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Abstract: In this work, by using both the comparison technique with first-order differential
inequalities and the Riccati transformation, we extend this development to a class of third-order neutral
differential equations of the mixed type. We present new criteria for oscillation of all solutions, which
improve and extend some existing ones in the literature. In addition, we provide an example to illustrate
our results.
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1. Introduction

This work is concerned with the oscillatory properties of the third-order half-linear delay differential
equation (DDE) with mixed neutral term(

m (u)
(
y′′ (u)

)κ)′
+ q (u) xκ (θ (u)) = 0, u ≥ u0, (1.1)
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where κ is a quotient of add positive integers and

y (u) := x (u) + ρ1 (u) x (τ1 (u)) + ρ2 (u) x (τ2 (u)) . (1.2)

Throughout this work, we assume the following hypotheses:

(I1) m, q ∈ C ([u0,∞) , (0,∞)) and ∫ ∞

u0

m−1/κ (s) ds = ∞;

(I2) ρi ∈ C ([u0,∞) , [0,∞)) , ρi (u) ≤ ρi < ∞ such that ρi are positive constants for i = 1, 2;
(I3) θ, τi ∈ C1 ([u0,∞) ,R), θ (u) < u, τ1 (u) ≤ u, τ2 (u) > u, τ′i (u) ≤ τi , θ◦τi = τi◦θ and limu→∞ θ (u) =

limu→∞ τi (u) = ∞ for i = 1, 2.

A function x is a solution of (1.1) if x ∈ C ([ux,∞),R)) that satisfies (1.1) on [ux,∞) with ux ≥ u0,
and satisfies the property m (u) (y′′ (u))κ ∈ C1 ([ux,∞),R)). We focus on the nontrivial solutions of (1.1)
existing on some half-line [ux,∞) and satisfying the condition sup{|x (u)| : u∗ ≤ u < ∞} > 0 for any
u∗ ≥ ux. A solution x of (1.1) is said to be oscillatory if it has arbitrary large zeros; otherwise, it is said
to be non-oscillatory.

Functional differential equations have received wide attention by researchers as a result of their
many applications in various fields of the real world, for example, technology and natural sciences [1].
In particular, the half-linear differential equations arise in the study of p-Laplace equations, porous
medium problems, chemotaxis models, and so forth; see, for instance, the papers [2–5] for more details.

In the past few years, researchers have focused their effort on studying the oscillatory or
non-oscillatory behavior of differential equations of different orders, by using various techniques. It
has been noted the emergence of many studies interested in finding criteria of oscillation of
second-order differential equations see [6–9], while interest in third-order differential equations is
much less specially third-order differential equations of neutral type with a delayed or advanced
argument; so, we find only a few references like [10–13]. In addition to the scarcity of literature on
oscillation results for third order neutral differential equations with mixed arguments.

On the other hand, it was found that most of the studies devoted their studies to establishing
conditions which ensure that the solutions to these equations are oscillatory or tend to zero, we
mention here the papers [14–20]. Then some papers have appeared that sought to improve the
previous conditions by creating conditions that ensure oscillation of all solutions, see [21–23].

Regarding the oscillatory behavior of differential equations with mixed arguments, we refer the
reader to [24–26] and the references cited therein.

Next, we review some of the related results from the literature that were motivation for this work.
Han et al. in [27] established some oscillation criteria of(

m (u)
(
y′′ (u)

))′
+ q1 (u) x (θ1 (u)) + q2 (u) x (θ2 (u)) = 0,

where (1.2) holds.
In reference [24], Baculikova and Dzurina gave some sufficient conditions for oscillation of the

third-order DDE (
m (u)

(
x′ (u)

))′′
+ q (u) f (x (τ (u))) + ρ (u) h (x (θ (u))) = 0,
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where τ (u) ≤ u and θ (u) ≥ u. Further, Thandapani and Rama [26] established some oscillation
theorems for DDE (

m
(
y′′ (u)

))′
+ q1 (u) x (θ1 (u)) + q2 (u) x (θ2 (u)) = 0,

where (1.2) holds.
Grace [25] obtained some oscillation theorems for the odd order mixed neutral DDE

(x (u) + ρ1x (u − τ1) + ρ2x (u + τ2))(n) + q1 (u − θ1) + q1 (u + θ2) = 0,

where n ≥ 1.
Moaaz et al. [28] established sufficient conditions to ensure that the solutions of canonical equations(

m (u)
(
y′′ (u)

)κ)′
+ q1 (u) f (x (θ1 (u))) + ρ (u) h (x (θ2 (u))) = 0

are oscillatory or tend to zero where (1.2) holds.
In this paper, we aim to study the oscillatory behavior of a class of third-order DDE with neutral

term. We obtain sufficient conditions that guarantee the oscillation of all solutions by using both Riccati
substitution and comparison techniques. Our results extend and complement some of the relevant
results that were recently published in the literature.

The following lemma will help us to prove our main results:

Lemma 1.1. [29, Lemma 4] Assume that g(u), g′(u) and g′′ (u) are positive functions; furthermore,
g′′′(u) is negative on (u0,∞). Then,

g(u)
g′(u)

≥
k
2

u,

for some k ∈ (0, 1) .

Lemma 1.2. [30, Lemma 2.3] Let G (v) = Cv − Dvκ+1/κ where C,D > 0 and κ be a ratio of two odd
positive integers. Then G has the maximum value on R at v∗ = (κC/ (κ + 1) D)α such that

max
v∈R

G (v) = G (v∗) =
κκ

(κ + 1)κ+1

Cκ+1

Dκ
. (1.3)

2. Main results

For the sake of brevity, we will define the operator m (y′′)κ = Ly (u) and adopt the following notation:

ρ̂ (u) = min {ρ1 (u) , ρ2 (u)} ;
q̂ (u) = min {q (u) , q (τ1 (u)) , q (τ2 (u))} ,

and

η̃ (v,w) =

∫ v

w

(∫ v

h

1
m1/κ (s)

ds
)

dh.

Lemma 2.1. [19] Assume that a1, a2, a3 ∈ [0,∞) and γ > 0. Then

(a1 + a2 + a3)γ ≤ λ2
(
aγ1 + aγ2 +

1
λ

aγ3

)
. (2.1)

where

λ :=
{

1 if γ ≤ 1
2γ−1 if γ > 1.
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Proof. Combining Lemma 1 with Lemma 2 in [19], the proof is straightforward .

Lemma 2.2. [31] Let x > 0 be a solution of Eq (1.1). Then y has only one of the following cases:

(i) The functions y (u) , y′ (u) , y′′ (u) are positive;
(ii) The functions y (u) and y′′ (u) are positive and y′ (u) is negative.

Theorem 2.3. Assume that x is a positive solution of Eq (1.1) and θ (u) < τ1 (u) and τ−1
1 (φ (u)) < u. If

there exist functions φ, δ ∈ C([u0,∞), (0,∞)) satisfying θ (u) < φ (u) such that

lim sup
u→∞

∫ u

u1

(
kκδ (s) q̂ (s) θκ (s)

2κλ2 −
1

(κ + 1)κ+1

(
1
λ

+
ρκ1
τ1

+
ρκ2
τ2

)
(δ′ (s))κ+1 m (θ (s))

(δ (s) θ′ (s))κ

)
ds = ∞, (2.2)

and the first-order DDE

F′ (u) +

(
λτ1τ2

τ1τ2 + λτ2ρ
κ
1 + λτ1ρ

κ
2

)
q̂ (u) η̃κ (φ (u) , θ (u)) F

(
τ−1

1 (φ (u))
)

= 0 (2.3)

is oscillatory, then every solution of Eq (1.1) oscillates.

Proof. Assume that x > 0 is a solution of Eq (1.1) on [u0,∞). Thus there is a u1 ≥ u0 with x (τ (u)) and
x (θ (u)) are positive functions for all u ≥ u1. From the corresponding function y (u), we get

yκ (θ (u)) =
[
x (θ (u)) + (ρ1 (θ (u)) x (τ1 (θ (u))) + ρ2 (θ (u)) x (τ2 (θ (u))))

]κ . (2.4)

By Lemma 2.2, Eq (2.4) becomes

yκ (θ (u)) ≤ λ2
(
1
λ

xκ (θ (u)) + ρκ1 (θ (u)) xκ (τ1 (θ (u))) + ρκ2 (θ (u)) xκ (τ2 (θ (u)))
)
.

From Eq (1.1) and (θ ◦ τi = τi ◦ θ), we get

0 =
ρκ1

τ′1 (u)
(Ly (τ1 (u)))′ + ρκ1q (τ1 (u)) xκ (θ (τ1 (u)))

≥
ρκ1
τ1

(Ly (τ1 (u)))′ + ρκ1q (τ1 (u)) xκ (τ1 (θ (u))) . (2.5)

And

0 =
ρκ2

τ′2 (u)
(Ly (τ2 (u)))′ + ρκ2q (τ2 (u)) xκ (θ (τ2 (u)))

≥
ρκ2
τ2

(Ly (τ2 (u)))′ + ρκ2q (τ2 (u)) xκ (τ2 (θ (u))) . (2.6)

Combining Eqs (1.1), (2.5) and (2.6), we obtain

0 ≥

(
1
λ

Ly (u) +
ρκ1
τ1

Ly (τ1 (u)) +
ρκ2
τ2

Ly (τ2 (u))
)′
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+q̂ (u)
(
1
λ

xκ (θ (u)) + ρκ1xκ (τ1 (θ (u))) + ρκ2xκ (τ2 (θ (u)))
)
.

Hence,

0 ≥
(
1
λ

Ly (u) +
ρκ1
τ1

Ly (τ1 (u)) +
ρκ2
τ2

Ly (τ2 (u))
)′

+
1
λ2 q̂ (u) yκ (θ (u)) . (2.7)

By Lemma 2.2, y(u) has two possible cases. First assume y(u) has the property (i), we set

$1 (u) = δ (u)
Ly (u)

(y′ (θ (u)))κ
. (2.8)

Hence, by differentiating Eq (2.8), we get

$′1 (u) = δ′ (u)
Ly (u)

(y′ (θ (u)))κ
+ δ (u)

(Ly (u))′

(y′ (θ (u)))κ
−
κδ (u) Ly (u) y′′ (θ (u)) θ′ (u)

(y′ (θ (u)))κ+1 . (2.9)

From the fact that Ly (u) ≤ 0 and θ (u) < u, we get

Ly (u) ≤ Ly (θ (u)) .

Above inequality together with Eqs (2.8) and (2.9) becomes

$′1 (u) ≤ δ′ (u)
$1 (u)
δ (u)

+ δ (u)
(Ly (u))′

(y′ (θ (u)))κ
−

κθ′ (u)

δ
1
κ (u) m

1
κ (θ (u))

$
κ+1
κ

1 (u) .

Using Lemma 1.2 with V = $1 (u) , C =
δ′(u)
δ(u) , D =

κθ′(u)

δ
1
κ (u)m

1
κ (θ(u))

, we obtain

$′1 (u) ≤ δ (u)
(Ly (u))′

(y′ (θ (u)))κ
+ (κ + 1)−(κ+1) (δ′ (u))κ+1 m (θ (u))

(δ (u) θ′ (u))κ
. (2.10)

Further, we set

$2 (u) = δ (u)
Ly (τ1 (u))
(y′ (θ (u)))κ

.

By differentiating $2 (u) and using θ (u) < τ1 (u), we find

$′2 (u) ≤ δ′ (u)
$2 (u)
δ (u)

+ δ (u)
(Ly (τ1 (u)))′

(y′ (θ (u)))κ
−

κθ′ (u)

δ
1
κ (u) m

1
κ (θ (u))

$
κ+1
κ

2 (u) .

Using Lemma 1.2 with V = $2 (u) , C =
δ′(u)
δ(u) and D =

κθ′(u)

δ
1
κ (u)m

1
κ (θ(u))

, we get

$′2 (u) ≤ δ (u)
(Ly (τ1 (u)))′

(y′ (θ (u)))κ
+ (κ + 1)−(κ+1) (δ′ (u))κ+1 m (θ (u))

(δ (u) θ′ (u))κ
. (2.11)

Now, we set another positive function

$3 (u) = δ (u)
Ly (τ2 (u))
(y′ (θ (u)))κ

. (2.12)
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By differentiating Eq (2.12), and similar to Eq (2.11), we get

$′3 (u) ≤ δ (u)
(Ly (τ2 (u)))′

(y′ (θ (u)))κ
+ (κ + 1)−(κ+1) (δ′ (u))κ+1 m (θ (u))

(δ (u) θ′ (u))κ
. (2.13)

From Eqs (2.10), (2.11) and (2.13), we get

1
λ
$′1 (u) +

ρκ1
τ1
$′2 (u) +

ρκ2
τ2
$′3 (u) ≤ δ (u)

 1
λ

(Ly (u))′ + ρκ1
τ1

(Ly (τ1 (u)))′ + ρκ2
τ2

(Ly (τ2 (u)))′

(y′ (θ (u)))κ


+

1
(κ + 1)κ+1

(
1
λ

+
ρκ1
τ1

+
ρκ2
τ2

)
(δ′ (u))κ+1 m (θ (u))

(δ (u) θ′ (u))κ
.

Using Eq (2.7), one obtains

1
λ
$′1 (u) +

ρκ1
τ1
$′2 (u) +

ρκ2
τ2
$′3 (u) ≤ −

δ (u)
λ2 q̂ (u)

(
yκ (θ (u))

(y′ (θ (u)))κ

)
+ (κ + 1)−(κ+1)

(
1
λ

+
ρκ1
τ1

+
ρκ2
τ2

)
(δ′ (u))κ+1 m (θ (u))

(δ (u) θ′ (u))κ
. (2.14)

Using Lemma 1.1, we have
yκ (θ (u))

(y′ (θ (u)))κ
≥

kκ

2κ
θκ (u) .

Combining the last inequality with Eq (2.14), we find

1
λ
$′1 (u) +

ρκ1
τ1
$′2 (u) +

ρκ2
τ2
$′3 (u)

≤ −
kκδ (u) q̂ (u) θκ (u)

2κλ2 + (κ + 1)−(κ+1)
(
1
λ

+
ρκ1
τ1

+
ρκ2
τ2

)
(δ′ (u))κ+1 m (θ (u))

(δ (u) θ′ (u))κ
. (2.15)

Integrating Eq (2.15) from u1 to u , we conclude∫ u

u1

(
kκδ (s) q̂ (s) θκ (s)

2κλ2 − (κ + 1)−(κ+1)
(
1
λ

+
ρκ1
τ1

+
ρκ2
τ2

)
(δ′ (s))κ+1 m (θ (s))

(δ (s) θ′ (s))κ

)
ds

≤
1
λ
$′1 (u1) +

ρκ1
τ1
$′2 (u1) +

ρκ2
τ2
$′3 (u1) .

Now, assume that y(u) has the property (ii), since Ly (u) is nonincreasing, we have

− y′ (h) ≥
∫ v

h

1
m1/κ (s)

L1/κy (s) ds ≥ L1/κy (v)
∫ v

h

1
m1/κ (s)

ds, for h ≤ v. (2.16)

Integrating Eq (2.16) from w to v, we see that

y (w) ≥ L1/κy (v)
∫ v

w

(∫ v

h

1
m1/κ (s)

ds
)

dh.

This yields
y (w) ≥ η̃ (v,w) L1/κy (v) . (2.17)
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But w = θ (u) , v (u) = φ (u), we obtain

y (θ (u)) ≥ η̃ (φ (u) , θ (u)) L1/κy (φ (u)) . (2.18)

Define the function F by

F (u) =
1
λ

Ly (u) +
ρκ1
τ1

Ly (τ1 (u)) +
ρκ2
τ2

Ly (τ2 (u)) .

In view of Eq (1.1) and τ1 ≤ u ≤ τ2, we get

F (u) ≤ Ly (τ1 (u))
(
1
λ

+
ρκ1
τ1

+
ρκ2
τ2

)
,

that is,

Ly (φ (u)) ≥ F
(
τ−1

1 (φ (u))
) ( λτ1τ2

τ1τ2 + λτ2ρ
κ
1 + λτ1ρ

κ
2

)
. (2.19)

Substituting Eqs (2.18) and (2.19) in Eq (2.7) yields that

F′ (u) +

(
λτ1τ2

τ1τ2 + λτ2ρ
κ
1 + λτ1ρ

κ
2

)
q̂ (u) η̃κ (φ (u) , θ (u)) F

(
τ−1

1 (φ (u))
)
≤ 0.

According to [32, Theorem 1], the delay differential equation (2.3) also has a positive solution, which
is a contradiction.

Corollary 1. Let x be a solution of (1.1) and positive eventually, θ (u) < τ1 (u) and τ−1
1 (φ (u)) < u. If

there exist functions φ, δ ∈ C([u0,∞), (0,∞)) satisfying θ (u) < φ (u) such that Eq (2.2) holds and

lim inf
u→∞

∫ u

τ−1
1 (φ(u))

q̂ (s) η̃κ (φ (s) , θ (s)) ds >
(
τ1τ2 + λτ2ρ

κ
1 + λτ1ρ

κ
2

λτ1τ2

)
, (2.20)

then every solution of Eq (1.1) oscillates.

Proof. Assume that x is a solution of Eq (1.1) and x is positive eventually. Thus there is a u1 ≥ u0 with
x (τ (u)) > 0 and x (θ (u)) > 0 for all u ≥ u1. When y(u) satisfies the property (i), the proof is similar
to that of Theorem 2.3, and hence is omitted and when y(u) satisfies property (ii) , it is well known
from [33] that Eq (2.20) implies oscillation of Eq (2.3).

Example 2.4. Consider the third-order differential equation of mixed type(
x (u) +

1
3

x
(
1
3

u
)

+
1
3

x (2t)
)′′′

+
q0

u3 x
(
1
2

u
)

= 0, (2.21)

where q0 > 0. Note that, ρ1 = ρ2 = 1
3 , τ1 (u) = 1

3u, τ2 (u) = 2t, τ1 = τ2 = 2, q̂ (u) =
q0
8u3 and θ (u) = 1

2u.
By choosing δ (u) = u, it is easy to see that Eq (2.2) becomes

lim inf
u→∞

∫ u

u1

(
q0

32s
−

1
s

(
17
24

))
ds = ∞.
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Thus, it is validated when
q0 > 22.66.

Now, set φ (u) = 3
4u, we get τ−1

1 (φ (u)) = 3u and η̃ (φ (u) , θ (u)) = u2

32 , moreover Eq (2.20) yields

lim
u→∞

inf
∫ u

3u

q0

8s3

s2

32
ds >

(
τ1τ2 + λτ2ρ

κ
1 + λτ1ρ

κ
2

µτ1τ2

)
or

q0 >
3 (256)
2 ln 4

3

.

Then, Eq (1.1) is oscillatory if q0 >
3(256)
2 ln 4

3
.

3. Conclusions

It is easy to notice the great development in the study of oscillation of the delay differential equations
in recent times. In this paper, we established the oscillation criteria for a class of third-order delay
differential equations. By using comparison principles and Riccati transformation, we presented some
sufficient conditions which ensure that every solution of Eq (1.1) is oscillatory. The approach used does
not need to be restricted by the condition 0 < ρi (u) < 1, unlike many previous work. For interested
researchers, results presented in this paper may be extended to more general equations than Eq (1.1).
Another interesting problem for further research is to obtain new criteria for oscillatory solutions for
Eq (1.1) without requiring θ ◦ τi = τi ◦ θ.
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