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In a recent article, a piecewise cubic fractional spline function is developed which produces C1 continuity to given data points. In
the present paper, an interpolant continuity class C2 is preserved which gives visually pleasing piecewise curves. +e behavior of
the resulting representations is analyzed intrinsically with respect to variation of the shape control parameters t and s. +e data
points are restricted to be strictly monotonic along real line.

1. Introduction

Among the various methods in computer aided geometric
designing, piecewise spline-based techniques are the con-
ventional methods. In many applications, one inclines in-
terpolate or approximate univariate data by spline functions
possessing certain geometric properties or shapes such as
monotonicity, convexity, or nonnegativity. Due to the verity
of spline algorithm, designers do not find any strain to adopt
these techniques. Ample work has been done in this regard
and researchers are still working on varied techniques by
refining them to make it more and more diverse. +e aim of
spline interpolation is to get an interpolation formula that is
continuous and smooth in both within the intervals and at
the interpolating points. In recent past, a hatful of work have
been done in the field of piecewise polynomial spline curve
[1–4], rational spline [5], trigonometric spline [6], expo-
nential spline [7], and spline-based surfaces which are used
to preserve the C2 continuity. +is paper is a continuation of
a previous paper [8] in which piecewise C1 continuity is

preserved. +e fractional biquadratic spline is represented in
terms of first and second order derivative values at the knots
and provides an alternative to the ordinary spline.+is paper
is an attempt to embrace a novel technique on piecewise
biquadratic polynomial.

Fractional calculus has been an Annex of ordinary
calculus that encapsulated integrals and derivatives that are
defined for arbitrary real orders. +e journey of fractional
calculus commenced in seventeenth century and under-
scored different derivatives [1] with significant pros and cons
ranging from Riemann–Liouville, Hadamard, and
Grünwald–Letnikov to Caputo, and so forth. Selecting apt
fractional derivatives is pertinent to its considered systems;
therefore, fractional operators were also a prevalent focus of
various research works. Concurrently, studying generalized
fractional operators is also indispensable in the field of
computer graphics [9–11].

Fractional order derivatives are rapid emerging concept
in different fields of mathematics, physics, and engineering
in recent years [12–15]. Due to application of new approach
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of fractional order derivative, the computational cost is
reduced. In this paper, an efficient and intuitive technique
which is able to produce piecewise smooth curves in each
given subinterval, [xi, xi+1], i � 0, 1, 2, 3, . . . n, ∀xi ∈ R, is
adopted by combining both concepts of spline and Capu-
to–Fabrizio fractional order derivatives. With biquadratic
piecewise polynomial assistance, higher accuracy is ensured.

+e paper is organized in the following way. In Section 2,
the formula using continuity condition is established. In
Section 3, all the results are included, and in Section 4,
discussion related to the novel technique is highlighted.

2. Preliminaries

+ere are heaps of definitions of fractional integral and
derivatives; among them, few are Riemann–Liouville, Riesz,
Caputo [8], Riesz–Caputo, Hadamard, Weyl,

Grünwald–Letnikov, Chen, etc. Here, we are discussing
Riemann–Liouville and Caputo.+e proofs of results may be
found in [16, 17].

Let g: [a, b]⟶R be a function, α a positive real
number, n the integer satisfying n − 1≤ α< n, and Γ the
Euler gamma function [11]. +en, the left and right Rie-
mann–Liouville fractional integrals of order α are defined,

aI
α
yg(y) �

1
Γ(α)

􏽚
y

a
(y − τ)

α− 1
g(τ)dτ,

yI
α
b
g(y) �

1
Γ(α)

􏽚
b

y
(τ − y)

α− 1
g(τ)dτ,

(1)

respectively.
+e left and right Riemann–Liouville fractional deriv-

atives of order α are defined by
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+erefore, the right and left Caputo fractional derivatives
of order α are defined by
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Intrinsically, there exists a relation between Caputo
fractional and Riemann–Liouville derivatives, and as a
consequence, we have the following relations:

If g(a) � g′(a) � . . . � g(m− 1)(a) � 0, then
C
a D
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If g ∈ Cm[a, b], then the right and left Caputo derivatives
are continuous on [a, b]. +ere are some properties which
are valid for integer integration and integer differentiation
which are also reflected in fractional integration and dif-
ferentiation [18].

3. Piecewise KNR Fractional Order
Biquadratic C2 Spline

Let Pi(x), i � 1, 2, 3, . . . , n, be a piecewise polynomial in a
subinterval [xi, xi+1] for x ∈ [xi, xi+1]:

Pi(x) � ai x − xi( 􏼁
4
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3
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(4)

where ai, bi, ci, di, and ei are unknown constants which
need to be calculated by means of the given continuity and
differentiability conditions:
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+e parameter α that appears in the above conditions is
known as fractional order derivative. It is quite evident from
the given conditions that the resulting piecewise curves will
be smooth in each segment and will possess C2 continuity.
+e fractional order derivative of a function
f(x) ∈ ACn[a, b] such that f is absolutely continuous of
order α with n − 1< α≤ n, where n denotes the order of
derivative, which is
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where

Γ(α) ≔ 􏽚
∞

0
e

− u
u
α− 1du. (7)

Let Pi(x) and Pi+1(x) be two piecewise spline polyno-
mials with common point at x � xi+1. +e application of the

above continuity and differentiability conditions will result
in ten unknown constants which need to be evaluated for
practical applications. Since the spline curve passes through
the given data points, it will result in ei � yi and ei+1 � yi+1.
+e remaining eight unknowns can be calculated by ap-
plying Caputo fractional and derivative conditions.
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+e given system of linear equations is of the form
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We will have four linear equations.
+e other four linear equations can be derived from

continuity and differentiability conditions as follows:
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where hi � xi+1 − xi and hi+1 � xi+2 − xi+1.
+e above system of linear equations will give rise to a

unique solution of unknowns ai, bi, ci, di, ai+1,

bi+1, ci+1, anddi+1.
As an example, for a given set of data points, we have a

piecewise biquadratic fractional spline curve. In Figures 1

and 2, we have two kinds of curves: one is concave while the
other one is convex. +e fractional order derivatives used in
both curves are given by Table 1. +ese figures also indicate
the potency of the technique at the bending points. We also
have a liberty to control the bending due to the introduction
of two parameters denoted by t and s.

t ∈ xi, xi+1( 􏼁, s ∈ xi+1, xi+2( 􏼁. (12)

+ey both will serve as shape control parameters. Dif-
ferent choices of these parameters will cause changes in the
final shapes.+e piecewise curve (Figure 3) shows a C2 KNR
biquadratic fractional spline curve, whereas Figure 4 indi-
cates the exact location of the points and Figure 5 indicates
the concentration of the points.

In this method, we have the liberty to modify the path
of the curve. Figures 6–9 are good examples of different
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values of shape parameters t and s. As these parameters
move away from the connecting point xi+1, the curve starts
to flatten at the point and will have effect on the final shape
of the curve.

Figures 10–12 indicate the evidence for the effective-
ness of the novel technique. +e data equally reflect back
after application of the newly adopted technique. +e
straight lines can also be graphed accordingly. Constant

function (in y-values) as shown in Figure 11 and monotone
increasing data as shown in Figure 12 can also be pre-
served, which indicates the accuracy of the technique. In
all these shapes, Table 1 is used. Effect on final shape can
also be observed if the fractional order derivatives are
changed.

4. Comparison of KNR Biquadratic Fractional
Spline with Ordinary Cubic Spline

Since ordinary cubic spline is a conventional tool for curve
generation, the given comparison indicates that the newly
adopted technique coincides with the ordinary one.

For different choices of shape parameters t and s,
Figures 13––15 show that the given piecewise curves can be
manipulated by the choice of shape parameters. +e slight
adjustment of the shape parameters can give rise to different
shapes. It also indicates that a small change can be made in
final shape by altering these parameters.

Geometrically, we have t ∈ (xi, xi+1) and
s ∈ (xi+1 , xi+2), which gives us better control on curve’s
path. Different values of these parameters can change the
whole geometry/pattern of the curves. Although the given
fractional spline curve will pass through the given data
points, but still we can have improved control on the curve.

5. Application of Fractional Spline to n
Data Points

Let (xi, yi), i � 0, 1, 2, . . . , n, be a set of n data points. Using
first three data points, we can find two patches of curves as
defined in this paper above. Since all the unknown constants
of these two patches are already known, they can be used to
find three or more patches of the curves.
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Figure 1: Convex function.
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Figure 2: Concave function.
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Figure 3: C2 KNR biquadratic fractional spline curve.

Table 1: Order of fractional derivatives used for both curves.

α1 α2 α3 α4
1.87 1.9 1.92 1.95
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By applying continuity and differentiability conditions,
we have the following system of linear equations in three
unknowns, namely, ai+1, bi+1, and ci+1.
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are already calculated in the
previous section.

+e above system involves three linear equations for two
values of j. In each subsequent segment of curves, we will
repeatedly solve the above system for n−1 segments of curve.
Hence, the above system is true for i � 1, 2, . . . , n − 1.

In Figure 16, curve segments in [x0, x1] and [x1, x2]

intervals can easily be calculated by the algorithm as defined
prior, whereas the curve segment in interval [x2, x3], in
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Figure 5: Concentration of the points.

Figure 4: Location of the points.
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Figure 6: An example of different values of shape parameters t and
s.
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Figure 7: Impact of shape parameters t and as it moves away from
connecting point.
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Figure 8: Impact of shape parameters t and as it moves away from connecting point.

2 3 4 5 61
x

-2

0

2

4

6

8

Effect of s and t

Figure 9: Impact of shape parameters t and as it moves away from connecting point.
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which x2 is the connecting point, can be evaluated by the
following way:

P2 x2( 􏼁 � P3 x2( 􏼁,

P2′ x2( 􏼁 � P3′ x2( 􏼁,

P2″ x2( 􏼁 � P3″ x2( 􏼁,

P3 x3( 􏼁 � y3,

P
α
2 x2( 􏼁 � −P

α
3 x2( 􏼁.

(14)

Here, in polynomial P3(x), we have five unknowns which
can easily be calculated by the abovementioned conditions.
Similarly, in Figure 17, one more curve segment is included by
aforesaid way.
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Figure 13: Piecewise curves can be manipulated by the choice of
shape parameters 1.
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Figure 10: After application of the newly adopted technique.
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[2] A. Atangana and J. F. Gómez-Aguilar, “Numerical approxi-
mation of Riemann-Liouville definition of fractional deriva-
tive: from Riemann-Liouville to Atangana-Baleanu,”
Numerical Methods for Partial Differential Equations, vol. 34,
no. 5, pp. 1502–1523, 2018.

[3] C. J. Howe, S. R. Cole, D. J. Westreich, S. Greenland,
S. Napravnik, and J. J. Eron, “Splines for trend analysis and
continuous confounder control,” Epidemiology, vol. 22, no. 6,
pp. 874-875, 2011.

[4] S. P. Yang and A. G. Xiao, “Cubic spline collocation method
for fractional differential equations,” Journal of Applied
Mathematics, vol. 2013, Article ID 864025, 20 pages, 2013.

8

7

6

5

4

3

2

1

9

1 2 3 4 5 60
x

Cubic spline
fractional spline

Figure 14: Piecewise curves can be manipulated by the choice of
shape parameters 2.

-2

0

2

4

2 3 4 5 61
x

Cubic Spline
Fractional spline

6

8

Figure 15: Piecewise curves can be manipulated by the choice of
shape parameters 3.

x0 x1 x2 x3

Figure 16: Curve segments.

Figure 17: Another curve segment is included.

8 Journal of Mathematics



[5] L. Yan, “Cubic trigonometric nonuniform spline curves and
surfaces,” Mathematical Problems in Engineering, vol. 2016,
Article ID 7067408, 9 pages, 2016.

[6] S. Yaghoobi, B. P. Moghaddam, and K. Ivaz, “An efficient
cubic spline approximation for variable-order fractional
differential equations with time delay,” Nonlinear Dynamics,
vol. 87, no. 2, pp. 815–826, 2017.

[7] R. Almeida and D. F. M. Torres, “Necessary and sufficient
conditions for the fractional calculus of variations with
Caputo derivatives,” Communications in Nonlinear Science
and Numerical Simulation, vol. 16, no. 3, pp. 1490–1500, 2011.

[8] O. J. J. Algahtani, “Comparing the Atangana-Baleanu and
Caputo-Fabrizio derivative with fractional order: allen Cahn
model,” Chaos, Solitons & Fractals, vol. 89, pp. 552–559, 2016.

[9] A. Karim, S. Ariffin, and K. Voon Pang, “Local control of the
curves using rational cubic spline,” Journal of Applied
Mathematics, vol. 2014, Article ID 872637, 12 pages, 2014.

[10] A. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,<eory and
Applications of Fractional Differential Equations, Elsevier
Science Limited, Amsterdam, Netherlands, 2006.

[11] S. Kirmani, N. Binti Mohd Suaib, and M. Bilal Riaz, “Shape
preserving fractional order KNR C1 cubic spline,” <e Eu-
ropean Physical Journal Plus, vol. 134, no. 7, p. 319, 2019.

[12] M. M. Khader, K. M. Saad, Z. Hammouch, and D. Baleanu, “A
spectral collocation method for solving fractional KdV and
KdV-Burgers equations with non-singular kernel derivatives,”
Applied Numerical Mathematics, vol. 161, pp. 137–146, 2021.

[13] T. A. Sulaiman, M. Yavuz, H. Bulut, and H. M. Baskonus,
“Investigation of the fractional coupled viscous Burgers’
equation involving Mittag-Leffler kernel,” Physica A: Statis-
tical Mechanics and Its Applications, vol. 527, p. 121126, 2019.

[14] A. Ullah, Z. Ullah, T. Abdeljawad, Z. Hammouch, and
K. Shah, “A hybrid method for solving fuzzy Volterra integral
equations of separable type kernels,” Journal of King Saud
University Science, vol. 33, no. 1, p. 101246, 2021.

[15] M. Al-Qurashi, S. Rashid, Y. Karaca, Z. Hammouch,
D. Baleanu, and Y.-M. Chu, “Achieving more precise bounds
based on double and triple integral as proposed by generalized
proportional fractional operators in the hilfer sense,” Fractals,
vol. 29, no. 5, p. 2140027, 2021.

[16] W. K. Zahra and S. M. Elkholy, “+e use of cubic splines in the
numerical solution of fractional differential equations,” In-
ternational Journal of Mathematics and Mathematical Sci-
ences, vol. 2012, Article ID 638026, 16 pages, 2012.

[17] Q. Ding, “Numerical treatment of certain fractional and non-
fractional differential equations,” Doctoral Dissertation,
Doctoral +esis, Nanyang Technological University, Singa-
pore, 2020.

[18] W. K. Zahra, “Finite-difference technique based on expo-
nential splines for the solution of obstacle problems,” Inter-
national Journal of Computer Mathematics, vol. 88, no. 14,
pp. 3046–3060, 2011.

Journal of Mathematics 9


