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A B S T R A C T

The nonlinear space–time fractional Phi-4 equation and density dependent fractional reaction–diffusion
equation (FRDE) are important models to interpret the fusion and fission phenomena ensued in solid state
physics, plasma physics, chemical kinematics, astrophysical fusion plasma, electromagnetic interactions etc. In
this study, we search advanced and wide-ranging wave solutions to the formerly reported nonlinear fractional
evolution equations in diverse family through the new generalized (𝐺′∕𝐺)-expansion technique. The solutions
are developed with trigonometric, hyperbolic, exponential and rational functions including parameters. The
technique is a compatible, functional and effective scientific scheme to examine diverse space–time fractional
models in physics and engineering concerned with the real life problems.
. Introduction

Most of the tangible incidents are modeled and interpreted by the
onlinear fractional or classical partial differential equations. Nonlinear
ractional differential equations response speedily and efficiently in
umerous branches of scientific and engineering arena, for instance,
n fusion plasma, astrophysical dynamics, signal processing, optical
ibers, system identification, finance, continuum mechanics, biology,
olid state physics, geochemistry etc. Dispersion, reaction, diffusion,
issipation and convection concerning meaningful terms are intimately
elated to the aforesaid anomaly and can be examined successfully
hrough fractional partial differential equations. Therefore, the study of
he exact wave solutions to fractional nonlinear differential equations
FNDEs) as part of the investigation of nonlinear physical incidents
s particularly significant. Over the years, many researches have been
arried out through developing different techniques, and numerical,
nalytical and asymptotic solutions are established to the FNDEs.
n account of this, several effective methods, as for example, the
ixed monotone operator1 method, the fractional sub-equation2–6

ethod, the Adomain polynomial7 approximation, the homotopy anal-
sis transform,8 the modified auxiliary equation9 method, the first
ntegral10–14 method, the (𝐺′∕𝐺)-expansion15–19 method, the modified
imple equation20 method, the variational iteration21,22 procedure, the
ie symmetry group23 analysis, the modified Kudryashov24 method, the
-expansion25 method, the complex transform,26 the new extended di-
ect algebraic27,28 method, the Cole–Hopf transformation,29 the trans-
ormed rational function method,30 the Hirota bilinear and tri-linear
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formation,31–34 the functional variable35 method, the Exp-function36

method, the Liu’s extended trial function37 method, the extended
sine–Gordon equation expansion38 method, the unified method39 and
others40–44 have been established and extended by diverse group of
researchers.

Tariq and Akram45 investigated wave solutions by utilizing tanh-
method to the time fractional Phi-4 equation in a new approach. With
the help of extended direct algebraic method, Rezazadeh et al.46 deter-
mined new exact solutions to the nonlinear conformable time-fractional
Phi-4 equation. Later, Akram et al.47 extracted exact solutions of the
nonlinear fractional Phi-4 equation analytically by using two reliable
techniques, namely, the exp(−𝜙 (𝜉)) and the modified Kudryashov tech-
niques in the sense of conformable time-fractional derivative. Sirisub-
tawee et al.48 also investigated exact wave solutions to the space–time
fractional Phi-4 equation using generalized Kudryashov method. Very
recently, Abdelrahman and Alkhidhr49 extracted closed-form solutions
to the time fractional Phi-4 equation employing unified technique.
Das et al.50 examined an approximate solution of nonlinear FRDE
by applying homotopy perturbation method. Merdan51 used fractional
variational iteration method for finding solutions to the time-fractional
reaction–diffusion equation in the sense of modified Riemann–Liouville
derivative. Guner and Bekir52 applied exp-function method and es-
tablished exact solutions to nonlinear FDRE arising in mathematical
biology. Agarwal et al.53 studied the analytic solution to the general-
ized space–time FRDE. In addition, Tripathi et al.54 discussed about the
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solutions of higher order nonlinear time-fractional reaction–diffusion
equation. Pandey et al.55 utilized an efficient technique, named the
omotopy perturbation for solving the space–time FRDE in porous
edia. In the recent times, Rui and Zhang56 employed separation

variable method combined with integral bifurcation method for solving
time-fractional reaction–diffusion models.

It is noticed from the realistic and statistical evaluation that the
space–time fractional Phi-4 equation and the density-dependent space–
time FRDE have not yet been searched by the use of the general-
ized (𝐺′∕𝐺)-expansion technique to formulate useful wave solutions
in closed form. The generalized (𝐺′∕𝐺)-expansion procedure is an
efficient and compatible approach that instigates detailed solutions to
FNDEs in a straightforward way. Thus, the objective of this article is
to investigate further general and wide-ranging solutions comprised
with free parameters to the earlier stated models. Definite values of
these parameters reveal some existing solutions and establish a number
of typical wave solutions established by using aforesaid method. The
solutions are achieved in the combination of trigonometric, hyperbolic
and rational functions. Merdan51 studied the aforesaid models and
accomplished only hyperbolic and trigonometric function solutions. It
is interpreted herein the physical explanation along with the graphical
representation of the solutions extensively.

The rest parts of this paper are scheduled as follows: Section 2
explains briefly the definition of conformable fractional derivatives.
We outline the solving procedure of the stated method in Section 3.
In Section 4, we determine advanced structured solution to the space–
time fractional Phi-4 equation and the density-dependent space–time
FRDE. In Section 5, the figures are presented graphically and explained
physically and we conclude in Section 6.

2. The conformable fraction derivative

Different definitions of fractional derivatives were initiated in the
history of fractional calculus, as for instance, Riemann–Lioville,
Grunwald–Letnikov, Caputo, Riesz and Weyl, etc. Most of the re-
searchers defined fractional derivatives in terms of fractional integrals
having nonlocal properties of integrals. These definitions have huge
application areas but they are different from classical Newton–Leibniz
calculus. Besides, these derivatives do not follow the chain rule, product
rule, quotient rule in course of derivative operation. Some inconsis-
tencies emerge while we compare these derivatives with Newton’s
derivative. To overcome these challenges, Khalil et al.44 proposed the
concept of local fractional derivative named ‘‘conformable fractional
derivative (CFD)’’ in 2014. Most properties of CFD introduced by Khalil
match with Newton derivative and also calculate fractional models
more effortlessly.

Definition 1. Currently, a new definition of fractional derivative
termed as conformable fractional derivative (CFD) of order 𝛼 > 0
developed by Khalil et al.44 is defined as follows:

Suppose 𝑓 ∶ (0,∞) → R, the conformable fractional derivative of 𝑓
of 𝛼-order is then defined as

𝑡𝑇𝛼 (𝑓 ) (𝑡) = lim
𝜀→0

𝑓
(

𝑡 + 𝜀𝑡1−𝛼
)

− 𝑓 (𝑡)
𝜀

, (2.1)

for all 𝑡 > 0, 𝛼 ∈ (0, 1].

The following theorem refers to the features satisfied by the new
definition:

Theorem 1. Let us consider 𝛼 ∈ (0, 1], and 𝑓, 𝑔 be 𝛼-differentiable at a
point 𝑡, then the following properties hold44:

(i) 𝑡𝑇𝛼 (𝑎𝑓 + 𝑏𝑔) = 𝑎 𝑡𝑇𝛼 (𝑓 ) + 𝑏 𝑡𝑇𝛼 (𝑔), for all 𝑎, 𝑏 ∈ R.
(ii) 𝑡𝑇𝛼 (𝑡𝜇) = 𝜇𝑡𝜇−𝛼 , for all 𝜇 ∈ R.
(iii) 𝑡𝑇𝛼 (𝑓𝑔) = 𝑓 𝑡𝑇𝛼 (𝑓 ) + 𝑔 𝑡𝑇𝛼 (𝑓 ).
(iv) 𝑇

(

𝑓
)

= 𝑔 𝑡𝑇𝛼 (𝑓 )+𝑓 𝑡𝑇𝛼 (𝑔) .
𝑡 𝛼 𝑔 𝑔2

2

Accordingly, if 𝑓 is differentiable, then 𝑡𝑇𝛼 (𝑓 )(𝑡) = 𝑡1−𝛼 𝑑𝑓𝑑𝑡 , wherein 𝑡1−𝛼

denotes a fractional conformable function.

Theorem 2. Let 𝑓 ∶ (0,∞) → R be a function wherein 𝑓 is 𝛼-
differentiable.5,13 Let 𝑔 be a function defined in the range of 𝑓 and also
differentiable, then one can found:

𝑡𝑇𝛼 (𝑓𝑜𝑔) (𝑡) = 𝑡1−𝛼𝑔′ (𝑡) 𝑓 ′ (𝑔 (𝑡)) .

e propose 𝜕𝛼

𝜕𝑡𝛼 (𝑓 ) for 𝑡𝑇𝛼 (𝑓 ) to represent the conformable fractional
erivatives of 𝑓 with regard to the variable 𝑡 of order 𝛼.

Let us consider that a nonlinear conformable fractional partial differen-
ial equations bearing (𝑥, 𝑡) as independent variables and 𝑢 as a dependent

variable:

F

(

𝑢, 𝜕
𝛼𝑢
𝜕𝑥𝛼

, 𝜕
𝛼𝑢
𝜕𝑡𝛼

, 𝜕
2𝛼𝑢
𝜕𝑥2𝛼

, 𝜕
2𝛼𝑢
𝜕𝑡2𝛼

,…
)

= 0, 0 < 𝛼 ≤ 1, (2.2)

where 𝑢(𝑥, 𝑡) is an unknown function, F is a polynomial in 𝑢 involving
nonlinear terms and fractional derivatives of higher order.

3. Method descriptions

The sequential steps of building solutions using the new generalized
(𝐺′∕𝐺)-expansion technique will be analyzed in this section. We have
drawn up an interrelation between the accommodated approach and
the transformed rational function method at the end of this section.
Consider a general nonlinear space–time fractional equation structured
as:

H

(

𝑢, 𝜕
𝛼𝑢
𝜕𝑥𝛼

, 𝜕
𝛼𝑢
𝜕𝑡𝛼

, 𝜕
2𝛼𝑢
𝜕𝑥2𝛼

, 𝜕
2𝛼𝑢
𝜕𝑡2𝛼

,…
)

= 0, 0 < 𝛼 ≤ 1, (3.1)

where H is a polynomial of the unrevealed wave function 𝑢(𝑥, 𝑡); the
nonlinear terms and the fractional order derivatives of 𝑢 are associated.
The indices denote the fractional derivatives.
Step 1: We bring together the spatial variable 𝑥 and temporal variable
𝑡 by a compound variable 𝜉 as:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 =
𝛾𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼
, (3.2)

herein 𝛾 is the coefficient of spatial variable, 𝑉 be the speed of
he traveling wave and 𝛼 signifies the fractional order derivative. The

traveling wave variable (3.2) restructures the Eq. (3.1) into an ordinary
differential equation (ODE) for 𝑢 = 𝑢 (𝜉):

R
(

𝑢, 𝑢′, 𝑢′′, 𝑢′′′, 𝑢𝑖𝑣, 𝑢𝑣,… ..
)

= 0, (3.3)

where superscripts designate the derivative with regard to 𝜉, R is the
polynomial of 𝑢 and its derivatives.
Step 2: We integrate Eq. (3.3) one or many times as per possibility, and
set the integral constant(s) to be zero, as soliton solutions are searched.
Step 3: In conformity with the new (𝐺′∕𝐺)-expansion method the
solution of (3.3) can be formulated as:

𝑢 (𝜉) =
𝑁
∑

𝑖=0
𝑎𝑖(𝑑 + F)𝑖 +

𝑁
∑

𝑖=1
𝑏𝑖 (𝑑 + F)−𝑖 , (3.4)

where 𝑎𝑁 or 𝑏𝑁 could be zero, but at the same time they cannot be zero,
𝑎𝑖, 𝑏𝑖(𝑖 = 0, 1, 2, 3,… , 𝑁) and 𝑑 are constants to be calculate afterward
and F (𝜉) is given as follows:

F (𝜉) = (𝐺′∕𝐺), (3.5)

where 𝐺 = 𝐺 (𝜉) meets the subsequent nonlinear equation:

𝑃𝐺𝐺′′ −𝑄𝐺𝐺′ − 𝑆𝐺2 − 𝑅(𝐺′)2 = 0, (3.6)

where 𝑃 ,𝑄,𝑅 and 𝑆 are the indeterminate and the dashes indicate the
derivatives with respect to 𝜉.
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Step 4: By balancing the highest order exponent and the derivative, the
score of the definite number 𝑁 appearing in (3.3) can be calculated.
Step 5: Inserting (3.4) and (3.6) along with (3.5) into (3.3) and in
conjunction with the value of 𝑁 found in Step 4 yields a polynomial
of (𝑑 + F)𝑁 and (𝑑 + F)−𝑁 , (𝑁 = 0, 1, 2, 3,…). It can be collected
each coefficient of the reported polynomial to zero affords a class of
algebraic equations for 𝑎𝑖(𝑖 = 0, 1, 2, 3,… , 𝑁), 𝑏𝑖(𝑖 = 1, 2, 3,… , 𝑁), 𝑑, 𝛾
and 𝑉 .
Step 6: We presume the constants 𝑎𝑖, 𝑏𝑖, (𝑖 = 0, 1, 2, 3,… , 𝑁), 𝑑 and 𝛾
might be determined by unraveling the algebraic equations achieved
in Step 5. Since the solutions of (3.6) are known, setting the values of
𝑎𝑖(𝑖 = 0, 1, 2, 3,… , 𝑁), 𝑏𝑖(𝑖 = 1, 2, 3,… , 𝑁), 𝑑, 𝛾 and 𝑉 into (3.4), we
found wide-ranging, further comprehensive and fresh soliton solutions
to the nonlinear space–time fractional differential equation (3.1).

It is noteworthy to notice that the series expansion (3.4) is a special
case of the transformed rational function method investigated by Ma
and Lee. Also Eq. (3.6), by the use of (3.5) can be transformed to the
subsequent Riccati equation

F′ = (−1 + 𝑅∕𝑃 )F2 + (𝑄∕𝑃 )F + 𝑆∕𝑃 , (3.7)

The Eq. (3.7) ensures that another general Riccati equation with dif-
ferent coefficients is satisfied by F + 𝑑. The general solutions to the
general Riccati equation with constant coefficients were presented by
Ma and Fuchssteiner in Ref. 29 by (40)–(42). The solutions of (3.6) are
subject to the relations of the associated parameters. Therefore, with
the aid of Refs. 29, 30 and in conjunction with (3.7), the following are
the solutions of (3.6):
Family 1: For 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝜌 = 𝑄2 + 4𝑆(𝑃 − 𝑅) > 0,

F (𝜉) =
(

𝐺′∕𝐺
)

= 𝑄
2𝜓

+

√

𝜌
2𝜓

𝐶11 sinh
(

√

𝜌
2𝜓 𝜉

)

+ 𝐶22 cosh
(

√

𝜌
2𝜓 𝜉

)

𝐶11 cosh
(

√

𝜌
2𝜓 𝜉

)

+ 𝐶22 sinh
(

√

𝜌
2𝜓 𝜉

) . (3.8)

Family 2: When 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝜌 = 𝑄2 + 4𝑆(𝑃 − 𝑅) < 0,

F (𝜉) = (𝐺′∕𝐺) = 𝑄
2𝜓

+

√

−𝜌
2𝜓

−𝐶11 sin
(

√

−𝜌
2𝜓 𝜉

)

+ 𝐶22 cos
(

√

−𝜌
2𝜓 𝜉

)

𝐶11 cos
(

√

−𝜌
2𝜓 𝜉

)

+ 𝐶22 sin
(

√

−𝜌
2𝜓 𝜉

) . (3.9)

amily 3: When 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝜌 = 𝑄2 + 4𝑆(𝑃 − 𝑅) = 0,

(𝜉) =
(

𝐺′∕𝐺
)

= 𝑄
2𝜓

+
𝐶22

𝐶11 + 𝐶22𝜉
. (3.10)

Family 4: When 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝛥 = 𝜓𝑆 > 0,

F (𝜉) =
(

𝐺′∕𝐺
)

=

√

𝛥
𝜓

+

√

𝛥
2𝜓

𝐶11 sinh
(

√

𝛥
𝜓 𝜉

)

+ 𝐶22 cosh
(

√

𝛥
𝜓 𝜉

)

𝐶11 cosh
(

√

𝛥
𝜓 𝜉

)

+ 𝐶22 sinh
(

√

𝛥
𝜓 𝜉

) . (3.11)

Family 5: When 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝛥 = 𝜓𝑆 < 0,

F (𝜉) = (𝐺′∕𝐺) =

√

−𝛥
𝜓

+

√

𝛥
2𝜓

−𝐶11 sin
(

√

−𝛥
𝜓 𝜉

)

+ 𝐶22 cos
(

√

−𝛥
𝜓 𝜉

)

𝐶11 cos
(

√

−𝛥
𝜓 𝜉

)

+ 𝐶22 sin
(

√

−𝛥
𝜓 𝜉

) .

(3.12)

Although the transformed rational function method is the general case,
we have put in use the new generalized (𝐺′∕𝐺)-expansion method in
this article, inasmuch as the adopted technique is straightforward, easy
to compute, compatible and user friendly mathematical tool to extract
exact wave solutions. By using maple-like computation software, the
ascending algebraic equations generated by this method can be easily
calculated by this technique. For this reason, using the new generalized
(𝐺′∕𝐺)-expansion approach, we have explored adequate closed-form
wave solutions for space–time fractional models.
3

4. Formulation of the solutions

In this portion, we formulate some advance and wide-ranging soli-
ton solutions to the nonlinear space–time fractional Phi-4 equation and
the density-dependent space time FRDE through the new generalized
(𝐺′∕𝐺)-expansion approach explained in Section 3.

4.1. The nonlinear space–time fractional Phi-4 equation

Soliton interactions are elastic or particle-like phenomena. On ac-
count of this, there is no physical change in the characteristics of
speed and energy after the clashes among the solitons but only the
phase is shifted. Due to developing the symbolic computation software,
nowadays, soliton solutions to fusion and fission phenomena are being
investigated both theoretically and experimentally. In this sub-section,
we establish scores of soliton solutions to the space–time fractional
Phi-4 equation through executing the above reported method.

Consider the space–time fractional Phi-4 equation45–49:

𝜕2𝛼𝑢(𝑥, 𝑡)
𝜕𝑡2𝛼

−
𝜕2𝛼𝑢(𝑥, 𝑡)
𝜕𝑥2𝛼

+ 𝑢 (𝑥, 𝑡) − 𝑢3 (𝑥, 𝑡) = 0; 𝑡 > 0, 0 < 𝛼 ≤ 1, (4.1.1)

herein 𝛼 is the fractional order derivative. By means of the wave
variable 𝜉 = 𝜔𝑥𝛼

𝛼 + 𝑉 𝑡𝛼

𝛼 , the fractional Phi-4 Eq. (4.1.1) turns out to
be the ODE as:
(

𝑉 2 − 𝜔2) 𝑢′′ + 𝑢 − 𝑢3 = 0. (4.1.2)

By means of the homogeneous balance theory 𝑢′′, the highest order
derivative and 𝑢3, the highest order exponent in Eq. (4.1.2), we find
out 𝑁 = 1. Thus, the solution structure of Eq. (4.1.2) becomes:

𝑢 (𝜉) = 𝑎0 + 𝑎1 (𝑑 + 𝐹 ) + 𝑏1 (𝑑 + 𝐹 )−1 , (4.1.3)

where 𝑎0, 𝑎1, 𝑏1, 𝑑 are constants that is to be evaluated.
After substitution (4.1.3) along with (3.5) and (3.6) into (4.1.2), the

left side is transmuted to the polynomial in (𝑑 + F)𝑁 and (𝑑 + F)−𝑁 ,
(𝑁 = 0, 1, 2,…). Picking up all coefficients of this developed polyno-
mial and putting them to zero leads to a set of algebraic equations
for 𝑎0, 𝑎1, 𝑏1, 𝑑, 𝜔 and 𝑉 . The algebraic equations are not expressed
here for avoiding complexity. Addressing these algebraic equations
via computation software Maple, we establish the sets of solutions as
follows:

Set 1: 𝑉 = ±

√

(

𝑄2 + 4𝑆𝜓
)

(𝜔2𝑄2 + 2𝑃 2 + 4𝜔2𝑆𝜓)

𝑄2 + 4𝑆𝜓
,

𝑎0 = ∓
𝑄 + 2𝑑𝜓

√

𝑄2 + 4𝑆𝜓
, 𝑎1 = ±

2𝜓
√

𝑄2 + 4𝑆𝜓
, 𝑏1 = 0,

(4.1.4)

where 𝜓 = 𝑃−𝑅, 𝑑, 𝑃 ,𝑄,𝑅, 𝑆 are free parameters, 𝜔 is a wave constant.

Set 2: 𝑉 = ±

√

(

𝑄2 + 4𝑆𝜓
)

(𝜔2𝑄2 + 2𝑃 2 + 4𝜔2𝑆𝜓)

𝑄2 + 4𝑆𝜓
,

𝑎0 = ∓
𝑄 + 2𝑑𝜓

√

𝑄2 + 4𝑆𝜓
, 𝑎1 = 0, 𝑏1 = ±

2
(

𝑑2𝜓 +𝑄𝑑 − 𝑆
)

√

𝑄2 + 4𝑆𝜓
,

(4.1.5)

Set 3: 𝑉 = ±

√

2
√

(

𝑄2 + 4𝑆𝜓
) (

2𝜔2𝑄2 + 𝑃 2 + 8𝜔2𝑆𝜓
)

2
(

𝑄2 + 4𝑆𝜓
) ,

𝑑 = − 𝑄
2𝜓

, 𝑎0 = 0, 𝑎1 = ±
2𝜓

√

𝑄2 + 4𝑆𝜓
,

𝑏1 = ±

√

𝑄2 + 4𝑆𝜓
4𝜓

, (4.1.6)

Set 4: 𝑉 = ±

√

−
(

𝑄2 + 4𝑆𝜓
) (

𝑃 2 − 𝜔2𝑄2 + 4𝜔2𝑆𝜓
)

,

𝑄2 + 4𝑆𝜓
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𝑢
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𝑢
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𝐷
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𝑁
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w

(

𝑑 = − 𝑄
2𝜓

, 𝑎0 = 0, 𝑎1 = ±
2𝜓

√

(

−2𝑄2 − 8𝑆𝜓
)

,

𝑏1 = ±

√

(

−2𝑄2 − 8𝑆𝜓
)

4𝜓
, (4.1.7)

When 𝑄 ≠ 0, 𝜓 = 𝑃 −𝑅 and 𝜌 = 𝑄2+4𝑆(𝑃 −𝑅) > 0, inserting the values
f the constraints assorted in (4.1.4) into the solution (4.1.3) and after
implifying, we attain the soliton solutions as (for 𝐶11 ≠ 0; 𝐶22 = 0 and
22 ≠ 0; 𝐶11 = 0):

1 (𝜉) = ±
√

𝜌
𝑄2 + 4𝑆𝜓

tanh

(
√

𝜌
2𝜓

𝜉

)

,

𝑢2 (𝜉) = ±
√

𝜌
𝑄2 + 4𝑆𝜓

coth

(
√

𝜌
2𝜓

𝜉

)

,

where 𝜉 = 𝜔𝑥𝛼

𝛼 ±
√

(𝑄2+4𝑆𝜓)(𝜔2𝑄2+2𝑃 2+4𝜔2𝑆𝜓)
𝑄2+4𝑆𝜓

𝑡𝛼

𝛼 .
In terms of the temporal and spatial variable, the formerly estab-

ished solutions become

111 (𝑥, 𝑡) = ±
√

𝜌
𝑄2 + 4𝑆𝜓

tanh

(
√

𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

,

𝑢211 (𝑥, 𝑡) = ±
√

𝜌
𝑄2 + 4𝑆𝜓

coth

(
√

𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

,

here 𝑉 = ±
√

(𝐵2+4𝐸𝜓)(𝜔2𝐵2+2𝐴2+4𝜔2𝐸𝜓)
𝐵2+4𝐸𝜓 and 𝜔 is a free parameter.

When 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝜌 = 𝑄2 + 4𝑆(𝑃 − 𝑅) < 0, for the values
ssembled in (4.1.4), from solution (4.1.3), we ascertain the subsequent
ave solutions (for 𝐶11 ≠ 0; 𝐶22 = 0 and 𝐶22 ≠ 0; 𝐶11 = 0):

3 (𝜉) = ∓𝑖
√

𝜌
𝑄2 + 4𝑆𝜓

tan

(
√

−𝜌
2𝜓

𝜉

)

,

𝑢4 (𝜉) = ±𝑖
√

𝜌
𝑄2 + 4𝑆𝜓

cot

(
√

−𝜌
2𝜓

𝜉

)

.

ubject to the variable 𝑥 and 𝑡, the above solutions develop into

311 (𝑥, 𝑡) = ∓𝑖
√

𝜌
𝑄2 + 4𝑆𝜓

tan

(
√

−𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

,

𝑢411 (𝑥, 𝑡) = ±𝑖
√

𝜌
𝑄2 + 4𝑆𝜓

cot

(
√

−𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

.

On the other hand, for 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝜌 = 𝑄2 + 4𝑆(𝑃 − 𝑅) = 0,
for the values gathered in (4.1.4), from solution (4.1.3) we carry out
the under mentioned solution:

𝑢5 (𝜉) = ±
2𝜓

√

𝑄2 + 4𝑆𝜓

(

𝐶22
𝐶11 + 𝐶22𝜉

)

.

Making use of wave variable 𝜉, the solution 𝑢5 turns into:

𝑢511 (𝑥, 𝑡) = ±
2𝜓

√

𝑄2 + 4𝑆𝜓

𝐶22

𝐶11 + 𝐶22

(

𝜔𝑥𝛼
𝛼 + 𝑉 𝑡𝛼

𝛼

) .

Moreover, for 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝛥 = 𝜓𝑆 > 0 and for the values of
he constants laid out in (4.1.4), from (4.1.3) we achieve the ensuing
olutions (for 𝐶11 ≠ 0; 𝐶22 = 0 and 𝐶22 ≠ 0; 𝐶11 = 0):

𝑢6 (𝜉) = ± 1
√

𝑄2 + 4𝛥

{

−Q + 2
√

𝛥 tanh

(
√

𝛥
𝜓
𝜉

)}

,

7 (𝜉) = ± 1
√

𝑄2 + 4𝛥

{

−Q + 2
√

𝛥 coth

(
√

𝛥
𝜓
𝜉

)}

.

n relation to the (𝑥, 𝑡) variable the former solution varies as follows

611 (𝑥, 𝑡) = ± 1
√

{

−Q + 2
√

𝛥 tanh

(
√

𝛥 (𝜔𝑥𝛼 + 𝑉 𝑡𝛼 )
)}

,

𝑄2 + 4𝛥 𝜓 𝛼 𝛼

4

𝑢711 (𝑥, 𝑡) = ± 1
√

𝑄2 + 4𝛥

{

−Q + 2
√

𝛥 coth

(
√

𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}

.

On the other side, when 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝛥 = 𝜓𝑆 < 0, for the
values of the constraints sorted out in (4.1.4), from (4.1.3) we found
the following wave solutions (for 𝐶11 ≠ 0; 𝐶22 = 0 and 𝐶22 ≠ 0; 𝐶11 = 0):

8 (𝜉) = ± 1
√

𝑄2 + 4𝛥

{

−Q − 2i
√

𝛥 tan

(
√

−𝛥
𝜓

𝜉

)}

,

𝑢9 (𝜉) = ± 1
√

𝑄2 + 4𝛥

{

−Q + 2i
√

𝛥 cot

(
√

−𝛥
𝜓

𝜉

)}

.

Regarding to the variable (𝑥, 𝑡), the preceding solutions varies as follows

𝑢811 (𝑥, 𝑡) = ± 1
√

𝑄2 + 4𝛥

{

−Q − 2i
√

𝛥 tan

{
√

−𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

}}

,

911 (𝑥, 𝑡) = ± 1
√

𝑄2 + 4𝛥

{

−Q + 2i
√

𝛥 cot

{
√

−𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

}}

.

If we use the other values of parameters accumulated in (4.1.5)–(4.1.7),
in the similar fashion, it is possible to construct more wide-ranging
general solutions to the fractional Phi-4 equation but for concise-
ness, the rest of the solutions available for those values are not dis-
played here. Comparing the formerly established results with those
found in Refs. 45–49, it might be emphasized that the wave solutions
𝑢111 (𝑥, 𝑡) − 𝑢911 (𝑥, 𝑡) to the space–time fractional Phi-4 equation are
useful and compatible and were not established in the earlier research.
The above solutions will be expedient to interpret the fusion and fission
phenomena, quantum relativistic one-particle theory etc.

4.2. The density-dependent space time fractional reaction–diffusion equa-
tion

In this sub-section, we will make use of the new generalized (𝐺′∕𝐺)-
expansion method to ascertain the solitary wave solutions to the
density-dependent space–time FRDE connected with nonlinear wave
profiles. The density-dependent space–time FRDE is given by52:

𝐷𝜕
2𝛼𝑤
𝜕𝑥2𝛼

− 𝜕𝛼𝑤
𝜕𝑡𝛼

− 𝑐𝑤𝜕
𝛼𝑤
𝜕𝑥𝛼

+ 𝑎𝑤 − 𝑏𝑤2 = 0; 𝑡 > 0, 0 < 𝛼 ≤ 1, (4.2.1)

wherein the parameter 𝛼 be a fractional order derivative and 𝑎, 𝑏, 𝑐
and also the density 𝐷 be the real constants. Moreover, the fractional
constant 𝛼 = 0.5 is especially well-known. This is why large amount of
models have been developed using this fractional order derivative in
fractional calculus. Fractional order derivatives are fruitful to study the
anomalous behavior of dynamical systems in viscoelasticity, diffusivity,
electrochemistry, chaotic theory etc. For wave translation 𝜉 = 𝜔𝑥𝛼

𝛼 + 𝑉 𝑡𝛼

𝛼 ,
Eq. (4.2.1) transmutes to the ODE in terms of the variable 𝑤(𝜉):

𝜔2𝑤′′ − 𝑉 𝑤′ − 𝑐𝜔𝑤𝑤′ + 𝑎𝑤 − 𝑏𝑤2 = 0. (4.2.2)

The equation specifies a cluster of nonlinear traveling waves. The
waves are effortlessly recognized when they do not reform their profiles
during propagation. This article reflects kink type traveling waves,
periodic waves, solitary waves etc. The solitary waves are stable waves
show asymptotic results that tend to zero for extensive path. The nature
of kink waves is moving up-and-down from one asymptotic frame to
another.

Keeping balance the term 𝑤′′, highest order linear term and 𝑤2, the
onlinear term of highest order, from Eq. (4.2.2), we obtain the value
= 1. Thus, the solution of Eq. (4.2.2) appears as follows:

(𝜉) = 𝑎0 + 𝑎1 (𝑑 + F) + 𝑏1 (𝑑 + F)−1 , (4.2.3)

here 𝑎0, 𝑎1, 𝑏1, 𝑑 are constants whose values will be estimated.
Introducing the solution (4.2.3) along with (3.5) and (3.6) into

4.2.2), we get the polynomial subject to the indeterminate (𝑑 + F)𝑁

and (𝑑 + F)−𝑁 , 𝑁 = 0, 1, 2,…. We assemble all coefficients of the
generated polynomial to zero gives us a set of algebraic equations due
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to 𝑎0, 𝑎1, 𝑏1, 𝑑, 𝑉 and 𝜔. Here the equations are not advisable for
voiding complexity:
et 1: 𝜔 = ± 𝑐𝑎𝑃

2𝑏𝐷
√

𝑄2+4𝑆𝜓
, 𝑉 = ∓ 𝑎𝐴

(

4𝑏2𝐷+𝑎𝑐2
)

4𝑏2𝐷
√

𝑄2+4𝑆𝜓
, 𝑑 = − 𝑄

2𝜓 , 𝑎0 =
𝑎
2𝑏 ,

𝑎1 = ∓
𝑎𝜓

𝑏
√

𝑄2 + 4𝑆𝜓
, 𝑏1 = ∓

𝑎
√

𝑄2 + 4𝑆𝜓
4𝑏𝜓

, (4.2.4)

here 𝜓 = 𝑃 − 𝑅, 𝑃 ,𝑄,𝑅, 𝑆, 𝑎, 𝑏, 𝑐, 𝐷 are free parameters.

et 2: 𝜔 = ± 𝑐𝑎𝐴
2𝑏𝐷

√

𝑄2+4𝑆𝜓
, 𝑉 = ∓ 𝑎𝐴

(

4𝑏2𝐷+𝑎𝑐2
)

4𝑏2𝐷
√

𝑄2+4𝑆𝜓
, 𝑎0 = ±

𝑎
(

𝑄+2𝑑𝜓+
√

𝑄2+4𝑆𝜓
)

2𝑏
√

𝑄2+4𝑆𝜓
,

𝑎1 = ∓
𝑎𝜓

𝑏
√

𝑄2 + 4𝑆𝜓
, 𝑏1 = 0, (4.2.5)

Set 3: 𝜔 = ± 𝑐𝑎𝑃
2𝑏𝐷

√

𝑄2+4𝑆𝜓
, 𝑉 = ∓ 𝑎𝑃

(

4𝑏2𝐷+𝑎𝑐2
)

4𝑏2𝐷
√

𝑄2+4𝑆𝜓
, 𝑑 = − 𝑄

2𝜓 , 𝑎0 =
𝑎
2𝑏 ,

𝑎1 = 0, 𝑏1 = ∓
𝑎
√

𝑄2 + 4𝑆𝜓
4𝑏𝜓

, (4.2.6)

When 𝑄 ≠ 0, 𝜓 = 𝑃 −𝑅 and 𝜌 = 𝑄2+4𝑆(𝑃 −𝑅) > 0, for the values of the
constants determined in (4.2.4), from (4.2.3) we obtain the following
solutions to the fractional reaction–diffusion equation (for 𝐶11 ≠ 0;
𝐶22 = 0 and 𝐶22 ≠ 0; 𝐶11 = 0):

𝑤1 (𝜉) =
𝑎
2𝑏

∓
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
tanh

(
√

𝜌
2𝜓

𝜉

)

∓
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌

{

tanh

(
√

𝜌
2𝜓

𝜉

)}−1

,

𝑤2 (𝜉) =
𝑎
2𝑏

∓
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
coth

(
√

𝜌
2𝜓

𝜉

)

∓
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌

{

coth

(
√

𝜌
2𝜓

𝜉

)}−1

,

where, 𝜉 = ± 𝑐𝑎𝑃
2𝑏𝐷

√

𝑄2+4𝑆𝜓
𝑥𝛼

𝛼 ∓ 𝑎𝑃
(

4𝑏2𝐷+𝑎𝑐2
)

4𝑏2𝐷
√

𝑄2+4𝑆𝜓
𝑡𝛼

𝛼 .
Therefore, regarding to the spatial and temporal variables the erst-

hile solutions transform to:

111 (𝑥, 𝑡) =
𝑎
2𝑏

∓
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
tanh

(
√

𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

∓
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌

{

tanh

(
√

𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

,

𝑤211 (𝑥, 𝑡) =
𝑎
2𝑏

∓
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
coth

(
√

𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

∓
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌

{

coth

(
√

𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

,

where 𝜔 = ± 𝑐𝑎𝑃
2𝑏𝐷

√

𝑄2+4𝑆𝜓
, 𝑉 = ∓ 𝑎𝑃

(

4𝑏2𝐷+𝑎𝑐2
)

4𝑏2𝐷
√

𝑄2+4𝑆𝜓
.

On the contrary, when 𝑄 ≠ 0, 𝜓 = 𝑃 −𝑅 and 𝜌 = 𝑄2+4𝑆(𝑃 −𝑅) < 0,
for the scores scheduled in (4.2.4), from solution (4.2.3), we achieve
the under mentioned wave solution (for 𝐶11 ≠ 0; 𝐶22 = 0 and 𝐶22 ≠ 0;
𝐶11 = 0):

𝑤3 (𝜉) =
𝑎
2𝑏

± 𝑖
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
tan

(
√

−𝜌
2𝜓

𝜉

)

∓ 𝑖
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌
tan−1

(
√

−𝜌
2𝜓

𝜉

)

,

𝑤4 (𝜉) =
𝑎
2𝑏

∓ 𝑖
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
cot

(
√

−𝜌
2𝜓

𝜉

)

± 𝑖
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌
cot−1

(
√

−𝜌
2𝜓

𝜉

)

.

5

Consequently, subject to elementary variables the exact wave solutions
become:

𝑤311 (𝑥, 𝑡) =
𝑎
2𝑏

± 𝑖
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
tan

(
√

−𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

∓ 𝑖
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌

{

tan

(
√

−𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

,

𝑤411 (𝑥, 𝑡) =
𝑎
2𝑏

∓ 𝑖
𝑎
√

𝜌

2𝑏
√

𝑄2 + 4𝑆𝜓
cot

(
√

−𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)

± 𝑖
𝑎
√

𝑄2 + 4𝑆𝜓
2𝑏
√

𝜌

{

cot

(
√

−𝜌
2𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

.

Moreover, when 𝑄 ≠ 0, 𝜓 = 𝑃 −𝑅 and 𝜌 = 𝑄2 + 4𝑆(𝑃 −𝑅) = 0, placing
the values of the constants accumulated in (4.2.4) into solution (4.2.3),
we obtain the following solitary solutions:

𝑤5 (𝜉) =
𝑎
2𝑏

∓
𝑎𝜓

𝑏
√

𝑄2 + 4𝑆𝜓

(

𝐶22
𝐶11 + 𝐶22𝜉

)

∓
𝑎
√

𝑄2 + 4𝑆𝜓
4𝑏𝜓

(

𝐶22
𝐶11 + 𝐶22𝜉

)−1
.

In terms of the basic variable the former solution converted into:

𝑤511 (𝑥, 𝑡) =
𝑎
2𝑏

∓
𝑎𝜓

𝑏
√

𝑄2 + 4𝑆𝜓

𝐶22

𝐶11 + 𝐶22

(

𝜔𝑥𝛼
𝛼 + 𝑉 𝑡𝛼

𝛼

)

∓
𝑎
√

𝑄2 + 4𝑆𝜓
4𝑏𝜓

⎧

⎪

⎨

⎪

⎩

𝐶22

𝐶11 + 𝐶22

(

𝜔𝑥𝛼
𝛼 + 𝑉 𝑡𝛼

𝛼

)

⎫

⎪

⎬

⎪

⎭

−1

.

Now, for 𝑄 ≠ 0, 𝜓 = 𝑃 − 𝑅 and 𝛥 = 𝜓𝑆 > 0 and for the values of
the parameters set out in (4.2.4), from solution (4.2.3) we find out the
resulting wave solutions (for 𝐶11 ≠ 0; 𝐶22 = 0 and 𝐶22 ≠ 0; 𝐶11 = 0):

𝑤6 (𝜉) =
𝑎
2𝑏

∓ 𝑎

2𝑏
√

𝑄2 + 4𝛥

(

−Q + 2
√

𝛥 tanh

(
√

𝛥
𝜓
𝜉

))

∓
𝑎
√

𝑄2 + 4𝛥
2𝑏

(

−Q + 2
√

𝛥 tanh

(
√

𝛥
𝜓
𝜉

))−1

,

𝑤7 (𝜉) =
𝑎
2𝑏

∓ 𝑎

2𝑏
√

𝑄2 + 4𝛥

(

−Q + 2
√

𝛥 coth

(
√

𝛥
𝜓
𝜉

))

∓
𝑎
√

𝑄2 + 4𝛥
2𝑏

(

−Q + 2
√

𝛥 coth

(
√

𝛥
𝜓
𝜉

))−1

.

Therefore, concerning the primary variables the former solutions be-
come

𝑤611 (𝑥, 𝑡) =
𝑎
2𝑏

∓ 𝑎

2𝑏
√

𝑄2 + 4𝛥

{

−Q + 2
√

𝛥 tanh

(
√

𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}

∓
𝑎
√

𝑄2 + 4𝛥
2𝑏

{

−Q + 2
√

𝛥 tanh

(
√

𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

,

711 (𝑥, 𝑡) =
𝑎
2𝑏

∓ 𝑎

2𝑏
√

𝑄2 + 4𝛥

{

−Q + 2
√

𝛥 coth

(
√

𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}

∓
𝑎
√

𝑄2 + 4𝛥
2𝑏

{

−Q + 2
√

𝛥 coth

(
√

𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

.

When 𝑄 ≠ 0, 𝜓 = 𝑃 −𝑅 and 𝛥 = 𝜓𝑆 < 0, in similar manner, substituting
(4.2.4) into (4.2.3) and reducing the traveling wave solutions appear in
the next form (for 𝐶11 ≠ 0; 𝐶22 = 0 and 𝐶22 ≠ 0; 𝐶11 = 0):

8 (𝜉) =
𝑎
2𝑏

± 𝑎

2𝑏
√

𝑄2 + 4𝛥

(

Q + 2i
√

𝛥 tan

(
√

−𝛥
𝜓

𝜉

))

±
𝑎
√

𝑄2 + 4𝛥
(

Q + 2i
√

𝛥 tan

(
√

𝛥
𝜉

))−1

,

2𝑏 𝜓
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Fig. 1. Kink shape wave structure of solution 𝑢111 (𝑥, 𝑡).

9 (𝜉) =
𝑎
2𝑏

∓ 𝑎

2𝑏
√

𝑄2 + 4𝛥

(

−Q + 2i
√

𝛥 cot

(
√

−𝛥
𝜓

𝜉

))

∓
𝑎
√

𝑄2 + 4𝛥
2𝑏

(

−Q + 2i
√

𝛥 cot

(
√

𝛥
𝜓
𝜉

))−1

.

Therefore in relation to the original variables the above solutions
become

𝑤811 (𝑥, 𝑡) =
𝑎
2𝑏

± 𝑎
2𝑏
√

𝑄2 + 4𝑆𝜓

{

Q + 2i
√

𝛥 tan

(
√

−𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}

±
𝑎
√

𝑄2 + 4𝛥
2𝑏

{

Q + 2i
√

𝛥 tan

(
√

−𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

,

911 (𝑥, 𝑡) =
𝑎
2𝑏

∓ 𝑎
2𝑏
√

𝑄2 + 4𝑆𝜓

{

−Q + 2i
√

𝛥 cot

(
√

−𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}

𝑎
√

𝑄2 + 4𝛥
2𝑏

{

−Q + 2i
√

𝛥 cot

(
√

−𝛥
𝜓

(𝜔𝑥𝛼

𝛼
+ 𝑉 𝑡𝛼

𝛼

)

)}−1

.

y using the values organized in set 2 and set 3, we obtain further
ide-ranging exact wave solutions to the reaction–diffusion equation,
ut for avoiding the repetition, the rest solutions for set 2 and set 3 are
ot written here. This equation demonstrates more accuracy if the pop-
lation growth is not widespread although it is modulated by density
ependent mortality. The reaction–diffusion system is a potential model
o describe spatial dispersive processes. The determined solutions are
eliable, compatible and functional to analyze the modulated events
nd have not been established by the authors.50–57

. Graphical representation and physical explanations

In this section, we explain the established solutions of the models,
amely, the density-dependent space–time FRDE and the nonlinear
pace–time fractional Phi-4 equation physically and graphically. The
igures are sketched via the symbolic computation software named
athematica to understand and disclose the nonlinear fractional phe-

omena.
The ascertained wave solutions are found in the form of rational,

yperbolic and trigonometric functions on account of 𝜌 > 0 and 𝜌 < 0
respectively originated from family 1 and family 2. For the values
𝑃 = 5, 𝑄 = 1, 𝑅 = 2, 𝑆 = 1, 𝜔 = 2, 𝜌 = 4 of the constraints and the
onstant order 𝛼 = 1.0, solutions 𝑢111 (𝑥, 𝑡) and 𝑤111 (𝑥, 𝑡) are the kink-

shape soliton, depicted within the interval −15 ≤ 𝑥, 𝑡 ≤ 15 for family 1
and presented in Fig. 1.

It is observed that the profiles of the solutions 𝑢211 (𝑥, 𝑡), 𝑢711 (𝑥, 𝑡),
𝑤211 (𝑥, 𝑡) and 𝑤711 (𝑥, 𝑡) are singular kink shape wave for the similar
values of parameters and displayed in Fig. 2.

For the values 𝑃 = 5, 𝑄 = 1, 𝑅 = 2, 𝑆 = 1, 𝜔 = 2, 𝜌 = −4 and
constant order 𝛼 = 1.0, the solutions 𝑢311 (𝑥, 𝑡), 𝑢811 (𝑥, 𝑡) and 𝑤811 (𝑥, 𝑡)
are the periodic wave in the range −15 ≤ 𝑥, 𝑡 ≤ 15 and portrayed in
Fig. 3.

On the other hand, for the score of the constants 𝑃 = 5, 𝑄 = 1,
𝑅 = 2, 𝑆 = 1, 𝐷 = 9, 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝜌 = −4 and for the
6

Fig. 2. Singular kink shape wave structure of solution 𝑢211 (𝑥, 𝑡).

Fig. 3. Periodic wave structure originated from solution 𝑢311 (𝑥, 𝑡).

Fig. 4. Exact periodic wave structure portrayed from solution 𝑤311 (𝑥, 𝑡).

Fig. 5. Singular soliton sketched from solution 𝑢511 (𝑥, 𝑡).

constant order 𝛼 = 1.0, the shape of the solution 𝑤311 (𝑥, 𝑡) within the
range −15 ≤ 𝑥, 𝑡 ≤ 15 is exact periodic wave solution and traced in
Fig. 4.

For family 3, when 𝜌 = 0, 𝑃 = 5, 𝑄 = 1, 𝑅 = 2, 𝑆 = 1, 𝜔 = 2, 𝐶11 = 2,
𝐶22 = 2 and for the constant value 𝛼 = 1.0, the solution 𝑢511 (𝑥, 𝑡) is a
singular soliton within the range −15 ≤ 𝑥, 𝑡 ≤ 15 and shown in Fig. 5.

When 𝛥 > 0, for family 4, the solutions 𝑢611 (𝑥, 𝑡) and 𝑤611 (𝑥, 𝑡) are
exact periodic wave for 𝑃 = 6, 𝑄 = 1, 𝑅 = 4, 𝑆 = 1, 𝜔 = 2 and for the
constant order 𝛼 = 1.0 within the limit −15 ≤ 𝑥, 𝑡 ≤ 15 and specified in
Fig. 6.

For 𝛥 < 0, solutions 𝑢911 (𝑥, 𝑡), 𝑢411 (𝑥, 𝑡) , 𝑤911 (𝑥, 𝑡) and 𝑤411 (𝑥, 𝑡)
characterize the singular periodic wave concerning the values 𝑃 = 3,
𝑄 = 1, 𝑅 = 5, 𝑆 = 1, 𝜔 = 2 to the parameters and constant order 𝛼 = 1.0
and within the range −3 ≤ 𝑥, 𝑡 ≤ 3 and advisable in Fig. 7.
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Fig. 6. Exact periodic wave structure originated from 𝑢611 (𝑥, 𝑡).

Fig. 7. Multiple soliton wave structure generated by 𝑢911 (𝑥, 𝑡).

6. Conclusion

In this study, we have established wide-ranging, further general and
advanced soliton solutions, in particular, periodic wave, kink wave,
single and multiple solitary waves of a couple of space–time frac-
tional nonlinear models explicitly the density-dependent FRDE and
the fractional Phi-4 equation. The new generalized

(

𝐺′∕𝐺
)

-expansion
method is effectively applicable to the FNDEs. The fractional complex
transformation is highly significant for complex wave variable 𝜉 that
confirms that, a fractional order partial differential equation might be
transformed into an integer order ODE. The established solutions are
compatible to explicate the nonlinear fusion and fission phenomena
noticed in many physical incidents, as for instance, plasma physics,
electrodynamics, organic membrane etc. In cosmology, kink shape
waves are accustomed to model domain walls. The solutions are derived
relating to hyperbolic, trigonometric, and rational functions. The effec-
tiveness of the reported approach is further feasible and simpler than
the other techniques. The technique might be functional for subsequent
assessment to other nonlinear fractional equations in applied mathe-
matics, mathematical physics, engineering and other related fields. It
is noteworthy that, the implemented method is the special case of the
transformed rational function approach. The Frobenius decomposition
approach58 is one of the efficient techniques in establishing exact
solutions to the FNDEs and complexity solutions are available in more
integrated ways.
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