+1 − Ŵe)(ηe+1 − ηe)
, ϒ2 =

(Ŵ − Ŵe)(ηe+1 − η)

(Ŵe+1 − Ŵe)(ηe+1 − ηe)
,

ϒ3 =
(Ŵ − Ŵe)(η − ηe)

(Ŵe+1 − Ŵe)(ηe+1 − ηe)
, ϒ4 =

(Ŵe+1 − Ŵ)(η − ηe)

(Ŵe+1 − Ŵe)(ηe+1 − ηe)
.















(37)















[L11] [L12] [L13] [L14] [L15] [L16]
[L21] [L22] [L23] [L24] [L25] [L26]
[L31] [L32] [L33] [L34] [L35] [L36]
[L41] [L42] [L43] [L44] [L45] [L45]
[L51] [L52] [L53] [L54] [L55] [L56]
[L61] [L62] [L63] [L64] [L65] [L66]
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Figure 2.  Finite element mesh and grid.
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and

where, F̄1 =
∑4

j=1 F̄1jϒj , H̄ =
∑4

j=1 H̄jϒj , F̄2 =
∑4

j=1 F̄2jϒj , �̄′ =
∑4

j=1 �̄
′
jϒj , and �̄′ =

∑4
j=1 �̄

′
jϒj supposed to 

be the known values. Compute 6 functions at each node. The obtained system of equations 61,206 are nonlinear 
after assembly, linearize using an iterative algorithm with the 10−5 precision necessary.

Results and discussion
We have demonstrated the importance of nanoparticle aggregation on the dynamics of suspensions containing 
microscopic particles spinning fluid susceptible to Lorentz and Coriolis forces, as well as gyrotactic microorgan-
isms in this section. In every one of the figures, set of two curves are drawn for two specific cases: (1) �int = 1.0 
(non-aggregated nanoparticles) and (2) �int  = 1.0 (aggregated nanoparticles). Further, the default values for other 
involved parameters and quantities are: Pr = 6.2 (water-host fluid), M = 1.0 , Nb = 0.2,Nt = 0.2, lambda = 1.0 , 
Sc = 10.0 , Sb = 5.0 , Pe = 0.5 , D = 1.8 , δ1 = 0.2 , � = 0.01 , �max = 0.650 , and Ra/Rp = 3.34 . To verify the reli-
ability and validity of Galerkin finite element approach, a grid independence study is performed. The problem 
input is distributed into various mesh density, and there is no more fluctuation is noted after 100× 100 , so we 
draw all the results on 100× 100 grid size (see Table 3). To show that the current results are validate and reliable, 
a comparison with recently published studies are presented in Tables 3 and 4 in specific cases. The present out-
comes are very close with the already published results, as evidenced. The friction factors along with primary and 
secondary directions −F ′′1 (0)& − F2(0) in Table 4 against growing inputs of � = 0.0, 1.0, 2.0, 5.0 at Ŵ = 1.0 . The 
results achieved are in excellent agreement with those anlyzed by Ali et al.45, and  Wang17. Additionaly, in Table 5, 
the −�(0) inputs are acknowledged between Adnan et al.52 and Bagh et al.53, and present FEM results against 
growing inputs of �&M , and discovered that they are in accord. As a result, the numerical computations may be 
validated, and the Finite Element Computations produced using Matlab program have a high convergence rate.

The distribution of primary velocity F ′1(Ŵ, η) and secondary velocity F ′2(Ŵ, η) against exceeding inputs of mag-
netic (M) and rotating (�) parameters are depicted in Figs. 3 and 4 respectively. Figure 3a,b portraits the F ′1(Ŵ, η) 
and F2(Ŵ, η) for distinct inputs of magnetic field. The enhanced magnetic field caused to produce the resistive 

L11ij =
∫

�e

ϒi
dϒj

dη
d�e , L

12
ij = −

∫

�e

ϒiϒjd�e , L
13
ij = L14ij = L15ij = L21ij = L24ij = L25ij = L26ij = 0,

L22ij =−
1

χ1χ2

∫

�e

dϒi

dη

dϒj

dη
d�e +

1

2
(1− Ŵ)η

∫

�e

ϒi
dϒj

dη
d�e + Ŵ

∫

�e

F̄1ϒi
dϒj

dη
d�e − Ŵ

∫

�e

H̄ϒiϒjd�e

−
M2

χ2
Ŵ

∫

�e

ϒiϒjd�e ,

− Ŵ(1− Ŵ)

∫

�e

ϒi
dϒj

dŴ
d�e , L

23
ij = 2�Ŵ

∫

�e

ϒiϒjd�e , L
31
ij = L34ij = L35ij = L36ij = 0, L32ij = −2�Ŵ

∫

�e

ϒiϒjd�e ,

L33ij =−
1

χ1χ2

∫

�e

dϒi

dη

dϒj

dη
d�e +

1

2
(1− Ŵ)η

∫

�e

ϒi
dϒj

dη
d�e + Ŵ

∫

�e

F̄1ϒi
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dη
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∫

�e

H̄ϒiϒjd�e

− Ŵ(1− Ŵ)

∫

�e

ϒi
dϒj

dŴ
d�e , L

41
ij = L42ij = L43ij = 0,

L44ij =−
χ3

χ4

∫

�e

dϒi

dη

dϒj

dη
d�e +

Pr

2
(1− Ŵ)η

∫

�e

ϒi
dϒj

dη
d�e + Prζ

∫

�e

F̄1ϒi
dϒj

dη
d�e + PrNb

∫

�e

�̄′ϒi
dϒj

dη
d�e

+ PrNt

∫

�e

�̄′ϒi
dϒj

dη
d�e − PrŴ(1− Ŵ)

∫

�e

ϒi
dϒj

dŴ
d�e , L

45
ij = L46ij = L51ij = L52ij = L53ij = L56ij = 0,

L54ij =−
Nt
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dη

dϒj

dη
d�e , L

55
ij = −

∫
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dη
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∫
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ϒi
dϒj
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61
ij = L62ij = L63ij = L64ij = 0,

L65ij =− Peδ1

∫
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dϒi

dη
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66
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∫
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dϒi

dη
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Sb

2
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∫
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dη
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∫
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∫

�e

ϒi
dϒj

dζ
d�e ,

(38)

R1
i =0, R2

i = −
∮

Ŵe

ϒinη
∂H

∂η
ds, R3

i = −
∮

Ŵe

ϒinη
∂F2

∂η
ds, R4

i = −
∮

Ŵe

ϒinη
∂�

∂η
ds,

R5
i =−

∮

Ŵe

ϒinη
∂�

∂η
ds −

Nt

Nb

∮

Ŵe

ϒinη
∂�

∂η
ds, R6

i = −
∮

Ŵe

ϒinη
∂χ

∂η
ds.
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force which called it Lorentz force and goes to recede of the primary velocity in Fig. 3b, whereas an inverse action 
is reported for secondary velocity in Fig. 3b. The impact of rotation parameter � on axial velocity F ′1(Ŵ, η) and 
transverse velocity F2(Ŵ, η) portrayed in Fig. 4a,b. It is observed that diminishing of axial velocity for exceeding 
inputs of lambda because of Coriolis force while an opposing action is claimed for transverse velocity in Fig. 4b. 
The role of ζ (unsteady parameter) on axial velocity and thermal profile is deliberated in Fig. 5a,b. The proceeding 
inputs of ζ the axial velocity curve reduced while thermal distribution improved. Hence, it clear that the time 
dependent parameter is play significance role in controlling the momentum and thermal boundary thickness. 
Further, from these figures, the model along with nanoparticles aggregation has a lower distribution of primary 
velocity F ′1(Ŵ, η) and magnitude of secondary velocity F ′2(Ŵ, η) , whereas distribution of primary and secondary 
velocities are slightly greater than that considering the model of homogeneous (non-aggregated nanoparticles). 
Physically, the formation of nanoparticles aggregation caused to increase in the effective  viscosity54, and growing 
strength of viscosity is responsible to slow down the fluid  velocity55.

The distribution of friction factors CfxRex
1/2 (axial direction) and CfyRex

1/2 (transverse direction) against 
exceeding values of Ŵ(0 : 0.2 : 1) and M(1 : 1 : 5) parameters are depicted in Fig. 6a,b. Figure 6a demonstrates that 
for growing Ŵ(0 → 1 , the axial friction factor (CfxRex

1/2) is enhanced steadily rise to a fixed rate, after which no 
noticeable change is noticed, but for increasing M, a remarkable diminution in axial friction factor (CfxRex

1/2) 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

F
1(

,
)

(a)

M = 1.0, 2.0, 3.0, 4.0, 5.0

Non-aggregated nanoparticles
Aggregated nanoparticles 1 2 3 4 5

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

F
2(

,
)

Non-aggregated nanoparticles
Aggregated nanoparticles

(b)

M = 1.0, 2.0, 3.0, 4.0, 5.0

Figure 3.  Variation of M on F ′
1(Ŵ, η) in axial, and F ′

2(Ŵ, η) in transverse.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

F
1(

,
)

Aggregated nanoparticles
Non-aggregated nanoparticles(a)

 = 1.0, 2.0, 4.0, 6.0, 8.0

1 2 3 4 5

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

F
2(

,
)

(b)
Aggregated nanoparticles
Non-aggregated nanoparticles

 = 1.0, 2.0, 4.0, 6.0, 8.0

Figure 4.  Variation of � on F ′
1(Ŵ, η) in axial, and F ′

2(Ŵ, η) in transverse.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

F
1(

,
)

(a)
Aggregated nanoparticles
Non-aggregated nanoparticles

 = 0.1, 0.5, 1.0, 2.0, 5.0

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(
,

)

Non-aggregated nanoparticles
Aggregated nanoparticles

(b)

 = 0.1, 0.5, 1.0, 2.0, 5.0

Figure 5.  Variation of ζ on F ′
1(Ŵ, η) in x-direction, and �(Ŵ, η).



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16258  | https://doi.org/10.1038/s41598-022-20485-0

www.nature.com/scientificreports/

is observed. For increasing Ŵ(0 → 1 , the transverse direction friction factor (CfyRex
1/2) magnitude is steadily 

lowered until it reaches a constant rate, after which no appreciable difference is noticed, as illustrated in Fig. 6b, 
while improving M, and see the significance difference near the surface. Figure 7a,b depicts that for growing 
Ŵ(0 → 1 , the axial skin friction (CfxRex

1/2) is progressively increased until it reaches a constant rate, afterwards 
which no substantial change is detected, whereas raising � requires a large drop in axial direction skin factor 
(CfxRex

1/2) and transverse direction (CfyRex
1/2) is noticed. Furthermore, it is apparent from these graphs that 

the ranges of (CfxRex
1/2) and (CfyRex

1/2) for the model along with nanoparticles aggregation has a negatively 
lower distribution as compared to non-aggregated nanoparticles case.

The distribution of �(Ŵ, η) for different parameters is displayed in Figs. 8 and 9. The magnetic field parameter 
upgraded the �(Ŵ, η) (temperature distribution) which clearly seen in Fig. 8a. It is because of net force men-
tioned as Lorentz force around the internal electric force and external magnetic field control the temperature 
profile, which is showed in Fig. 8a, while the thermal boundary layer thickness is improved against increasinng 
� as depict in Fig. 8b. Figure 9a,b displays that �(Ŵ, η) for distict inputs of thermophoresis (Nt) and Brownian 
motion (Nb) parameters. The exceeding strength of Nt&Nb caused to increased the distribution of temperature 
profile. The higher Nb , the quicker the erratic movement of nano particles in the flow domain, the better the 
thermal dispersion. Furthermore, the thermophorestic (Nt) effect drives micro entities to move from a hotter to 
a cooler location, boosting the �(Ŵ, η) . Further, from these figures, the model without nanoparticles aggrega-
tion (homogeneous model) has a lower distribution of temperature �(Ŵ, η) , whereas distribution of �(Ŵ, η) is 
slightly greater than that considering the model of nanoparticles aggregation. This result show that the nanopar-
ticles aggregation has a positive effect on the nanofluid thermal  conductivity56,57. The sketches of local Nusselt 
number (NuxRex1/2) is depicted in Fig. 10a,b for M(1 : 1 : 5)&�(1 : 2 : 8) . For growing M&� , the distribution 
of (NuxRex1/2) is decreased gradually. The nanoparticles aggregation model show a significant reduction in 
(NuxRex

1/2) , whereas distribution of NuxRex1/2 is slightly greater than that non-aggregated nanoparticles case.
The distribution of nanoparticles volume fraction �(Ŵ, η) and motile micoorganisms χ(Ŵ, η) against exceed-

ing inputs of magnetic (M) and rotating (�) parameters are depicted in Figs. 11 and 14 respectively. The tiny par-
ticles ( �(Ŵ, η) ) and motile microorganisms (χ(Ŵ, η)) profiles are upgraded for growing strength of magnetic and 
rotatory parameters as portraits in Figs. 11a,b and 14a,b. For exceeding values of ζ (time-dependent parameter) 
and Peclet number (Pe) parameters, the diminution of the thickness of the motile distribution is delineated in 
Figs. 12a,b. Hence, it clear that the time dependent parameter is play significance role in controlling the motile 
boundary thickness. Further, from these figures, the model along with nanoparticles aggregation has a greater 
distribution of concentration distributions, whereas distribution of nanoparticles and motile microorganisms 
primary are slightly greater than that considering the model of homogeneous (non-aggregated nanoparticles). 
The behavior of local Sherwood number (ShrxRex1/2) and motile microorganism density number Re1/x Nx is 
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deliberated in Fig. 13a,b for enhancing strength of M(0:1:4)&�(1:2:8) , respectively. For enhancing M&� , the 
distribution of motile microorganism density number Re1/x Nx and (ShrxRex1/2) is declined. and it is also witnessed 
that the non-aggregated case has larger ShrxRex1/2 and Re1/x Nx than that of aggregated case (Fig. 14).

Conclusions
In this work, the Galerkin finite element study on the dynamics of rotating water based silver tiny particles 
subject to Coriolis, and Lorentz forces has been explored numerically along with swimming of motile organ-
isms. The effective nanofluid viscosity and thermal conductivity has been studied by the authors for applying 
nanoparticles aggregation and homogeneous models. Depending on the outcomes of the analysis, it is reasonable 
to conclude that: 

1. Exceeding values in the strength of Coriolis and Lorentz has a receding impact on the axial momentum and 
transverse momentum magnitude, and
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• an enhancing influence on the profiles of thermal and concentrations boundary layers.
• Enhance the magnitude of CfxRe

1/2
x  (skin friction factor).

• a negative effects on NuxRex1/2 , ShrxRex1/2 , and NxRex
1/2.

   A similar trend against higher values of rotation is reported by Oke et al.21, and found that the increasing 
rotation caused to enhance the magnitude of skin friction coefficient, and mean while magnetic caused to 
decline in NuxRex1/2.

2. Growing strength of Brownian motion, thermophoresis, and time-dependent parameters have an enhancing 
effect on the thermal distribution. The higher Bronian motion, the quicker the movement of nano particles 
in the flow domain, the better the thermal dispersion, and the thermophorestic effect drives micro entities 
to move from a hotter to a cooler location which caused to boosting the  temperature23,35.

3. Motile microorganism concentration diminishes against incremented Peclet number and time-dependent 
values.

4. Formation of nanoparticles aggregation has a declining impact on the axial and transverse velocities mag-
nitude, but

• an exceeding impact on the profiles of temperature, tiny particles volume fraction, and motile microor-
ganism.

• the nanoparticles aggregation case has lower the values of CfxRex
1/2 and CfyRex

1/2.
• the nanoparticles aggregation model show a significant reduction in NuxRex1/2.
• the non-aggregated case has larger ShrxRex1/2 and Re1/x Nx than that of aggregated case.

This work can be extended in the future for non-Newtonian based fluids susceptible to nanoparticles and other 
physical characteristics after a victorious simulated strife of parametric effects on fluid dynamics

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.

Table 3.  Analysis of grid independence for distinct grid sizes at ζ = 1.0.

Grid size −F ′′

1 (ζ , 0) −F ′

2(ζ , 0) −�′(ζ , 0) −�′(ζ , 0) −χ ′(ζ , 0)

20 × 20 2.2314 1.2404 0.4194 2.0326 2.7752

30 × 30 2.2172 1.2294 0.4367 1.9184 2.7376

50 × 50 2.2129 1.2168 0.4462 1.8603 2.6754

80 × 80 2.2122 1.2109 0.4463 1.8479 2.6461

100 × 100 2.2119 1.2094 0.4456 1.8451 2.6389

120 × 120 2.2118 1.2090 0.4454 1.8448 2.6386

Table 4.  Comparative of skin friction −F
′
1(0) and −F

′′
2 (0) for different inputs of � at zeta = 1 while other 

factors are ignored.

�

Ali et al.45 Wang.17 Present

−F
′′

1 (0) −F
′

2(0) −F
′′

1 (0) −F
′

2(0) −F
′′

1 (0) −F
′

2(0)

0.0 1.00000 0.00000 1.0000 0.0000 1.00000 0.00000

1.0 1.32501 0.83715 1.3250 0.8371 1.32501 0.83715

2.0 1.65232 1.28732 1.6523 1.2873 1.65232 1.28732

5.0 2.39026 2.15024 – – 2.39026 2.15024

Table 5.  Comparative of −θ ′(0) for different inputs of � at ξ = 1 when others physical involved parameters are 
negligible.

�

Adnan et al.52 Bagh et al.53 FEM (current outcomes)

M = 0.0,Pr = 2.0 M = Pr = 2.0 M = 0.0,Pr = 2.0 M = Pr = 2.0

0.0 0.911 0.6682 0.91107 0.66821

0.5 0.853 0.6627 0.85343 0.66268

1.0 0.770 0.6483 0.77028 0.64828

2.0 0.638 0.6030 0.63805 0.60303
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