

ADOPTING RUP (RATIONAL UNIFIED PROCESS)

ON A

SOFTWARE DEVELOPMENT PROJECT

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

TUFAN TAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

SEPTEMBER 2009

Title of the Thesis : Adopting RUP (Rational Unified Process) on a Software
Development Project

Submitted by Tufan TA~

Approval of the Graduate School of Natural and Applied Sciences, <;ankaya
University

Pro~
Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

tvz'f{' -/~Prof. Dr. Mehmet R. TOLUN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Z--A~ ,1\ ~\-qkProf. Dr. . a Ai<.TA~
Co-Supervisor

ftJrr.7~
Prof. Dr. MehmetR. TOLUN

Supervisor

Examination Date 03.09.2009

Examining Committee Members

Prof. Dr. Mehmet R. TOLUN «;ankaya Univ.) ltti1' 7~
.~~Prof. Dr. Ziya AKTA~ (Ba~kent Univ.)

Asst. Prof. Dr. AbdUlKadir GOROR «;ankaya Univ.)

Instructor Dr. Ali RIza A~KUN «;ankaya Univ.) \. AA~~

iii

STATEME�T OF �O� PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

 Name, Last Name : Tufan TAŞ

 Signature :

 Date : 03/09/2009

iv

ABSTRACT

ADOPTING RUP (RATIONAL UNIFIED PROCESS)

ON A

SOFTWARE DEVELOPMENT PROJECT

TAŞ, Tufan

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Mehmet R. TOLUN

Co-Supervisor: Prof. Dr. Ziya AKTAŞ

September 2009, 218 pages

This thesis analyzes the process of applying Rational Unified Process (RUP)

successfully on a software development project step by step. Many software

development projects today have a tendency to fail on some level. Even though they

may not fail entirely, they might be completed with schedule delays, budget overrun

or with poor quality that do not meet the requirements of customers because of poor

management and lack of necessary documentation of the project. Applying RUP

avoids these major problems in a project by developing set of work products which

depict the essentials of the system from requirements to detailed design before the

system could be implemented. However, software development teams have an

overall attitude that RUP becomes less agile and too rigid as the size of projects get

smaller. The thesis will also try to prove that this opinion is not true by using tools

Rational Method Composer (RMC) and Rational Software Modeler (RSM) to

successfully complete the project.

v

ÖZ

RUP YÖNTEMĐNĐN

BĐR YAZILIM GELĐŞTĐRME PROJESĐ

ÜZERĐNDE UYGULANMASI

TAŞ, Tufan

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Prof. Dr. Mehmet R. TOLUN

Ortak Tez Yöneticisi: Prof. Dr. Ziya AKTAŞ

Eylül 2009, 218 sayfa

Bu tez Rational Unified Process (RUP) yönteminin bir yazılım geliştirme projesinde

başarıyla uygulanma sürecini adım adım incelemiştir. Günümüzde birçok yazılım

geliştirme projesi bazı düzeylerde başarısız olma eğilimindedir. Projeler tamamen

başarısız olmasa bile, projenin kötü yönetimi ve gerekli dökümantasyonun eksik

olması nedeniyle takvim gecikmeleriyle, bütçe aşımıyla ya da müşterilerin

gereksinimlerini karşılamayan düşük kalitede yazılım ürünleri görülmektedir. Bir

projede, sistemin uygulanmasından önce gereksinimlerden detaylı tasarımına kadar

esaslarını gösteren bir seri iş ürünü geliştirilerek RUP’nin uygulanması ile bu tür

sorunların oluşumu engellenir. Bununla birlikte, yazılım geliştirme gruplarının proje

boyutları küçüldükçe RUP’nin daha az çevik ve çok katı bir hal aldığına dair genel

bir kanı vardır. Bu çalışma, başarıyla bir projeyi tamamlamak için Rational Method

Composer (RMC) ve Rational Software Modeler (RSM) araçlarını kullanarak bu

görüşün de doğru olmadığını kanıtlamaya çalışmıştır.

vi

ACK�OWLEDGEME�TS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Mehmet R.

TOLUN and co-supervisor Prof. Dr. Ziya AKTAŞ for their guidance, advices,

criticism, encouragements, and insight throughout the research. Thanks are also

extended to Dr. Alan Brown, Mrs. Jale Akyel and Mr. Erkan Özkan, all IBM

members, for their encouragement and support they provided to co-supervisor Prof.

Dr. Ziya Aktaş during the supervision of the Thesis. The last, but not the least,

support of IBM Turkey by providing Rational Method Composer (RMC), Rational

Software Modeler (RSM) and Rational Rose software packages during the thesis is

also acknowledged.

vii

TABLE OF CO�TE�TS

STATEMENT OF NON PLAGIARISM .. iii

ABSTRACT .. iv

ÖZ…. ... v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

CHAPTERS:

1. INTRODUCTION ... 1

1.1 Background of the Problem .. 1

1.2 Statement of the Problem .. 3

1.3 Objective of the Study .. 3

1.4 Organization of the Study ... 4

2. UNIFIED MODELING LANGUAGE (UML) ... 5

2.1 Modeling Principles .. 5

2.2 What is UML? .. 6

2.3 UML 2.0 ... 7

2.4 UML Diagrams ... 8

2.4.1 Class Diagram ... 8

2.4.2 Object Diagram ... 10

2.4.3 Composite Structure Diagram .. 10

2.4.4 Deployment Diagram .. 11

2.4.5 Component Diagram ... 12

viii

2.4.6 Package Diagram .. 13

2.4.7 Activity Diagram .. 14

2.4.8 Use Case Diagram .. 15

2.4.9 State Machine Diagram .. 16

2.4.10 Interaction Overview Diagram ... 18

2.4.11 Sequence Diagram .. 19

2.4.12 Communication Diagram .. 20

2.4.13 Timing Diagram .. 21

2.5 The Concept View of a System .. 22

3. RATIONAL UNIFIED PROCESS (RUP) .. 24

3.1 Overview of the Rational Unified Process ... 24

3.2 RUP Lifecycle .. 27

3.2.1 Inception Phase ... 27

3.2.2 Elaboration Phase ... 28

3.2.3 Construction Phase ... 29

3.2.4 Transition Phase .. 31

3.3 RUP Disciplines.. 32

3.3.1 Business Modeling Discipline .. 32

3.3.2 Requirements Discipline ... 33

3.3.3 Analysis and Design Discipline .. 34

3.3.4 Implementation Discipline .. 34

3.3.5 Test Discipline .. 35

3.3.6 Deployment Discipline ... 35

3.3.7 Project Management Discipline .. 36

3.3.8 Configuration and Change Management Discipline 37

3.3.9 Environment Discipline .. 37

3.4 Iteration in Rational Unified Process .. 38

ix

4. IBM RATIONAL TOOLS .. 40

4.1 General .. 40

4.2 IBM Rational Method Composer (RMC) ... 41

4.2.1 Purpose and Capabilities ... 42

4.2.2 Key Terminology and Concepts ... 43

4.3 IBM Rational Software Modeler (RSM) .. 53

4.3.1 Features and Benefits .. 54

4.3.2 Capabilities ... 60

5. CASE STUDY ... 62

5.1 Existing Information System .. 62

5.2 Existing Problem .. 64

5.3 Solution to the Problem .. 65

6. APPLICATION ... 66

6.1 Selecting RUP ... 66

6.2 Project Initiation ... 66

6.3 RMC Preparation .. 67

6.4 RSM Preparation .. 78

7. INCEPTION PHASE... 85

7.1 Inception Iteration I1 .. 88

7.2 Lifecycle Objectives Milestone .. 112

8. ELABORATION PHASE ... 114

8.1 Elaboration Iteration E1 .. 114

8.2 Elaboration Iteration E2 .. 161

8.3 Lifecycle Architecture Milestone ... 172

9. CONSTRUCTION PHASE ... 174

9.1 Construction Iterations .. 175

9.2 Initial Operational Capability Milestone .. 181

x

10. TRANSITION PHASE .. 186

10.1 Transition Iterations .. 186

10.2 Product Release Milestone ... 190

11. SUMMARY AND CONCLUSIONS .. 192

11.1 Summary ... 192

11.2 Conclusions... 195

REFERENCES ... R1

APPENDICES:

A. RUP DISCIPLINE WORKFLOWS .. A1

B. INCEPTION PHASE WORK PRODUCTS .. A10

C. ELABORATION PHASE WORK PRODUCTS (C.I & C.II) A11

D. CONSTRUCTION PHASE WORK PRODUCTS (D.I & D.II & D.III) A14

E. TRANSITION PHASE WORK PRODUCTS (E.I & E.II) A17

F. IBM RATIONAL TOOL PLUG-INS .. A18

xi

LIST OF TABLES

TABLES

Table 7.1 Risks for Iteration I1 .. 90

Table 7.2 Project Roles .. 95

Table 7.3 Iteration I1 Overview ... 97

Table 7.4 Problem Statement ... 100

Table 7.5 Product Position Statement .. 100

Table 7.6 Middleware Layer .. 107

Table 7.7 Team Member Roles ... 108

Table 7.8 Iteration E1 Overview ... 111

Table 7.9 Inception Iteration I1 Work Products .. 113

Table 8.1 Roles .. 118

Table 8.2 Build Set .. 120

Table 8.3 Risks for Iteration E2 ... 122

Table 8.4 Iteration E1 Overview ... 124

Table 8.5 Flow of Events ... 131

Table 8.6 Test Case for Use Case Login ... 152

Table 8.7 Test Case Result of Login ... 154

Table 8.8 Test Case Login Execution Results ... 155

Table 8.9 Iteration E2 Overview ... 159

Table 8.10 Elaboration Iteration E1 Work Products ... 160

Table 8.11 Flow of Events for Insert User .. 162

Table 8.12 Test Case Result of Insert User ... 171

Table 8.13 Elaboration Iteration E2 Work Products ... 173

xii

Table 9.1 Construction Iteration C1 Work Products ... 183

Table 9.2 Construction Iteration C2 Work Products ... 184

Table 9.3 Construction Iteration C3 Work Products ... 185

Table 10.1 Transition Iteration T1 Work Products .. 191

Table 10.2 Transition Iteration T2 Work Products .. 191

Table 11.1 Volume of Work Products ... 197

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Class Diagram .. 9

Figure 2.2 Object Diagram .. 10

Figure 2.3 Composite Structure Diagram .. 11

Figure 2.4 Deployment Diagram ... 12

Figure 2.5 Component Diagram .. 13

Figure 2.6 Package Diagram .. 13

Figure 2.7 Activity Diagram .. 14

Figure 2.8 Use Case Diagram .. 16

Figure 2.9 State Machine Diagram .. 17

Figure 2.10 Interaction Overview Diagram ... 18

Figure 2.11 Sequence Diagram .. 20

Figure 2.12 Communication Diagram ... 21

Figure 2.13 Timing Diagram ... 22

Figure 3.1 Overall Architecture of RUP .. 26

Figure 3.2 The Iterative Development Process of RUP .. 39

Figure 4.1 RMC Main Window ... 43

Figure 4.2 Process Content Library ... 45

Figure 4.3 Out-of-the-box Delivery Processes .. 46

Figure 4.4 Capability Patterns ... 48

Figure 4.5 Separation of Method Content and Process ... 50

Figure 4.6 The Key Concepts of a Successful Method ... 50

Figure 4.7 Core Method Content Concepts ... 51

xiv

Figure 4.8 Project Specific Method Content ... 52

Figure 4.9 RSM Main Window ... 55

Figure 4.10 Freeform Diagram .. 56

Figure 4.11 Topic Diagram .. 57

Figure 4.12 Browse Diagram ... 59

Figure 5.1 Çankaya University Library Services .. 63

Figure 5.2 Organizational Structure .. 64

Figure 6.1 Creating Method Plug-in .. 68

Figure 6.2 Method Plug-in Wizard .. 69

Figure 6.3 Method Content .. 70

Figure 6.4 Creating Method Configuration ... 71

Figure 6.5 Creating New Method Configuration ... 72

Figure 6.6 RUP Discipline Workflows .. 73

Figure 6.7 Creating Capability Patterns ... 74

Figure 6.8 Defining Capability Patterns .. 75

Figure 6.9 Creating Delivery Process .. 76

Figure 6.10 Defining Delivery Process ... 77

Figure 6.11 RUP Phases for the Project .. 78

Figure 6.12 Creating Model Project .. 79

Figure 6.13 Model Project Wizard Step 1 ... 80

Figure 6.14 Model Project Wizard Step 2 ... 81

Figure 6.15 Model Project Wizard Step 3 ... 82

Figure 6.16 Initial Project Screen .. 83

Figure 6.17 Creating UML Elements .. 84

Figure 6.18 Explorer View of Creating UML Elements ... 84

Figure 7.1 Inception Phase .. 85

Figure 7.2 Open RMC Process Browser .. 86

Figure 7.3 RMC Process Browser ... 87

xv

Figure 7.4 Selected Work Product ... 88

Figure 7.5 Inception Phase Activity Diagram ... 89

Figure 7.6 Conceive New Project Tasks .. 89

Figure 7.7 Constraints .. 91

Figure 7.8 Project Phase Plan .. 91

Figure 7.9 Problems and Recommendations ... 92

Figure 7.10 Prepare Project Environments Sub-Activities .. 92

Figure 7.11 Prepare Environment for Project Task ... 92

Figure 7.12 Overview of the Development Process .. 93

Figure 7.13 Create Project Configuration Management Environments Task 93

Figure 7.14 Project Repository .. 94

Figure 7.15 Prepare Environment for an Iteration Task .. 94

Figure 7.16 Define Project Plans Sub-Activity ... 94

Figure 7.17 Plan the Project Tasks .. 95

Figure 7.18 Project Phase Plan .. 96

Figure 7.19 Monitor and Control Project Tasks .. 96

Figure 7.20 Gantt Chart for Inception Phase ... 98

Figure 7.21 Responsibilities for Iteration I1 .. 99

Figure 7.22 Status of Team Members.. 99

Figure 7.23 Manage the Scope of the System Tasks ... 100

Figure 7.24 Use Case List .. 101

Figure 7.25 Product Functions ... 102

Figure 7.26 Define the System Tasks .. 102

Figure 7.27 Definitions for Iteration I1 ... 103

Figure 7.28 Actors of the System .. 104

Figure 7.29 Use Case Diagram .. 104

Figure 7.30 Usability Requirements .. 105

Figure 7.31 Perform Architectural Synthesis Task .. 105

xvi

Figure 7.32 Deployment Model ... 106

Figure 7.33 Define Evaluation Mission Tasks .. 107

Figure 7.34 Test Strategies .. 108

Figure 7.35 Manage Iteration Tasks .. 108

Figure 7.36 Work Order Reports for Iteration I1 .. 109

Figure 7.37 Objectives Reached for Iteration I1 ... 110

Figure 7.38 Plan for Next Iteration Tasks ... 111

Figure 8.1 Elaboration Phase ... 114

Figure 8.2 Elaboration Phase Activity Diagram .. 115

Figure 8.3 Prepare Environment for an Iteration Task .. 115

Figure 8.4 Change Request Form .. 116

Figure 8.5 Revise and Complete Project Plans Sub-Activities 117

Figure 8.6 Plan the Project Tasks .. 117

Figure 8.7 Budget .. 119

Figure 8.8 Plan the Integration Task.. 119

Figure 8.9 Ongoing Management and Support Sub-Activities 120

Figure 8.10 Manage Iteration Tasks .. 120

Figure 8.11 Work Order Reports for Iteration E1 ... 121

Figure 8.12 Objectives Reached for Iteration E2 .. 123

Figure 8.13 Monitor and Control Project Tasks .. 123

Figure 8.14 Responsibilities for Iteration E2 ... 124

Figure 8.15 Technical Progress ... 125

Figure 8.16 Manage Changing Requirements Tasks ... 126

Figure 8.17 Use Case Diagram .. 127

Figure 8.18 Manage Change Requests Tasks .. 127

Figure 8.19 Change Request Sections ... 128

Figure 8.20 Support Environment During an Iteration Task 129

Figure 8.21 Project Management Discipline ... 130

xvii

Figure 8.22 Refine the System Definition Task .. 130

Figure 8.23 Librarian and Server Modules for E1 ... 132

Figure 8.24 Interfaces .. 132

Figure 8.25 Define a Candidate Architecture Tasks .. 133

Figure 8.26 Logical View of the System ... 133

Figure 8.27 Analysis Classes for Iteration E1 ... 134

Figure 8.28 Use Case Diagram for Login .. 135

Figure 8.29 Communication Diagram for Login ... 135

Figure 8.30 Sequence Diagram for Login ... 136

Figure 8.31 Refine the Architecture Tasks .. 137

Figure 8.32 Presentation Layer Design Classes for Iteration E1 138

Figure 8.33 Design Class View for Iteration E1 .. 139

Figure 8.34 System Access – Overview (Level 1) .. 140

Figure 8.35 Implementation Model Package ... 140

Figure 8.36 Develop Components Sub-Activities ... 141

Figure 8.37 Analyze Behavior Tasks ... 141

Figure 8.38 Object Diagram for Use Case Login .. 142

Figure 8.39 Navigation Map for Iteration E1 .. 142

Figure 8.40 User Interface Prototype for Iteration E1 ... 143

Figure 8.41 Design Components Tasks ... 144

Figure 8.42 Design the Database Tasks ... 145

Figure 8.43 Database Tables for Iteration E1 .. 145

Figure 8.44 Implement Components Tasks ... 146

Figure 8.45 Build for Iteration E1 ... 146

Figure 8.46 Integrate and Test Sub-Activities ... 147

Figure 8.47 Verify Test Approach Task .. 147

Figure 8.48 Integrate and Validate Build Sub-Activities .. 148

Figure 8.49 Integrate each Subsystem Tasks ... 148

xviii

Figure 8.50 Unit Test for Iteration E1 ... 149

Figure 8.51 Unit Test Result of checkSessionTest .. 150

Figure 8.52 Integrate the System Task .. 150

Figure 8.53 Validate Build Stability Task ... 151

Figure 8.54 Test and Evaluate Sub-Activities ... 151

Figure 8.55 Test and Evaluate Tasks ... 152

Figure 8.56 Defect Report ... 156

Figure 8.57 Requirements-based Test Coverage for Iteration E1 157

Figure 8.58 Achieve Acceptable Mission Task ... 157

Figure 8.59 Improve Test Assets Task .. 158

Figure 8.60 Plan for Next Iteration Tasks ... 158

Figure 8.61 Analysis Classes for Iteration E2 ... 163

Figure 8.62 Analysis Classes for Overall System ... 164

Figure 8.63 Sequence Diagram for Insert User ... 165

Figure 8.64 Communication Diagram for Insert User ... 166

Figure 8.65 Design Classes for Iteration E2 .. 167

Figure 8.66 Design Classes for Overall System .. 168

Figure 8.67 Navigation Map for Iteration E2 .. 168

Figure 8.68 User Interface Prototype for Iteration E2 ... 169

Figure 8.69 Database Tables for Iteration E2 .. 169

Figure 9.1 Construction Phase ... 174

Figure 9.2 Construction Phase Activity Diagram .. 175

Figure 9.3 Elaboration and Construction Phase Activity Diagrams 176

Figure 9.4 Design Class of CourseData ... 178

Figure 9.5 CourseData Class Implementation ... 179

Figure 9.6 CourseData Method Implementation ... 180

Figure 10.1 Transition Phase ... 186

Figure 10.2 Transition Phase Activity Diagram .. 187

xix

Figure 10.3 Construction and Transition Phase Activity Diagrams 188

1

CHAPTER 1

I�TRODUCTIO�

1.1 Background of the Problem

An important part of a software development project is documentation.

Documentation is a process of making a record of information related to the

corresponding process being documented. Documentation involves recording

information such as functional and technical requirements, standards, design and

implementation procedures, testing process and results, operation procedures,

support arrangements related to the software and the data used by the software.

Documentation is not just a process of recording the information; it also includes the

process of making the information available in such a form that the targeted users of

the documentation can benefit from it. It is important to remember that

documentation is an ongoing process until the software becomes completely

available and being used.

Over many years of software development effort, project teams have understood that

the most beneficial way to obtain maximum success is about well documentation of

the project. We know that each phase in a software development life cycle should

have its generic document. Probably the most common problems encountered on a

software development project are related to how much and what type of

documentation should exist during the development of the required system.

2

Most programmers tend to forget about the documentation when they need to start

with a new software development project. Unless the software managers or

customers insist to have the documentation, the documentation will not exist at all.

On the other hand we also know that forcing software engineers to produce

documents, many times they produce related documents after they finish the coding

and make the system available. This kind of attitude collide the structure of a

reasonable software development. Especially for programmers, creation in coding and

implementation is much more exciting than documenting their systems. As a result, we

obtain documentations with low qualities which cause really serious problems during

development and maintenance of the system.

On the other hand, documentation standard is important to be enforced in all

software projects because its purpose is to communicate only necessary and critical

information, not to communicate all information. However, most organizations do

not employ any documentation standard. Thus programmers who produce the

documentation do not follow any formal guidelines and this causes many different

formats in the code to be produced.

Also, comprehension of an existing software system is the most expensive task during

the software maintenance process because it includes reading documents, scanning its

source codes and understanding the change to be made. Maintenance is one of the areas

that software engineers spend their time. However this task becomes most costly and

laborious activity because of the lack of needed documentations. Due to the lack of

information about the existing system, engineers waste their time to understand the

system.

Nowadays, most of the large and medium sized projects are managed and developed

successfully by the help of a software engineering process called Rational Unified

Process (RUP) that is the widely used methodology on software development. The

Rational Unified Process provides a disciplined approach to assigning tasks and

responsibilities within a development organization so it ensures the production of

high quality software that meets the needs of its end-users, within a predictable

schedule and budget. The Rational Unified Process is supported by tools, which

automate large parts of the process. They are used to create and maintain the various

artifacts of the software engineering process such as visual modeling, programming,

3

testing and many other documentation that are necessary for the project. By using

RUP almost all possible problems mentioned in this section are solved for the large

sized projects. However, according to a number of software engineers, RUP cannot

be agile and it is too rigid for small projects. Because of this, RUP is not considered

as an option within teams which causes many management and development

problems. So many small projects still have the mentioned problems because of the

lack of their necessary documentation work. In these situations some of these

projects cannot be concluded or made successfully available. It is dramatic to note

here that this misconception is harmful and RUP may be adopted for agile systems

as well.

1.2 Statement of the Problem

This research is intended to deal with the problems as discussed in Section 1.1 that

are related to software development projects. Project team members cannot find a

case study that represents how RUP can be applied on a small project successfully.

A sample project that resolves these issues would prove that small projects can also

be managed using RUP. So our main goal is to adopt RUP methodology on a small

software development project. Case problem to be developed may be defined as the

automation of existing manual reservation system of Çankaya University Library.

1.3 Objective of the Study

The objectives of the study may be listed as follows:

• To define a case problem as a small sized project;

• To define project lifecycle on determined small sized software development

project by applying RUP methodology;

• To represent all activities step by step performed based on RUP approach;

• To represent all necessary work products and perform a proper

documentation;

• To produce working software on time that fits the captured requirements

during the development of software project.

4

1.4 Organization of the Study

This thesis is organized into eleven chapters namely, Chapter 1: Introduction,

Chapter 2: Unified Modeling Language (UML), Chapter 3: Rational Unified

Process (RUP), Chapter 4: IBM Rational Tools, Chapter 5: Case Study, Chapter

6: Application, Chapter 7: Inception Phase, Chapter 8: Elaboration Phase,

Chapter 9: Construction Phase, Chapter 10: Transition Phase, Chapter 11:

Summary and Conclusions.

Chapter 1 is the introduction of the study and consists of the background of the

problem, a statement of the problem that is being focused in this study and objective

of the study. Chapter 2 offers literature review concerning with Unified Modeling

Language emphasizing the importance of its version 2.0. All UML 2.0 diagrams are

reviewed with small samples. Chapter 3 offers literature review concerning with

Rational Unified Process. RUP lifecycles and disciplines are reviewed emphasizing

the importance of iterations. Chapter 4 offers fundamental information about IBM

tools that are used in software development project by focusing on their capabilities

and features. Also their key concepts are elaborated. Chapter 5 defines a case study

problem with its existing problem and solution to that problem which will be used

for the software development project. Chapter 6 introduces the preparation of the

environment and related IBM tools briefly for software development. Chapter 7

describes the adaptation of inception phase to the software development project step

by step. Chapter 8 describes the adaptation of elaboration phase to the software

development project step by step. Chapter 9 describes the adaptation of construction

phase to the software development project step by step. Chapter 10 describes the

adaptation of transition phase to the software development project step by step.

Chapter 11 provides the summary of the thesis and includes the conclusions.

5

CHAPTER 2

U�IFIED MODELI�G LA�GUAGE (UML)

2.1 Modeling Principles

Professionals such as business analysts, engineers, scientists and others who build

complex structures or systems are first creating models of what they build [e.g.

Cernosek and Naiburg, 2004]. Some of these models are physical and some of them

are less tangible. As stated by Booch, Rumbaugh and Jacobson [2005], the use of

modeling has a rich history in all the engineering disciplines. That experience

suggests four basic principles of modeling:

• The choice of what models to create has a profound influence on how a

problem is attacked and how a solution is shaped.

• Every model may be expressed at different levels of precision.

• The best models are connected to reality.

• No single model is sufficient. Every nontrivial system is best approached

through a small set of nearly independent models.

While developing software, developers need a better understanding of what they are

building, and modeling is an effective approach to do that. By modeling software,

developers can understand the system better and gain some advantages on

development. As stated by Cernosek and Naiburg [2004] some of the benefits and

the importance of modeling are listed as follows:

6

• Create and communicate software designs before committing additional

resources.

• Trace the design back to the requirements, helping to ensure that they are

building the right system.

• Practice iterative development, in which models and other higher levels of

abstraction facilitate quick and frequent changes.

2.2 What is UML?

UML stands for Unified Modeling Language which is a family of graphical tools. It

is important to understand that UML is a standard language that is used to write

software blueprints [Pilone and Pitman, 2005]. Since UML is defined as a language,

it has both syntax and semantics as all languages have. When you model a potential

problem or a solution in UML, there are some rules regarding how the elements can

be put together, how the interaction between them can be created and what it means

when they are organized in a certain way.

When UML is applied to software, it attempts to bridge the gap between the original

idea for a piece of software and its implementation. The UML may be used for

visualization, specification, architecture design, construction, simulation, testing and

documentation of the artifacts of software intensive systems. UML was originally

developed with the idea of promoting communication and productivity among the

developers of object-oriented systems. The most powerful characteristic of UML is

that it makes inroads into every type of system and software development.

The most important concept about UML is that it is not a methodology, so it does

not require any formal work products. As a relevant methodology one may refer to

RUP (Rational Unified Process) as to be described later in the thesis. UML provides

several types of diagrams that, when used within a given methodology, increase the

ease of understanding of the problem domain and its proposed solution of an

application under development [Bell, 2003]. Each model comprises one or more

diagrams with supporting documentation and descriptions. The number and size of

these diagrams and documentation depends on complexity of systems that is to be

developed.

7

2.3 UML 2.0

The first version of UML, UML 1.0, allowed people to communicate designs

unambiguously, convey the essence of a design, and even capture and map

functional requirements to their software solutions. Versions of UML 1.x were

designed as a unified language for humans. When it became important for models to

be shared between machines specifically between Computer Aided Systems

Engineering (Case) tools or Computer Aided Software Engineering (CASE) tools,

UML 1.x was again found wanting. Underlying notation rules and meta-model of

UML 1.x were not formally defined enough to enable machine-to-machine sharing

of models [Hamilton and Miles, 2006]. This necessity emerged the revision of

present versions. Each revision of UML tried to recover the problems identified

within the previous versions. Today UML 2.0 is the most cleanest and compact

version.

UML 2.0 is familiar to people who were already using UML 1.x. Many of the

original diagrams and associated notations have been retained and extended in UML

2.0. With Version 2.0, UML has evolved to support the new challenges that software

and system modelers face today. As stated by Selic [2005], the new developments in

UML 2.0 are listed as follows:

• A significantly increased degree of precision in the definition of the language

to support the higher levels of automation required for model driven

development (MDD).

• An improved language organization which is characterized by a modularity

that not only makes the language more approachable to new users, but also

facilitates inter working between tools.

• Significant improvements in the ability to model large-scale software

systems that new hierarchical capabilities were added to the language to

support software modeling at arbitrary levels of complexity.

• Improved support for domain-specific specialization to allow simpler and

more precise refinements of the base language.

• Overall consolidation, rationalization, and clarifications of various modeling

concepts which is resulted in a simplified and more consistent language.

8

2.4 UML Diagrams

UML allows people to develop several different types of visual diagrams which

represent various aspects of a system. UML categorizes its diagrams into two as

structural diagrams and behavioral diagrams:

• Structural Diagrams: Used to show the building blocks of your system.

Class diagram, object diagram, composite structure diagram, deployment

diagram, component diagram and package diagram are structural diagrams.

• Behavioral Diagrams: Used to show how your system responds to requests

or otherwise evolves over time. Activity diagram, use case diagram and state

machine diagram are behavioral diagrams.

In addition to Structural Diagrams and Behavioral Diagrams there is a third group of

diagrams that are called Interaction Diagrams.

• Interaction Diagrams: Actually a type of behavioral diagram which are

used to depict the exchange of messages within collaboration en route to

accomplishing its goal. Interaction overview diagram, sequence diagram,

communication diagram and timing diagram are interaction diagrams.

This group of diagrams are explained briefly and exemplified by an airline

reservation system [e.g. IBM Rational University, 2004] in the next sections.

2.4.1 Class Diagram

Class diagrams are the most common diagrams used in modeling object-oriented

systems. A class diagram shows the existence of classes and their relationships

between them in the logical design of a system [Fowler, 2003]. It gives you a static

picture of the pieces in the system and of the relationships between them. Class

diagrams also show the properties and operations of a class and the constraints that

apply to the way objects are connected. Developers use class diagrams to actually

develop the classes. Analysts use class diagrams to show the details of the system

[Boggs and Boggs, 2002].

Class diagrams are the backbone of the UML [Fowler, 2003], so you will use them

all the time. The trouble with class diagrams is that they are so rich; they can be

9

overwhelming to use. The biggest danger with class diagrams is that you can focus

exclusively on structure and ignore behavior. As an example, Figure 2.1 depicts a

class diagram related to flight reservation.

Figure 2.1 Class Diagram

Classes are shown as rectangle boxes with three compartments. First part contains

the name of the class; second part contains attributes which are details of class and

third part contains operations which are features of classes that specify how to

invoke a particular behavior.

Relationships between classes are listed as follows:

• Dependency: Weakest relationship between classes. One class uses, or has

knowledge of, another class. Read as “…uses a…”.

• Association: Stronger than dependencies. Specifying objects of one thing are

connected to objects of another. Read as “...has a...”.

• Aggregation: Stronger version of association. A special form of association

that models a whole-part relationship between the whole and its parts.

• Composition: Strong relationship between classes. Composition is a form of

aggregation, with strong ownership and coincident lifetime as part of the

whole.

• Generalization: The target of the relationship is a general, or less specific,

version of the source class or interface. Read as “...is a...”.

10

2.4.2 Object Diagram

Object Diagrams provide a snapshot of system execution at a point in time using

objects and links [IBM Rational University, 2004]. It models the instances of things

contained in class diagrams. An object diagram is a variant of a class diagram and

basically uses the same notation with the difference being that the object diagram

shows a set of instances and not actual classes. Object diagrams can be used to show

an example configuration of objects. As an example Figure 2.2 depicts an object

diagram related to flight reservation.

Object diagrams use notation which is almost identical to class diagrams, but they

present the objects and their relationships at a particular point in time. Objects are

shown with a rectangle. Within object diagrams, the title is underlined to show that

it is an instance of a class. Links between objects on an object diagram show that the

two objects can communicate with each other.

Figure 2.2 Object Diagram

2.4.3 Composite Structure Diagram

One of the most significant new features in UML 2 is the ability to hierarchically

decompose a class into an internal structure [Fowler, 2003]. This allows you to take

11

a complex object and break it down into parts that provide to understand and

manage complex systems much easier.

Composite structure diagrams are used to depict the internal structure of a classifier

such as a class, component, or use case, including the interaction points of the

classifier to other parts of the system [Ambler, 2005b]. They are also used to explore

how a collection of cooperating instances achieves a specific task or set of tasks and

describe a design or architectural pattern or strategy. As an example Figure 2.3

depicts a composite structure diagram related to flight reservation.

Internal structures show the parts contained by a class and the relationships between

the parts. Ports show how a class is used on your system with ports. A port may

appear either on a contained part representing a port on that part, or on the boundary

of the class diagram, representing a port on the represented classifier itself.

Collaborations show design patterns in software that is being developed and, more

generally, objects cooperating to achieve a goal.

Figure 2.3 Composite Structure Diagram

2.4.4 Deployment Diagram

Deployment diagrams are used to model the physical aspects of an object-oriented

system. Deployment diagrams show a system’s physical layout, revealing which

pieces of software run on what pieces of hardware [Ambler, 2005b]. Software

elements are typically manifested using artifacts and are mapped to the hardware or

software environment that will host them which are called nodes.

12

The Deployment diagram is used by the project manager, users, architect, and

deployment staff to understand the physical layout of the system and where the

various subsystems will reside [Boggs and Boggs, 2002]. As an example Figure 2.4

depicts a deployment diagram related to flight reservation.

Figure 2.4 Deployment Diagram

Deployment diagrams use nodes to represent hardware in your system. Physical

software files are modeled with an artifact. An artifact is deployed to a node, which

means that the artifact is installed on the node. An artifact manifests the component

if an artifact is the physical actualization of a component. An artifact can manifest

not just components but any packageable element, such as packages and classes.

2.4.5 Component Diagram

Component diagrams are used to show a physical view of the model, as well as the

software components in the system and the relationships between them [Ambler,

2005b]. Component diagrams are used when the system is divided into components

and to show their interrelationships through interfaces or the breakdown of

components into a lower-level structure. Development can be changed quickly when

a component-based architecture is used. Because of switching components readily,

or modified, without compromising overall system integrity.

Component diagrams are used by whoever is responsible for compiling the system.

The diagrams will tell this individual in what order the components need to be

compiled [Boggs and Boggs, 2002]. The diagrams will also show what run time

components will be created as a result of the compilation. As an example Figure 2.5

depicts a component diagram related to flight reservation.

13

Figure 2.5 Component Diagram

A component is drawn as a rectangle with the <<component>> stereotype and an

optional tabbed rectangle icon. A provided interface of a component is an interface

that the component realizes. Other components and classes interact with a

component through its provided interfaces. A provided interface of a component

describes the services provided by the component. A required interface of a

component is an interface that the component needs to function. A required interface

declares the services that a component will need.

2.4.6 Package Diagram

A package is used to take any construct in the UML and group its elements together

into higher level units [Fowler, 2003]. Most common use of a package diagram is to

group classes. Nearly all UML elements can be grouped into packages, including

packages themselves. Each package has a name that scopes each element in the

package. Package diagrams describe the hierarchical organization of model

elements. Package diagrams extremely useful on larger scale systems to get a picture

of the dependencies between major elements of a system. As an example Figure 2.6

depicts a package diagram related to flight reservation.

Figure 2.6 Package Diagram

14

Packages organize UML elements, such as classes, and the contents of a package

can be drawn inside the package or outside the package. If the contents of a package

are drawn outside of it then they are attached by a line to the package. Elements in a

package may have public or private visibility. Elements with public visibility are

accessible outside the package. Elements with private visibility are available only to

other elements inside the package.

2.4.7 Activity Diagram

Activity diagrams are specialization of state machine diagrams which focus on the

execution and flow of the behavior of a system. Activity diagrams apply much more

than just software modeling [Pilone and Pitman, 2005] that they play roles in many

other areas. They may be used in business modeling to show the business workflows

or may be used in requirements gathering to illustrate the flow of events through a

use case. These diagrams define where the workflow starts and ends, what activities

occur during the workflow, and in what order the activities occur. Activity diagrams

capture activities that are made up of smaller actions. Activity diagrams are used to

model the dynamic aspects of a system. They also support and encourage parallel

behavior that is a critical point to understand the system behavior. Figure 2.7 depicts

an activity diagram for part of an airline reservation system.

Figure 2.7 Activity Diagram

15

In activity diagrams there are initial and final nodes. Actions are located between

these nodes. Actions are active steps in the completion of a process. Decisions are

used when you want to execute a different sequence of actions depending on a

condition. Decisions are drawn as diamond-shaped nodes with one incoming edge

and multiple outgoing edges.

2.4.8 Use Case Diagram

A use case diagram describes a system’s functional requirements in terms of use

cases and the persons or things invoking the functionality referred as actors. The

most important role of a use case diagram is to communicate the system’s behavior

to the end user [IBM Rational University, 2004] so the model must be easy to

understand. Sometimes business use case diagrams could be used before modeling

use case diagrams. Business Use Case diagrams are used to represent the

functionality provided by an organization as a whole [Boggs and Boggs, 2002].

Business use case diagrams are not concerned with what is automated, but use case

diagrams focus on just the automated processes.

A use case diagram is a valuable tool to help understand the functional requirements

of a system. Use case diagrams are important for visualizing, specifying, and

documenting the behavior of an element. A big danger of use cases is that people

make them too complicated and get stuck. As an example Figure 2.8 depicts a use

case diagram to describe the flight reservation for a customer.

Major concepts in use case diagrams are defined as follows:

• Actor: Anyone or anything that interacts with the system being built that is

external to the system. It represents a coherent set of roles that one plays

when interacting with use cases. External entities, actors that are depicted in

the figure can also be depicted using simple stick figures.

• Use case: Describes a sequence of events, performed by the system that

yields an observable result of value to a particular actor. It illustrates how an

actor might use the system. An ellipse shape is used.

16

• System Boundary: Includes all use cases and excludes actors. It is useful

when determining the scope and assignment of responsibilities when

designing a system, subsystem or component.

Figure 2.8 Use Case Diagram

A common problem with use cases is that by focusing and the interaction between a

user and the system, you can neglect situations in which a change to a business

process may be the best way to deal with the problem [Fowler, 2003]. It causes the

terms appear as system use case which is an interaction with the software and

business use case which discusses how a business responds to an event.

2.4.9 State Machine Diagram

State machine diagrams show the behavior of a system. State machine diagrams

provide a way to model the various states in which an object can exist. State

machine diagrams can be used to model the behavior of a class, subsystem, or entire

application [Pilone and Pitman, 2005]. It is typically used to model the discrete

stages of an object’s lifetime.

17

State machine diagrams are not created for every class since they are used only for

very complex classes. If an object of the class can exist in several states, and

behaves very differently in each of the states, you may want to create a state

machine diagram for it to understand the behavior of the class in more details.

State machine diagrams are good at describing the behavior of an object across

several use cases. State machine diagrams are not very good at describing behavior

that involves a number of objects collaborating [Fowler, 2003]. As an example

Figure 2.9 depicts a state machine diagram as part of an airline reservation system.

Figure 2.9 State Machine Diagram

A state diagram consists of states, drawn as rounded cornered rectangles, and

transitions, drawn as arrows connecting the states. A transition represents a change

of state, or how to get from one state to the next. A state is active when entered

through a transition, and it becomes inactive when exited through a transition. State

diagrams usually have an initial state and a final state, marking the start and end

points of the state machine.

18

2.4.10 Interaction Overview Diagram

The purpose of the interaction overview diagram is to visualize the different options

that exist for a given interaction [IBM Rational University, 2004]. Interaction

overview diagrams represent interactions using a simplification of the activity

diagram notation. Interaction overview diagrams can help you visualize the overall

flow of control through a diagram; however, they do not show detailed message

information.

Interaction overview diagrams are used to overview the flow of control within a

business process, overview the detailed logic of a software process and connect

several diagrams together. As an example Figure 2.10 depicts an interaction

overview diagram related to flight reservation.

Figure 2.10 Interaction Overview Diagram

19

Individual interactions are placed on an interaction overview diagram as though they

were actions as on an activity diagram (see Section 2.4.7). Similar to an activity

diagram, the interaction overview begins with an initial node and ends with a final

node. Control flows between these two nodes and passes through each of the

interactions in between.

2.4.11 Sequence Diagram

A sequence diagram captures the behavior of a single scenario [Fowler, 2003]. The

diagram shows a number of example objects and the messages that are passed

between these objects within a use case. It shows the flow of functionality through a

use case. Sequence diagrams are used to look at the behavior of several objects

within a single use case.

A sequence diagram is an interaction diagram that emphasizes the time ordering of

messages. Objects are arranged in a chronological timing order. It shows the objects

participating in the interaction by their “lifelines” and the messages that they send to

each other. The most important characteristic of a sequence diagram is using time

ordering between objects.

Sequence diagrams are particularly important to designers because they clarify the

roles of objects in a flow and provide basic information for determining class

responsibilities and interfaces. As an example Figure 2.11 depicts a sequence

diagram related to flight reservation.

A sequence diagram is made up of a collection of participants. Time runs down the

page on a sequence diagram in keeping with the participant lifeline. Time on a

sequence diagram is all about ordering, not duration. When a message is passed to a

participant the receiving participant is said to be active. Also participants do not

necessarily live for the entire duration of the interaction of a sequence diagram.

Participants can be created and destroyed according to the messages that are being

passed. UML 2.0 provides sequence fragments that are used for managing complex

interactions.

20

Figure 2.11 Sequence Diagram

2.4.12 Communication Diagram

Communication diagrams show exactly the same information as the sequence

diagrams [Boggs and Boggs, 2002] with no time ordering. A communication

diagram is an interaction diagram that emphasizes the structural organization of the

objects that send and receive messages. Communication diagrams show the same

information as the sequence diagrams however, they are used in different areas as

quality assurance engineers and system architects look at these diagrams to see the

distribution of processing between objects.

The main question with communication diagrams is when to use them rather than

sequence diagrams. A rational approach [Fowler, 2003] says that sequence diagrams

are better when you want to emphasize the sequence of calls and that

21

communication diagrams are better when you want to emphasize the links. As an

example Figure 2.12 depicts a communication diagram related to flight reservation.

Communication diagrams are much simpler than sequence diagrams that are made

up of participants and links. Messages are passed along the link between participants

without any time ordering between them.

Figure 2.12 Communication Diagram

2.4.13 Timing Diagram

Timing diagram is a new addition to UML. Timing diagrams are a special

representation of interactions that focus on the timing of events over the life of

objects [Pilone and Pitman, 2005]. Timing diagrams are most often used with

real-time or embedded systems. A timing diagram is useful for showing the

interaction of objects and the timing constraints between state changes for those

objects along a precise timing axis. As an example Figure 2.13 depicts a timing

diagram related to flight reservation.

The names of the main participants involved in an interaction are written vertically

on the left hand side of a timing diagram. During an interaction, a participant can

exist in any number of states. A participant is said to be in a particular state when it

22

receives a message. States are written horizontally on a timing diagram and next to

the participant that they are associated with.

Figure 2.13 Timing Diagram

2.5 The Concept View of a System

The concept view of a system helps modelers to convey the correct information

depending on goals. In modeling 4+1 views of a system is used. The 4+1 notation

represents four distinct views of a system and one overview of how everything fits

together. These four views are design, deployment, implementation and process

view. The four distinct views of a system are brought together with a use case view.

The design view describes the representation of the problem domain and how the

software will be built to address it. The design view typically does not address how

the system will be implemented or executed [Pilone and Pitman, 2005].

The deployment view captures how a system is configured, installed, and executed.

The deployment view captures how the physical layout of the hardware

communicates to execute the system, and can be used to show failover, redundancy,

and network topology [Pilone and Pitman, 2005].

The implementation view emphasizes the components, files, and resources used by

a system. Typically the implementation view focuses on the configuration

management of a system [Pilone and Pitman, 2005].

23

The process view of a system is intended to capture concurrency, performance, and

scalability information [Pilone and Pitman, 2005].

The use case view of a system contains the use cases that describe the behavior of

the system as seen by its end users, analysts, and testers. This view does not really

specify the organization of a software system. Rather, it exists to specify the forces

that shape the architecture of the system that is to be developed [Booch, Rumbaugh

and Jacobson, 2005].

24

CHAPTER 3

RATIO�AL U�IFIED PROCESS (RUP)

3.1 Overview of the Rational Unified Process

The Rational Unified Process (RUP) is a software engineering process and a process

framework for successful iterative-incremental software development [Shuja and

Krebs, 2008]. It provides a disciplined approach to assigning tasks and

responsibilities within a development organization. The main goal of this disciplined

approach is to ensure the production of high quality software that meets the needs of

its end users, within a predictable schedule and budget.

The Rational Unified Process captures many of the best practices in modern

software development in a form that is suitable for a wide range of projects and

organizations [Kruchten, 2003]. It describes how to effectively deploy best practices

which are as follows:

• Adapt the process;

• Balance competing stakeholder priorities;

• Collaborate across teams;

• Demonstrate value iteratively;

• Elevate the level of abstraction;

• Focus continually on quality.

The Rational Unified Process recognizes that the traditional waterfall approach can

be inefficient. Because the traditional waterfall approach brings key team members

25

idle for extended time periods [Ambler, 2005b]. Many feel that the waterfall

approach also introduces a lot of risk because it performs testing and integration

activities at the end of the project lifecycle. Problems found at this stage are very

expensive to fix that causes team to turn back to development.

By contrast, RUP represents an iterative approach that is superior to the traditional

waterfall approach for a number of reasons as follows [Kruchten, 2003]:

• RUP lets you take into account changing requirements which despite the best

efforts of all project managers are still a reality on just about every project;

• Instead of performing integration one at a time at the end, elements are

integrated progressively;

• Risks are usually discovered or addressed during integration. With the

iterative approach, you can mitigate risks earlier which reduce the cost and

effort on development;

• Iterative development provides management with a means of making tactical

changes to the product. It allows you to release a product within the early

iterations with reduced functionality to counter a move by a competitor, or to

adopt another vendor for a given technology;

• Iteration facilitates reuse. It is easier to identify common parts as they are

partially designed or implemented than to recognize them during planning;

• Errors can be corrected over several iterations which causes a more robust

architecture. Performance bottlenecks are discovered at a time when they can

still be addressed;

• Developers can learn along the way, and their various abilities and

specialties are more fully employed during the entire lifecycle. Testers start

testing, technical personnel begin their work early in the product, not at the

end of the project lifecycle;

• The development process itself can be improved and refined along the way.

There is an assessment at the end of each iteration that examines the status of

the project and also analyzes alteration in the organization and in the process

to make it perform better in the next iteration.

The Rational Unified Process enhances team productivity, by providing every team

member with easy access to a knowledge base with guidelines, templates and tool

26

mentors for all critical development activities. The Rational Unified Process

activities create and maintain models. Rather than focusing on the production of

large amount of paper documents, the Rational Unified Process emphasizes the

development and maintenance of models. The most important advantage of Rational

Unified Process is being a configurable process. We know that no single process is

suitable for all software development. The Rational Unified Process fits small

development teams as well as large development organizations with its highly

flexible configurable processes.

Figure 3.1 illustrates the overall architecture of RUP [e.g. IBM, 2007b]. This figure

which is also called hump chart contains information about phases, iterations,

milestones, disciplines, their interrelationships, and the lifecycle concept of RUP.

Figure 3.1 Overall Architecture of RUP

The horizontal axis represents time and shows the lifecycle aspects of the process. It

represents the dynamic aspect of the process as it is enacted, and it is expressed in

terms of cycles, phases, iterations, and milestones. The vertical axis represents core

process disciplines, which group activities logically by nature. It represents the static

aspect of the process as it is expressed in terms of process components, activities,

disciplines, artifacts, and roles.

27

3.2 RUP Lifecycle

The RUP has four sequential phases which are Inception, Elaboration, Construction,

and Transition. Each of them plays a central role in managing iterative and

incremental development projects using RUP. Each phase concludes with a major

milestone, as shown in Figure 3.1. Number of iterations within a phase depends on

the size of projects.

3.2.1 Inception Phase

Inception phase defines the scope of the project and develops the business case for

the system [Hunt, 2003]. It also establishes the feasibility of the system that is to be

built. The overriding goal of the inception phase is to achieve concurrence among all

stakeholders on the lifecycle objectives for the project. All high level requirements

models are developed within this phase. The inception phase plays the most critical

role in the project. Inception phase objectives can be listed as follows:

• Establish the project’s scope and boundary conditions;

• Estimate the potential risks which is a critical issue for the project;

• Estimate the overall cost and schedule for the project that is not detailed;

• Prepare the support environment for the project;

• Identify the critical use cases of the system;

• Exhibit one candidate architecture;

• Produce detailed estimates for the Elaboration phase.

The inception phase is concluded by the lifecycle objective milestone. At this point,

the lifecycle objectives of the project are examined and decided either to proceed

with the project or to cancel it. The evaluation criteria for the inception phase are

[Gornik, 2001]:

• Stakeholder concurrence on scope definition, cost and schedule estimates;

• Requirements understanding as evidenced by the fidelity of the primary use

cases;

• Credibility of the cost and schedule estimates, priorities, risks, and

development process;

28

• Depth and breadth of any architectural prototype that was developed;

• Actual expenditures versus planned expenditures.

The state of several essential work products at the inception phase milestone are

given below [IBM Redbooks, 2007]:

• Vision • Business Case

• Risk List • Software Development Plan

• Iteration Plan • Development Process

• Development Infrastructure • Glossary

• Use-Case Model

3.2.2 Elaboration Phase

Elaboration phase captures the functional requirements of the system [Hunt, 2003].

It should also specify any non-functional requirements to ensure that they are taken

into account. The main goal of the elaboration phase is to baseline the architecture of

the system to provide a stable basis for the design and implementation effort in the

Construction phase. This is the initial phase that the architecture is proved by

creating an architectural prototype. Elaboration phase objectives can be listed as

follows:

• Stabilize the architecture and requirements;

• Establish a supportive environment;

• Mitigate risks to determine project cost and schedule;

• Address all architecturally significant risks;

• Establish a baseline architecture that will be used for the entire project;

• Produce an evolutionary prototype;

• Optionally throw away prototypes can be produced to mitigate specific risks

such as design tradeoffs component reuse, and product feasibility;

• Demonstrate that the baseline architecture will support the requirements of

the system at a reasonable cost and in a reasonable time.

The elaboration phase is concluded by the lifecycle architecture milestone. At this

point, the detailed system objectives and scope, the choice of architecture, and the

29

resolution of the major risks are examined. The main evaluation criteria for the

elaboration phase involve the answers to following questions [Gornik, 2001]:

• Is the vision of the product stable?

• Is the architecture stable?

• Does the executable demonstration show that the major risk elements have

been addressed and credibly resolved?

• Is the plan for the construction phase sufficiently detailed and accurate? Is it

backed up with a credible basis of estimates?

• Do all stakeholders agree that the current vision can be achieved if the

current plan is executed to develop the complete system, in the context of the

current architecture?

• Is the actual resource expenditure versus planned expenditure acceptable?

The state of several essential work products at the elaboration phase milestone are

given below [IBM Redbooks, 2007]:

• Prototypes • Risk List

• Development Process • Development Infrastructure

• Development Infrastructure • Design Model

• Implementation Model • Vision

• Software Development Plan • Iteration Plan

• Supplementary Specifications • Use-Case Model

• Test Suite • Test Plan

• Test Cases • Test Scripts

3.2.3 Construction Phase

Construction phase concentrates on completing the analysis of the system,

performing the majority of the design and the implementation of the system [Hunt,

2003]. All remaining requirements are identified and the system is developed based

on the baselines created in elaboration phase. Construction phase objectives can be

listed as follows:

30

• Minimize development costs through optimization of resource utilization by

avoiding unnecessary rework and by achieving a degree of parallelism in the

work of development teams;

• Achieve adequate quality as rapidly as is practical;

• Complete the analysis, design, development, and testing of all required

functionality;

• Decide if the software and the users are ready for the deployment of the

solution;

• Achieve useful executable versions as rapidly as practical;

• Iteratively and incrementally develop a complete product that is ready to

transition to its user community.

The construction phase is concluded by the initial operational capability milestone.

At this point, we decide if the software, the sites, and the users are ready to go

operational, without exposing the project to high risks. The evaluation criteria for

the construction phase involve answering the following questions [Gornik, 2001]:

• Is this product release stable and mature enough to be deployed in the user

community?

• Are all stakeholders ready for the transition into the user community?

• Are the actual resource expenditures versus planned expenditures still

acceptable?

The state of several essential work products at the construction phase milestone are

given below [IBM Redbooks, 2007]:

• Deployment Plan • Implementation Model

• Test Suit • User Support Material

• Risk List • Iteration Plan

• Design Model • Development Process

• Development Infrastructure • Data Model

• Test Plan • Test Cases

• Test Scripts

31

3.2.4 Transition Phase

The Transition phase moves the system into the user’s environment [Hunt, 2003].

The overall goal of the Transition phase is to ensure that software is available for its

users. In some systems testing should be performed within this phase. Transition

phase objectives can be listed as follows:

• Validate the new system against user expectations;

• Train the end users and maintainers;

• Roll out the product to marketing, distribution, and sales teams;

• Fine tune the product by engaging in bug fixing and creating performance

and usability enhancements;

• Conclude the assessment of the deployment baseline against the complete

vision and the acceptance criteria for the product;

• Achieve user self supportability;

• Achieve stakeholder concurrence that deployment baselines are complete

and are consistent with the evaluation criteria of the vision.

The transition phase is concluded by the product release milestone. At this point, the

objectives are examined to ensure if they were met, and if we should start another

development cycle. The evaluation criteria for the transition phase involve the

answers to these questions [Gornik, 2001]:

• Is the user satisfied about the system?

• Are the actual resources expenditures versus planned expenditures still

acceptable?

The state of several essential work products completed at the transition phase

milestone are given below [IBM Redbooks, 2007]:

• The Product Build • User Support Material

• Implementation Elements • Deployment Unit

32

3.3 RUP Disciplines

In RUP, a discipline is defined as a categorization of activities based on similarity of

concerns and cooperation of work effort. A discipline is a collection of activities that

are related to a major area of concern within the overall project. There are total nine

disciplines defined in RUP, six of which are core disciplines and three core

supporting disciplines.

The core disciplines in RUP are divided into six:

• Business Modeling

• Requirements

• Analysis and Design

• Implementation

• Test

• Deployment

Three core supporting disciplines:

• Project Management

• Configuration and Change Management

• Environment

3.3.1 Business Modeling Discipline

One of the major problems with most business engineering efforts is that the

software engineering and the business engineering community do not communicate

properly with each other [Gornik, 2001]. This problem causes that the output from

business engineering is not being used properly as input to the software development

effort, and vice versa.

First of all the aim of business modeling is to establish a better understanding and

communication channel between business engineering and software engineering.

This is required to come up with proper requirements for software systems to be

built for the business at hand. Understanding the business is an important aspect

which means software engineers must understand the structure and the dynamics of

the target organization, the current problems in the organization and possible

33

improvements. A common understanding of the target organization between

customers, end users and developers has to be developed. Business modeling

explains how to describe a vision of the organization in which the system will be

deployed and then how to use this vision as a basis to outline the process, roles and

responsibilities.

Activities of the business modeling discipline include [Ambler, 2005b]:

• Assess the current status of the organization;

• Describe the current business processes, roles, and responsibilities;

• Identify and evaluate potential strategies for reengineering the business

processes;

• Develop a domain model which reflects the subset of the business.

3.3.2 Requirements Discipline

The goal of the requirements discipline is to describe what the system should do and

allows the developers and the customers to agree on that description [Gornik,

2005b]. This discipline explains how to elicit stakeholder requirements and

transform them into a set of requirements work products that scope the system to be

built and provide detailed requirements for what the system must do. Capturing

requirements have a critical importance for the system runs effectively.

The requirements discipline attempts to express the systems requirements in terms of

use cases [Hunt, 2003]. The use cases function as a unifying thread throughout the

system’s development cycle. During requirements, analysis and design, and test

disciplines the same use case model is used.

Activities of the requirements discipline include [Ambler, 2005b]:

• Analyze the problem;

• Work closely with project stakeholders to understand their needs;

• Define and manage the scope of the system;

• Refine the system definition by describing business rules, the user interface,

and non-functional requirements via appropriate modeling techniques;

• Manage changing requirements as they are identified throughout a project.

34

3.3.3 Analysis and Design Discipline

The major goal of the analysis and design discipline is to translate the requirements

which are obtained in requirements discipline into a specification describing how to

implement the system [Kruchten, 2003]. The architecture and design of the software

system is created within this discipline. The goal of analysis and design discipline is

to show how the system will be realized. The aim is to build a system that performs

tasks and functions specified in the use case descriptions and fulfill all its

requirements.

Requirements have to be understood and transformed into a system design by

selecting the best implementation strategy. Early in the project a robust architecture

has to be established so that we can design a system that is easy to understand, build,

and evolve.

Activities of the analysis and design discipline include [Ambler, 2005b]:

• Define a candidate architecture for the system;

• Construct an architectural proof-of-concept to validate the candidate

architecture;

• Understand the requirements for the system;

• Analyze the behavior by designing the user interface, and database;

• Design of components, services, and modules.

3.3.4 Implementation Discipline

The implementation discipline is concerned with implementing the design produced

by the design discipline [Hunt, 2003]. The system is realized through

implementation of components. The Rational Unified Process describes how you

reuse existing components, or implement new components with well defined

responsibility, making the system easier to maintain, and increasing the possibilities

to reuse. Implementation discipline deals with any implementation issues that have

been left as too specific during the design discipline. It is important to remember that

developer is responsible for unit testing in implementation discipline.

35

Activities of the implementation discipline include [Ambler, 2005b]:

• Structure the implementation model;

• Understand and evolve the design model;

• Write program source code which is organized into layers;

• Implement components, services, and modules;

• Unit test the source code;

• Integrate the code into subsystems and a deployable build.

3.3.5 Test Discipline

The aim of the test discipline is to ensure that the system provides the required

functionality [Hunt, 2003]. Test discipline acts as a service provider to the other

disciplines. The Rational Unified Process proposes an iterative approach, which

means that you test throughout the project. This allows you to find defects as early

as possible, which radically reduces the cost of fixing the defect. Detecting and

recovering errors at the early stages of development has a critical importance and

one of the main ideas in RUP.

Test discipline has a difference than other disciplines which finds and exposes

weaknesses in the software product. Test discipline is performed to find what is

missing, incorrect, or inconsistent that not focuses on consistency and completeness

as other disciplines does.

Activities of the test discipline include [Ambler, 2005b]:

• Define and plan testing efforts;

• Develop test cases and test scripts;

• Organize test suites to run test cases in a specified order;

• Run tests and evaluate;

• Report defects.

3.3.6 Deployment Discipline

The major goal of the deployment discipline is to successfully produce product

releases, and deliver the software to its end users [Kruchten, 2003]. System

deployment is a critical aspect of the software development lifecycle because if the

36

software cannot get into the hands of the end users then it has no value even if it is

successfully developed. Deployment activities are mostly centered on the transition

phase, many of the activities need to be included in earlier phases to prepare for

deployment at the end of the construction phase. The effort on these activities

mostly depends on the size of the project.

Activities of the deployment discipline include [Ambler, 2005b]:

• Plan the deployment by developing deployment plan;

• Develop support and operations material;

• Create deployment packages;

• Manage acceptance testing efforts;

• Perform alpha/beta testing of the product;

• Deploy software to installation sites;

• Train end users.

3.3.7 Project Management Discipline

Software project management is managing risk and overcoming constraints to

deliver a product that meets the needs of the customers and the end users [Kruchten,

2003]. Project planning in the RUP occurs at two levels. There is a coarse-grained

phase plan which describes the entire project, and a series of fine-grained or iteration

plans which describe the iterations. Project management discipline does not attempt

to cover all aspects of project such as managing people and budgets. A difficulty on

project management is that it requires specific skills to deal with problems such as

risk management, planning and scheduling of the project, motivating and developing

the project staff and so on.

Activities of the project management discipline include [Ambler, Nalbone and

Vizdos, 2005]:

• Conceive a new project;

• Manage project staff;

• Enhance the relationship with external teams and resources;

• Risk management;

• Estimating, scheduling, and planning of the project;

37

• Manage an iteration and plan the remainder of iteration;

• Close out a phase or project.

3.3.8 Configuration and Change Management Discipline

The major goal of the configuration and change management discipline is to track

and maintain the integrity of evolving project assets [Kruchten, 2003]. Controlling

the numerous artifacts produced by the project staff is described within the

configuration and change management discipline [Gornik, 2001].

The configuration and change management discipline provides guidelines for

managing multiple variants of evolving software systems, tracking which versions

are used in given software builds, performing builds of individual programs or entire

releases according to user-defined version specifications, and enforcing site specific

development policies.

Activities of the configuration and change management discipline include [Ambler,

Nalbone and Vizdos, 2005]:

• Manage change requests;

• Plan configuration and change control;

• Set up the configuration management environment;

• Monitor and report configuration status;

• Change and deliver configuration items;

• Manage baselines and releases.

3.3.9 Environment Discipline

The purpose of the environment discipline is to provide the software development

organization with the software development environment that is needed to support

the development team [Gornik, 2001]. The software development organization is

supported with both processes and tools. The environment discipline focuses on the

activities necessary to configure the process for a project.

38

Activities of the environment discipline include [Ambler, Nalbone and Vizdos,

2005]:

• Prepare environment for the project by tailoring the process materials for an

individual project team;

• Identify and evaluate tools;

• Install and set up tools for the project team;

• Support the tools and process throughout the project.

3.4 Iteration in Rational Unified Process

As we mentioned in the previous sections Rational Unified Process (RUP) projects

are iterative. The RUP is an incremental process whereby the overall project is

broken down into phases and iterations [West, 2002]. Iterations address only a

portion of the entire system that is being developed. Each iteration has a fine-grained

plan that defines the steps with a specific goal. Iterative development allows projects

to proceed by small steps or increments to gradually build a more complete system

[Wessberg, 2005].

The iterative nature of the RUP is reflected in how we approach its disciplines.

During each iteration we will alternate back and forth between the activities of the

disciplines, performing each task to the extent needed at the time, to achieve the

goals of that iteration.

A flexible way to proceed is to go several times through the various development

disciplines, building a better understanding of the requirements, engineering a robust

architecture, ramping up the development organization, and eventually delivering a

series of implementations that are gradually more complete. Each iteration in the

RUP is a pass through the disciplines as shown in Figure 3.2 [e.g. Ambler, 2005a]

on the next page.

Therefore, from a development perspective the software lifecycle is a succession of

iterations, through which the software develops incrementally. With each iteration,

the solution is coming closer and closer to the final product.

39

Figure 3.2 The Iterative Development Process of RUP

40

CHAPTER 4

IBM RATIO�AL TOOLS

4.1 General

Over many years of development effort, RUP has evolved into a rich process

engineering platform called IBM Rational Method Composer (RMC). RMC is an

Eclipse-based tool which enables you to define, maintain, and deploy software

process related material by enabling teams to define, configure, tailor, and practice a

consistent process.

The RUP describes a set of models such as use-case models, analysis models, and

design models that represent well-defined perspectives on the problem and solution

domains of systems. The utility of this set of models has been proven in many

projects. For applying the modeling guidance found in the RUP, a modeling

platform called IBM Rational Software Modeler (RSM) is used that is built on the

Eclipse open source software framework. RSM is a robust collaborative platform for

visual modeling and design that specifies and communicates software project

information from several perspectives to various stakeholders.

As noted above RMC and RSM are IBM Rational Tools relevant to RUP.

Additionally, there is a platform called Eclipse that is used to develop such IBM

Tools. The Eclipse is a multi-language software development platform that is

designed for building Integrated Development Environments (IDEs) known as a

software application that provides comprehensive facilities to computer

41

programmers for software development. Eclipse can be used to create diverse end-

to-end computing solutions for multiple execution environments [Erickson and

McIntyre, 2001]. The platform consists of open source software components that

tool vendors use to construct solutions that plug in to integrated software

workbenches. The Eclipse is simply a framework and a set of services for building

applications from plug-in components. This would be a toolkit for designing

toolkits. Not just a set of APIs, the framework will consist of real code designed to

do real work [Aniszczyk and Gallardo, 2007].

Thus, RMC and RSM have become the most powerful tools used during the project

development. RMC provides a clear path to project team with high efficiency and

low risks. On the other hand, RSM provides the communication between the

stakeholders and the project team. Their capabilities and advantages are summarized

briefly in the next sections.

4.2 IBM Rational Method Composer (RMC)

IBM Rational Method Composer represents a major evolution of IBM’s process

solutions, which includes and extends the IBM Rational Unified Process (RUP).

RMC is a commercial product that is IBM’s next generation process management

tool platform. Target users who are sanctioned for RMC are process engineers,

project leaders, and project and program managers who are responsible for

maintaining and implementing processes for development organizations or

individual projects. A conceptual framework for authoring, configuring, viewing,

and publishing processes are provided to perform each process in flexible manners.

RMC is a complete business driven development solution. Running business driven

development projects requires flexible development processes. Such processes not

only have to provide concrete support and guidance for modern development

practices, such as agile, iterative, architecture centric, risk and quality driven

software development [Kroll and Royce, 2005], but also have to be flexible enough

to support rapid tailoring and adoption of the process itself as RMC provides. These

processes also need to evolve across projects, and the projects being executed must

themselves be able to evolve as business needs change mid way to completion.

42

4.2.1 Purpose and Capabilities

Development leaders and teams face some problems when acquiring and managing

their methods and processes. The aim of Rational Method Composer is to provide

solutions to these problems as follows:

• Development teams need easy and centralized access to the information

repository of the project;

• It is difficult to integrate development processes that convey in their own

proprietary format;

• Teams lack an up-to-date knowledge base for educating themselves on

methods and best practices;

• Support for right sizing the processes of teams is required;

• Compliance to standardized practices has to be ensured;

• Effective execution of processes in project has to be provided.

Rational Method Composer has two main purposes which are detailed as follows

[Haumer, 2005]:

• RMC is a content management system that provides a common management

structure and applicable for all process content. All content managed in RMC

can be published to HTML and deployed to Web servers for distributed

usage in any phase of the management;

• RMC provides capability of selecting, tailoring, and rapidly assembling

processes in concrete development projects for process engineers and project

managers. RMC provides instructions of predefined processes of RUP for

typical project situations that can be adapted to individual needs as size and

complexity of the project to be developed. It also provides process building

blocks called capability patterns that represent best development practices

for specific disciplines, technologies, or development styles. Capability

patterns form a toolkit for quickly assembling processes based on project

specific needs. Finally, the documented processes created with RMC can be

published and deployed as Web Sites.

RMC improves team efficiency, responsiveness, productivity and increases project

quality [IBM, June 2006]. One of the most important properties of RMC is

43

providing easy to use process tools and innovative technology that reduce the time to

customize best practices. It also offers new tools that help automate capturing best

practices that other projects across the company can use. These reusable process

components are powerful building blocks that help teams to complete projects on

time and within budget.

4.2.2 Key Terminology and Concepts

In order to effectively work with Rational Method Composer, a few concepts are

needed to be understood that are used to organize the content. First of all when the

program is started, a window greets the user as shown in Figure 4.1.

Figure 4.1 RMC Main Window

There are two major views within the main window of RMC which are the Library

View and the Configuration View as shown in the left side of the Figure 4.1. The

Library View shows all method plug-ins and configurations. In RMC, all of these

method plug-ins are classified in six plug-in packages. The plug-in package names

are explained as follows:

• core: Used for plug-in core to the RUP software development process. Most

RUP configurations should contain the core plug-ins;

44

• extend: Extensions to the general RUP software development process that

do not fall into the other packages;

• modernize: Enterprise modernization;

• SOA: Service-oriented architecture;

• systems: Systems engineering;

• tech: Technology and tool-specific extensions.

The Configuration View shows the content elements in a library filtered by a

configuration. A configuration is a subset of the method content. Once a

configuration is selected in the Configuration Selection Box, the configuration view

is refreshed with the content from the selected configuration. Configuration

Selection Box is a simple drop down menu whose initial value is set to “Classic

RUP (for large projects)” as default that is depicted in Figure 4.1. There are eight

major categories in Configuration View as follows:

• Disciplines: A collection of Tasks that are related to a major area of concern

within the overall IT environment. Separating these tasks into separate

disciplines makes the tasks easier to comprehend.

• Domains: A logical, hierarchy of related Work Products grouped together

based on timing, resources, or relationship. While a Domain categorizes

many work products, a work product belongs to only one Domain. Domains

can be further divided into sub-domains.

• Work Product Kinds: Used for grouping Work Products. A work product

can have many work product kinds.

• Role Sets: Used to group Roles with certain commonalities together. Each of

these roles work with similar techniques and have overlapping skills, but

may be responsible for performing certain tasks and creating certain work

products.

• Tools: A specific type of guidance that shows how to use a specific tool to

accomplish a piece of work.

• Processes: Describes how a particular piece of work should be done. A

process can reuse method elements and combines them into a structure and

sequence for carrying out work.

45

• Custom Categories: Highly customizable and can contain any type of

element. Custom Categories allow user to categorize content according to

any scheme that he/she wants and can then be used to compose publishable

Views, providing a means to organize the method content prior to

publishing.

• Guidance: General term for additional information related to roles, tasks,

and work products.

Rational Method Composer has some key concepts such as Process Content Library,

Out-of-the-box Delivery Processes, and Capability Patterns that are to be understood

carefully to work with it. High level understanding of these concepts is important for

team members to overcome complex development challenges. In the following

sections these concepts will be summarized:

A. Process Content Library [IBM, 2007a] which is based on the best practices

adopted in thousands of RUP projects worldwide. RMC represents process

elements in terms of roles, tasks, work products, and guidance as shown in

Figure 4.2 that is obtained by clicking core item downward in Figure 4.1.

Figure 4.2 Process Content Library

46

B. Out-of-the-box Delivery Processes [IBM, June 2006] provides a quick

starting point for planning and initiating a project for project manager. This

can be achieved by a delivery process by providing an initial project template

that identifies the milestones that have to be in the project, work products

that have to be delivered by each milestone, and resources that are needed for

each phase. RMC includes out-of-the-box delivery processes for COTS,

J2EE, Systems Engineering, SOA, etc whose configuration can be selected

using Configuration Selection Box as shown in Figure 4.3.

Figure 4.3 Out-of-the-box Delivery Processes

47

These out of the box delivery processes can be used as a starting point for

further customizations. The complete list of processes that is available as

follows:

• Asset Based Development

• Classic RUP (for large projects)

• Classic RUP for SOMA

• Classic RUP for SOMA – for PDF or Word publishing

• COTS Package Delivery

• RUP for ASQ

• RUP for Medium Projects

• RUP for RAD

• RUP for RSA

• RUP for RSD

• RUP for RSM

• RUP for Small Projects

• RUP for Small Projects – for PDF or Word publishing

• RUP for System z

• System Engineering

• User-Experienced Modeling

In the above list, Service-Oriented Architecture (SOA) is a business-centric

IT architectural approach that provides methods for systems development

and integration where systems group functionality around business processes

and package them as interoperable services. Nowadays, IBM is interested in

closely with the Service-Oriented Modeling Architecture (SOMA) that is the

SOA related methodology. SOMA refers to the more general domain of

service modeling necessary to design and create SOA. SOMA includes an

analysis and design method that extends traditional object-oriented and

component-based analysis and design methods to include concerns relevant

to and supporting SOA. SOMA is an end-to-end SOA Method for the

identification, specification, realization and implementation of services,

components, flows.

48

C. Capability Patterns [IBM, June 2006] allow project managers to rapidly

add or remove reusable chunks of processes addressing common problems.

We know that no two projects are alike, so project managers need to rapidly

modify the process to address the specific project needs. Reusable process

fragments captured as Capability Patterns as shown in Figure 4.4.

Figure 4.4 Capability Patterns

The Rational Method Composer addresses two major areas of interest for the

process manager. One of them is content reuse and the other is ability to customize

the process to the needs of different project types by the help of capability patterns

[IBM, 2007a]. It makes easy for organizations to capture their own best practices

and make them seamlessly extend to the Rational Method Composer content

libraries.

49

RMC focuses on addressing three critical areas for project managers such as the

followings:

• rapid project initiation

• flexibility

• reality based management

The out-of-the-box delivery processes give project managers a quick starting point

for planning and initiating a project by using templates related to the project.

Through plug-ins and process components, the content around various technologies

and domains can be added or removed by project managers. A delivery process is

assembled from capability processes that capture recurring process patterns, so it can

be instantiated as needed them rather than all at once. Rational Method Composer

focuses on productivity, guidance and personalization. Helpful templates, artifacts

and tools are included to facilitate increased productivity. Rational Method

Composer helps to guide users providing proven concepts and historical best

practices in its libraries. The process interface of Rational Method Composer can be

personalized to focus on only what matters to the project based on the experience

level, role and interest [IBM, June 2006].

RMC helps users to manage their projects with its best practices. These best

practices can be achieved by using the Configuration View as we mentioned at the

beginning of this section. The Guidance category of the Configuration View

provides best practices to users. There are eleven sub-categories for the Guidance

that has important supportive effect on projects. Some of these sub-categories could

be summarized as follows:

• Guidelines, for techniques and concepts to learn about new concepts and

how to effectively leverage key technologies and techniques;

• Examples, about what has worked from other projects;

• Checklists, that provides users to rapidly see how the work can be improved.

The most fundamental principle in RMC is the separation of reusable core method

content from processes as shown in Figure 4.5. Separation of method content and

processes increases process tailoring ability because method content is reusable

when defining processes.

50

Figure 4.5 Separation of Method Content and Process

A successful development method provides both the descriptions of work and the

order of work as shown in Figure 4.6 [IBM, 2007a]. A method is end-to-end and

usable on a project. An example of a method is RUP. Method content provides

descriptions of work that can be reused as important building blocks. These are the

descriptions of tasks, roles, work products, guidelines. Processes provide the order

of doing work. They do so by providing the order for the method content.

Figure 4.6 The Key Concepts of a Successful Method

51

Many development methods are described in books, articles, training material,

standards and regulations, and other forms of documentation. Rational Method

Composer takes such content and structures it in one specific way. Rational Method

Composer expresses method content using concepts such as tasks, roles, work

products, and guidance [Haumer, 2005]. The relationship between these concepts is

shown in Figure 4.7.

Figure 4.7 Core Method Content Concepts

Roles: Defining development skills and responsibilities for work products.

Tasks: Provide guidance on the work that needs to be done to transform inputs into

outputs through a series of steps performed by one or more roles.

Work products: Define the items needed as input or created as output of one or

more tasks that are typically the responsibility of a single role.

A development process defines sequences of the work that is being performed by

roles and the work products that are being produced and evolved over time [Kroll

and MacIsaac, 2006]. Processes can be expressed as workflows or breakdown

structures. Rational Method Composer supports processes based on different

development approaches and can be used to define different lifecycle models such as

waterfall, incremental or iterative lifecycles [Haumer, 2005]. Rational Method

Composer can be used to define processes that use a minimal set of method content

or no method content to define processes for agile self organizing teams. Figure 4.8

shows such a part of method content. As we mentioned before, Guidance elements

let users to add any additional information that makes method content of the project

more complete and allows to factor details into separate descriptions.

52

Figure 4.8 Project Specific Method Content

Rational Method Composer expresses process using concepts such as delivery

process, capability patterns and activities which are detailed as follows:

• Delivery Processes: Defines a complete integrated approach to specific type

of project.

• Capability Patterns: Special types of process used to define a stereotypical

way of performing work related to a particular subject that may be used as a

building block for assembling delivery processes or bigger patterns.

• Activities: Supports nesting and logical grouping of related breakdown

elements.

Guidelines or Guidance can be attached to both method and process elements in

order to provide additional guidance about those elements. Guidance is

supplementary free form documentation such as whitepapers, concept descriptions,

guidelines, templates, examples, and so on. In some projects they have critical

importance on team members that are not familiar to these concepts.

53

4.3 IBM Rational Software Modeler (RSM)

Rational Software’s first visual modeling and development tool was Rational Rose

which was an important step in model driven development. However as noted by

[Cernosek, 2004] a problem was identified that developers did not like to leave their

own Integrated Development Environment (IDE) that they wanted visual modeling

to be integrated inside their own IDE. As a result IBM Rational eXtended

Development Environment (XDE) software is created that provides an extended

development environment for the next generation of programming technologies.

IBM Rational XDE offers software designers and developers a rich set of model-

driven development and runtime analysis capabilities for building quality software

applications. IBM Rational XDE was characterized as the next generation of IBM

Rational Rose. However, as more and more capabilities were added, Rational XDE

began to reach the practical limits of this style of tool integration. For the next

generation model driven development products, it was only natural to build

additional model driven development functions on top of Eclipse to form a more

complete model driven development tool. IBM Rational Software Architect (RSA)

and IBM Rational Software Modeler (RSM) are the result of these changes.

Rational Software Architect is not the next version of Rational Rose or Rational

XDE, but it rather represents a fusion of select capabilities and development

paradigms supported by Rational Rose and Rational XDE. Rational Software

Architect takes features from these two tools, adds additional Model-Driven

Development (MDD) capabilities, and introduces new structural review and control

capabilities.

On the other hand, IBM Rational Software Modeler (RSM) is a visual modeling and

design tool based on Unified Modeling Language (UML) 2.0 developed by IBM’s

Rational Software Division. Rational Software Modeler includes capabilities

focused on visual modeling and Model-Driven Development (MDD) with the UML

for creating resilient, thought out applications and especially web services. Using

Rational Software Modeler system architects, system analysts, designers and other

team members can easily specify software development project information from

several perspectives, and communicate with each other and various stakeholders.

54

RSM automates repeatable activities and help improve the productivity and overall

maturity of the development process. This is the reason that system architects,

system analysts, designers use the capabilities of the Rational Software Modeler to

help visually model and design their systems.

RSM plays a critical role in a software development project. As stated by Brown

[2008], successfully performed Model Driven Architecture (MDA) approach

provides an integrated business architecture and governance structure that enables

project team to respond to business requirements quickly and appropriately.

Recently, Telelogic Rhapsody became a part of IBM Rational Software portfolio in

2008 that is an industry-leading UML based Model Driven Development (MDD)

environment for technical, real-time or embedded systems and software engineering.

4.3.1 Features and Benefits

Rational Software Modeler provides UML 2.0 modeling support for analysis and

design using use case, class, object, sequence, activity, composite structure, state

machine, communication, component, and deployment diagrams. These diagrams

allow capturing and communicating all aspects of an application architecture using a

standard notation that is recognized by many different stakeholders.

When the program is started, a window greets the user as shown in Figure 4.9. There

are four major views within the main window of RSM which are the Project

Explorer View, the Properties View, the Outline View, and the Inheritance Explorer

View as shown in the Figure 4.9.

The Project Explorer View provides a hierarchical view of the resources in the

Workbench.

The Properties View displays property names and values for a selected item such as

a resource.

The Outline View displays an outline of a structured file that is currently open, and

lists structural elements.

The Inheritance Explorer View provides to view an inheritance hierarchy that is

created from the selected classifier such as a class, interface, or use case.

55

Figure 4.9 RSM Main Window

Rational Software Modeler also uses freeform diagrams, topic diagrams and browse

diagrams [IBM, December 2006]. This simplifies the usage of UML notation for

design, documentation, communication and understanding design elements that are

captured in UML models.

RSM provides the option to create a modeling file “Blank Model” that is not based

upon a model template. It has no special profiles applied, and no default content

other than a single freeform diagram named as “Main”. Blank modeling files can be

used as a starting point for any type of model such as use case model, analysis

model, design model, deployment model by choosing how to name it, what content

to define within it, and what profiles to apply to it. Whenever a new UML package

is created in a model, a freeform diagram is automatically created. A Sample

freeform diagram is depicted in Figure 4.10 for the airline reservation system that is

modeled in Chapter 2. Also the Palette includes the packages of model elements that

will be used to design any type of model in freeform diagrams.

56

Figure 4.10 Freeform Diagram

In normal diagrams, elements are manually placed that the designer wishes to depict.

The contents of a Topic Diagram are determined by a query that is run against

existing model contents. To create a Topic Diagram, a topical model element or set

of elements will be selected, and then defined what other elements the designer want

to show in the diagram, based on the types of relationships that they have to the

topical elements [Smith, 2008]. The content of the topical diagram changes

according to the changes in the content of models. The definition of a named Topic

Diagram can be persisted so that the same query can be rerun at any time. Topic

Diagrams can be created simply using the project explorer window by selecting the

model content and then follow the steps of context menu as; Visualize > Add to

New Diagram in Model File > Topic Diagram. As a result the Topic Diagram is

generated automatically. As an example Figure 4.11 depicts a Topic Diagram for the

airline reservation system that is sampled in Chapter 2.

57

58

Browse Diagrams are similar to Topic Diagrams in which it begins by selecting

topical elements and then defining filters that govern which kinds of related

elements will be depicted. However, Browse Diagrams do not have a persisted

definition and they are not specifically for model organization. Their purpose is to

facilitate discovery and understanding of model content by enabling graphically

navigate through a model without having to manually compose diagrams [Smith,

2008]. Browse Diagrams can be created simply using the project explorer window

by selecting the model content and then follow the steps of context menu as;

Visualize > Explore in Browse Diagram. Finally the Browse Diagram is generated

automatically depicting the selected element as the focal point with related elements

presented in a radial layout around the focal point. As an example Figure 4.12 depicts

a Browse Diagram for the airline reservation system that is sampled in Chapter 2.

Topic Diagram and Browse Diagram are both created by selecting existing model

elements that are created during the development of the projects. RSM puts some

restrictions while using these two diagrams. The content of these diagrams changes

automatically according to the changes in the content of models. However this

action is not bidirectional. It is not allowed to change the contents directly using the

Topic Diagram or Browse Diagram. The view of both diagrams is static. So model

elements and relationships between these model elements cannot be modified using

these two diagrams even their locations in the screen.

Visual modeling with content assistance guides with action bars, connection

handles, context sensitive content suggestions, task specific modeling cheat sheets,

extensive online help, samples and tutorials [IBM, December 2006] for creating well

formed models.

An increased predictability and repeatability of software development can be

achieved by pattern and transform authoring. The authoring and apply capabilities

support teams in developing artifacts for reuse and developing artifacts with reuse.

RSM includes tools for developing custom transformations that might target any

type of implementation outputs and transformations between UML models at

different levels of abstraction.

59

60

Customizing and extending the modeling environment is supported by open

Application Program Interface (API). Plug-ins can be developed by the

organizations. Also the analysis and design tools for environment and process can be

configured depending on the organization.

UML designs create reports and documentation that can be in the forms of HTML,

Portable Document Format (PDF) and XML [IBM, December 2006]. These reports

can be reviewed by team members or other stakeholders.

Team support with multi model support, compare merges and Software

Configuration Management (SCM) integrations provides all the capabilities required

for distributed teams to design and develop applications.

4.3.2 Capabilities

The way of using UML modeling by RSM can also range from very formal to very

informal depending on the organization. Models can be chosen like formal

architectural drawings that are to be strictly followed during construction or models

can be in the form of sketches that suggest the broad outlines of a design. Rational

Software Modeler can provide support at either end of these process and modeling

spectrums [Smith, 2006].

Rational Software Modeler provides a software development platform which can be

used to take the Model Development Architecture (MDA) approach for developing

software applications [Cernosek, 2004]. Among the major functionality supported

by Rational Software Modeler is the capability to share and communicate the

modeled complexity within team, or across teams through model publishing.

Rational Software Modeler includes perspectives, which enables switching the view

to show the toolbars that are needed [Mittal, 2005]. The perspectives and features

which most commonly used are:

• Modeling Perspective: This view is used to create and manage UML assets.

Rational Software Modeler allows building any UML diagram: use case

diagrams, class diagrams, object diagrams, sequence diagrams, collaboration

diagrams, and so on.

61

• Requirements Perspective: This view is for integration with IBM Rational

RequisitePro which is a requirement and use case management tool using

familiar document based methods. IBM Rational RequisitePro improves the

communication of project goals, reduce project risks and increase the quality

of applications before deployment. The result is better communication and

management of requirements with the increased likelihood of completing

projects on time, within budget and above expectations.

• Model Publishing: This view allows publishing model so that other team

members can view it.

Raw UML models can be stored or the source code is generated from the models.

There is no automated synchronization features between the UML models and the

code. It can be easily generated one from the other. This feature is great for

developers because an initial version of the code right from the UML diagrams can

be viewed by the developer, which saves them up front development time.

Developers are more motivated to spend additional time during the design phase

when they know that they will get something tangible from it.

62

CHAPTER 5

CASE STUDY

5.1 Existing Information System

Çankaya University Library was founded at 1997 and began its structuring and

functioning. It uses open shelves for the library layout. It is decided to use LC

(Library of Congress)’s implementation for the classification technique and AACR

II (Anglo American Cataloging Rules) is applied. “Connexion” catalog system is

used to generate library collection, make cataloging and classification much faster

and reliable within international standards. At 1998 it became a member of OCLC

which is an international information sharing and distribution center. Book sharing

is performing by the system of Inter Library Loan that cooperates with the

surrounding university libraries in Ankara.

Çankaya University Library is using BLISS-PC software package developed and

marketed by Bilkent University for library automation. Library has a website that is

rearranged to be comprehensive and the library catalog is available to scan over the

Internet. Çankaya University Library is a member of various online databases which

can be accessed through library website. There is a network system (Library

Intranet) within the library that has a single point of entry and exit. There is 16

Internet connection points available within the Çankaya University Library that can

be upgraded to 50. Also an announcement list is in use for the purpose of

announcing any information about the library to all university members.

63

Dynamic and successful services are provided by Çankaya University Library. Staff

has special skills as in the following:

• Knowledgeable about education and training;

• Experienced in information sources selection, arrangement and use;

• Expert in library automation and information technologies.

Çankaya University Library services are depicted in Figure 5.1 as a business use

case diagram.

Figure 5.1 Çankaya University Library Services

64

The organizational structure of Çankaya University Library is shown in Figure 5.2:

Figure 5.2 Organizational Structure

Some service policies of the Çankaya University Library should be listed as in the

following [cankaya.edu.tr]:

• Contribute to training and education programs on users effectively;

• Help academic readers for their professional work;

• Respond to needs about courses and evaluate the free time of students and

provide them to interest the constructive, argumentative and aesthetic values;

• To provide any additional information resources, organizing and providing

services, to all of our users, in the manner of development of thinking skills

and knowledge to meet the requirements;

• Following innovations and migrate them to life;

• Providing positive attitude to readers.

5.2 Existing Problem

Çankaya University Library has a reservation system currently used for sharing

books, academic magazines and documents across lecturers and students. At present,

reservation operations are performed manually by the staff who is responsible for

the reserve operations. Lecturers loan some materials related to their courses to be

placed on the reserve shelf of the library for students to utilize them during the term.

Limited number of copies of such materials causes some problems. Firstly because

of the limitation on the number of copies, each student who reserves the material has

to return it in a couple of hours in a day. This situation decreases the efficiency and

65

causes other students to wait for the return of the material. Some other problems that

are caused by the borrowers include the loss of material. This is the worst situation,

because sometimes there is only one copy of the loaned material. Another problem

is that the materials sometimes do not return on time.

5.3 Solution to the Problem

The manual reservation system is going to be automated by developing and

implementing an online e-Reserve system. The objective of this MS Thesis study is

to develop such a system. Existing manual system will be still working for sometime

and e-Reserve system is planned to assist the existing system until it is fully

operational and reliable. By the help of e-Reserve system current problems on

reservation are expected to be solved or at least minimized. Newly proposed system

will have three groups of users which are students, instructors and librarian. Student

is the main user of the system. Student can download books and documents about

courses that are uploaded by either course instructor or by the librarian (by scanning

reserve books). An instructor can thus upload books or documents about his/her

course(s) so that students can download them for studying or for making researches.

Librarian can be considered as the administrator of this project. Librarian can do all

the operations on all courses and will be able to view the usage reports and system

performance.

Thus, major problems of the existing system such as the limitation on number of

loaned copies and delay of return will be avoided and there is no need for one

borrower to wait for another for reserving the material, thus there will be simply

almost no waiting time.

66

CHAPTER 6

APPLICATIO�

6.1 Selecting RUP

In order to apply a new approach to develop the e-Reserve System for Çankaya

University Library, possible solutions were examined first. We looked for a

development methodology that could be easily customized and integrated with

existing processes. The goal was to create a robust and practical system based on

object-oriented development process tailored as an answer to the needs of Çankaya

University Library. RUP appeared to be the perfect answer for such a development

project.

6.2 Project Initiation

The need behind the e-Reserve project is the necessity of an online reservation

system for Çankaya University Library. The problem of the existing system and a

suitable solution to the problem is mentioned in the previous Chapter. Our main goal

is to produce an adequate executable system by adopting Rational Unified Process

(RUP) methodology.

In general, Rational Unified Process is applied on software development projects in

two major configurations either for small projects or large projects. When the project

is defined we have to decide if it is a small or a large project by estimating the

duration of the project, the amount of code to be produced, the amount of money to

67

be spent on the project or the complexity involved. By evaluating these

characteristics for our case study, in Chapter 5, it is found that the most suitable

configuration will be the “Rational Unified Process for small projects”.

The most popular debate between Rational Unified Process and small projects is that

many programmers feel that the Rational Unified Process is too rigid and too

structured for small development projects. One can, however, configure Rational

Unified Process to fit his/her project’s needs. Recent changes to Rational Unified

Process have made it easier to navigate and configure. We are expecting in this

application to show that Rational Unified Process not only applies to large projects

but it can also be used effectively on small projects. It shares many of its principles

with other methodologies, including agile methods which are advocated for small

projects.

6.3 RMC Preparation

After we decided to begin the project using RUP, we first started to use IBM

Rational Method Composer (RMC) which is discussed in Chapter 4 to create a

method plug-in for e-Reserve System. The method plug-in is a well-formed

definition of a component of a method in terms of its method elements and their

relationships. In RMC, a method plug-in is a container for method packages which

includes method elements. Method elements composed of following elements:

• Content Element: Consists of role, task, work product, and guidance;

• Process Element: Consists of activity, capability pattern, delivery process,

and guidance.

All content about the project is organized in that method plug-in. With method

plug-ins, the content can be organized at a level of granularity that meets the needs

for authoring and reusing content. When a method plug-in is created, we can

reference other plug-ins by reusing the content; modifying or extending the content;

or adding our own content to those plug-ins that is depicted in the present section. A

method plug-in can also be standalone and not reference other plug-ins. Method

plug-ins can also perform a supporting role. Supporting method plug-ins provide

reusable content for other method plug-ins. The content that is stored in a supporting

68

method plug-in is only visible and published for a method configuration if other

content that is not in a supporting plug-in references it.

The RMC main window which is depicted in Figure 4.1 in Chapter 4 contains menu

items in which all actions can be performed using these items. So, method plug-ins

can be created simply using the menu by following the steps of as; File > New >

Method Plug-in as shown in Figure 6.1.

Figure 6.1 Creating Method Plug-in

After completing the steps, the New Method Plug-in wizard is opened that guides

you to begin creating your own method plug-in. First of all, user enters the name of

the method plug-in such as “Cankaya University Library e-Reserve Project” that we

did in our project. In the next step, the Referenced Plug-ins is selected that contains

additional plug-ins that is referenced as shown in the Figure 6.2. Referenced

Plug-ins, identify plug-ins that will have content contributed to extended or replaced.

While selecting the Referenced Plug-ins we have to know what type of project to

deal with. As we mentioned before, the size of the project will be small and we

69

decided to apply classical RUP methodology. So, core.base_rup plug-in is selected

that includes plug-in for RUP for small projects. Also the wizard for creating the

new method plug-in provides an additional area to make a brief description about the

method plug-in and extra information about the author(s) of this part.

Figure 6.2 Method Plug-in Wizard

After creating our method plug-in we have to prepare the method content. Method

content provides step-by-step explanations, describing how specific development

goals are achieved independent of the placement of these steps within a development

lifecycle. Processes take the method elements and relate them into semi-ordered

sequences that are customized to specific types of projects.

A method content element can be created manually or it can be referenced by using

best practices that is most suitable to the current project by modifying its content. So

our method content of “Cankaya University Library e-Reserve Project” is created by

simply copying the elements from “base_rup” plug-in method content. Some method

contents and their elements are excluded that are not necessary to our project.

70

Finally some of the remaining elements are modified to adapt our project and some

of them are used as in their original form. Part of newly created method content

from “Cankaya University Library e-Reserve Project” is shown in the Figure 6.3.

Figure 6.3 Method Content

Now we have to create a new method configuration for our new method plug-in. As

we mentioned before in Chapter 4, RMC offers a library containing a great deal of

reusable content. None of the organizations or projects requires all of this

71

documentation all at once, but would work with a selection of specific subsets. So

method configuration allows us to specify working sets of content and processes for

a specific context, such as a specific variant of the RUP framework that user wants

to publish and deploy for a given software project or as a foundation for a

development organization. Simply, method configuration is a configuration that

allows us to select or deselect from the method packages available in our library’s

set of plug-ins.

Method configuration can be created simply in to the Configurations folder using the

menu by following the steps of as; In the Library, right-click the Configurations

folder and click New > Method Configuration as shown in Figure 6.4.

Figure 6.4 Creating Method Configuration

Then the method configuration wizard greets us. This is the initial step before

modifying our configuration that we firstly name our configuration as “Cankaya

72

University Library e-Reserve Project”. Then, the configuration editor is opened and

name of the configuration is given as “Cankaya University Library e-Reserve

Project”. As a result our new configuration is created. At the bottom of the editor,

we click the Plug-in and Package Selection tab to modify configuration in more

details as shown in Figure 6.5. List boxes in the right hand side are used to add or

remove elements to define our configuration.

Figure 6.5 Creating �ew Method Configuration

We mentioned the delivery process and capability patterns already in Chapter 4. For

our project we have to define a complete integrated approach that will be used in a

given pattern. The capability patterns can be either in discipline workflows that are

listed in Appendix A regarded using the recent IBM Poster [IBM, 2007b] as given

in Figure 6.6 or in templates for delivery processes which will be found in RMC.

We will construct our delivery processes by simply choosing the templates for

delivery processes and making some modifications on it to adapt our project.

73

Figure 6.6 RUP Discipline Workflows

74

Capability patterns express and communicate process knowledge for a key area of

interest, such as a discipline, and can be directly used by process practitioners to

guide their work. Capability patterns are also used as building blocks to assemble

delivery processes or larger capability patterns ensuring optimal reuse and

application of the key practices they express. We begin to construct our capability

patterns by using “Templates for Delivery Processes” for small projects as a

reference from the base_rup plug-in in RMC. So firstly we create four capability

patterns that will form the phases of our project. Capability patterns can be created

simply using the menu by following the steps of as; In the Library, right-click the

Capability Patterns under Processes and click New > Capability Pattern as shown in

Figure 6.7. We name capability patterns as Inception Iteration, Elaboration Iteration,

Construction Iteration, and Transition Iteration that emphasizes each iteration in its

specific phase in our project. One more capability pattern is created which is named

as RUP Phases. This capability pattern is used to combine other four capability

patterns and provide an overview and order for the project phases.

Figure 6.7 Creating Capability Patterns

75

After creating the capability patterns, we have to define activities and tasks for each

of these activities. As we mentioned before, there is no need to define all activities

and its tasks from the beginning because we are using “base_rup” in RMC as a

reference point for our project. So firstly we choose the configuration “RUP for

small projects”. Then in the Library window we open the capability pattern that we

want to define and in the configuration window we chose the related capability

pattern that will be used as a guide for preparing our capability pattern. Figure 6.8

depicts the view during the configuration of our capability pattern named as

“Inception Iteration” in RMC.

Figure 6.8 Defining Capability Patterns

The work breakdown structure of the capability patterns can be examined briefly

under the Work Breakdown Structure tab of the right bottom and top windows.

Right bottom window shows the possible activities and its task that will be used in

small projects during an inception iteration named as “inception_iteration”. So

76

simply drag and drop any activity, task or both that are suitable to the current project

to the right top window which is our created capability pattern named as “Inception

Iteration”. Alternatively new activities and tasks can be created manually using the

right click in the window of our newly created capability pattern that is “Inception

Iteration”. Team allocation and work product usage of the current iteration can be

viewed using the tabs under both window of capability patterns which are “Inception

Iteration” and “inception_iteration”. They can be easily prepared using the same

way as done for the activities and tasks by taking the advantage of drag and drop

property of the RMC.

We thus completed defining our capability patterns so that we are ready to define the

delivery process. A delivery process describes a complete and integrated approach

for performing a specific type of project. A delivery process describes what is

produced, how it is produced and the required staffing for the entire project

lifecycle. Delivery process can be created simply using the menu by following the

steps as follows; In the Library window, right-click the Delivery Processes under

Processes and click New > Delivery Process as shown in Figure 6.9.

Figure 6.9 Creating Delivery Process

77

After creating the delivery process we have to define it using the capability patterns

that we constructed in the previous step. So firstly we choose the configuration

“Cankaya University Library e-Reserve Project” using the configuration selection

box. Then in the Library window we open the delivery process that we want to

define and in the configuration window we chose the capability patterns in a

sequence of order that will form our delivery process. Figure 6.10 depicts the status

of RMC during the configuration of our delivery process.

Figure 6.10 Defining Delivery Process

Right bottom window shows the capability pattern that is named as “Inception

Iteration”. This capability pattern contains the activities and tasks which is defined

in the previous steps. So simply drag and drop activities to the right top window

which is our newly created delivery process. Alternatively new activities and tasks

can be created manually using the right click in the window of our newly created

delivery process.

78

As a result we obtain delivery processes for e-Reserve Project including inception,

elaboration, construction, and transition phases as shown in the Figure 6.11.

Figure 6.11 RUP Phases for the Project

Application of each phase is explained in detail in the following chapters. Each

phase consists of activities which is a breakdown element that supports the nesting

and logical grouping of related process elements. Activities can include one or more

sub-activities. Each of these activities and sub-activities include tasks which

describes a unit of work performed by specific roles. By the nature of Rational

Unified Process, parallelisms are provided between activities/sub-activities/tasks.

All activities and its tasks are discussed in detail with produced work products.

While a task is being performed the emergent endeavor is represented by formal

rules designated on work products. A work product is a content element that

represents anything used, produced, or modified by a task. These work products can

be in the form of document, model or model element whose templates can be found

in the RMC work product templates as mentioned in Chapter 4. Work products have

to be produced cautiously. When a task is concluded with a work product potentially

it triggers another task, activity, or sub-activity.

6.4 RSM Preparation

For UML modeling of the system, IBM Rational Software Modeler (RSM) is used

which is also discussed in Chapter 4. A UML model is a model that uses the UML

notation to graphically represent a system at various levels of abstraction. UML

models can be used to visually represent the system that is to be built, to

communicate our vision of system with customers, and for direct code generation.

UML models contain model elements, such as actors, use cases, classes, and

packages, and one or more diagrams that show a specific perspective of a system. In

RSM, models can be created and managed easily by using Model Projects. At the

beginning of the e-Reserve project, we create the Model Project. We have to create

79

this Model Project first, because we need to hold our UML 2.0 model artifacts that

will be created while the development of the project continues.

The RSM main window which is depicted in Figure 4.9 in Chapter 4 contains menu

items in which all actions can be performed using these items. So, the Model Project

can be created simply using the menu by following the steps as follows;

File > New > Model Project as shown in Figure 6.12.

Figure 6.12 Creating Model Project

Then, the Model Project wizard is opened and user enters the name of the Model

Project such as “Cankaya University Library e-Reserve Project”. RSM provides

several templates that will be used to create models. Each template helps to create

content for a particular type of model. So, we choose the Standard Template in the

Model Project wizard as shown in Figure 6.13. Also existing models can be chosen

if there exists any other past works that are completed in previous projects. Initial

step of the Model Project creation is completed by assigning a name to the project

and choosing the Standard Template.

80

Figure 6.13 Model Project Wizard Step 1

In the next step of the wizard, we configure the type of model that will be initially

created automatically and form a baseline for the entire of the project which will be

placed in “Cankaya University Library e-Reserve Project” Model Project. First of all

we assign a name to the model which is “InceptionPhase” as shown in Figure 6.14.

This model will contain UML model artifacts that will be created within the

Inception Phase of our project. The wizard window has two main views. The view in

the left hand side contains four categories of existing Standard Templates. One of

the categories has to be chosen depending on the action that will be taken within this

model which will be analysis, design, business modeling, requirements gathering, or

all of them. So we choose the General that includes all other categories which are

Analysis and Design, Business Modeling, and Requirements. The view in the right

hand side contains the templates according to the selected category. After choosing

81

the General category, we see three different templates. All of these templates contain

blank UML models with different subsets of UML tools. For example, Blank Rose

UML Model is created with a simplified subset of UML tools is enabled that

emulates constructs available in Rational Rose. Also, Simplified Blank UML Model

is created with a simplified subset of UML tools is enabled that emulates constructs

available in UML 1.x. So, we choose the Blank Model which will create a blank

UML model with access to all UML tools.

Figure 6.14 Model Project Wizard Step 2

In the last step of the Model Project wizard, we are able to create a freeform diagram

as shown in Figure 6.15. If we choose to create a freeform diagram then it will be

placed in the previously created model. We do not need to create a freeform diagram

for now, because we did not decide which diagram will be created first yet. As a

result we conclude the wizard by clicking Finish button.

82

Figure 6.15 Model Project Wizard Step 3

After concluding the Model Project wizard the Model Project called “Cankaya

University Library e-Reserve Project” and its initial model called “InceptionPhase”

are created. These resources are represented to users as shown in Figure 6.16. The

window on the left top side in RSM depicts the Project Explorer view. As we

mentioned before, in RSM, we can create and manage models using modeling

projects in the Project Explorer view. The contents of a modeling project are

organized into two types of logical folders: diagrams and models. This structure

displays the logical containment of the UML model elements, regardless of where

they are stored physically. Models contained in a modeling project are displayed

under the Models folder, or node. These nodes are not the physical model (.emx)

files, but rather the root model elements of the models. Similarly, the corresponding

diagrams in a modeling project are displayed under the Diagrams folder.

The window on the right top side gives some general information about the physical

model which is “InceptionPhase.emx” such as size, location, creation date, and so

on. Also the window on the right bottom side which is the Properties view gives

some descriptive information about the physical model. Properties view displays

property names and basic properties of a selected resource from Project Explorer

view. The window on the left bottom side is Inheritance Explorer view as we

mentioned in the previous sections that provides users to view a UML element’s

inheritance hierarchy. This property will be used in next sections.

83

84

Now our Model Project is ready and we can create new UML model elements using

the Project Explorer view. In this step we are going to create a package which is a

UML model element to store other UML model elements that will be constructed

during the Inception Phase of e-Reserve project. A package can be created simply

using the menu by following the steps as follows; In the Project Explorer view,

right-click the model called “InceptionPhase” under Models folder and click

Add UML > Package as shown in Figure 6.17.

Figure 6.17 Creating UML Elements

We name the package as “IterationI1” which is depicted in Figure 6.18 that

emphasizes the first iteration of the Inception Phase of e-Reserve project.

Figure 6.18 Explorer View of Creating UML Elements

85

CHAPTER 7

I�CEPTIO� PHASE

We begin to structure our project by constructing delivery processes from the

templates in RMC and making some modifications on it to adapt our project as

mentioned in Chapter 6. Starting point of these delivery processes is the Inception

phase that establishes the feasibility of the system and phase plays the most critical

role in the project as mentioned in Chapter 3. Inception Phase of our project consists

of one iteration which includes several activities and concluded by a milestone as

shown in the Figure 7.1.

Figure 7.1 Inception Phase

Each activity consisting of one or more tasks performed in Inception Phase Iteration

and each task is concluded by a work product that points the critical parts and

summarizes the task. Work products are important to complete the project

successfully and achieve its objectives. So they have to be prepared correctly by

following unique method that will be easily understood by team members and an

appropriate format with universal practices. RMC provides templates and examples

of various types of work products to apply correct formats. So, the guide for work

products can be reached simply using the menu by following the steps as follows;

Help > RMC Process Browser as shown in Figure 7.2.

86

Figure 7.2 Open RMC Process Browser

The RMC Process Browser appears as shown in Figure 7.3 after following the

previous steps depicted in Figure 7.2. Process Browser allows developers to reach

instantaneously process guidance or policies, including the latest document

templates they should use. RMC Process Browser has two views in its window. The

window in the left most side contains the process view that provides the guidance

and the window in the right most side shows the details of selected items. Our aim is

to gain some knowledge about work products that will be produced during the

development of the project. So, first of all we have to select the appropriate task

under the activities of current iteration performed in that phase under the “Delivery

Processes” tab as shown in Figure 7.3. Then the task specific information will

appear in the right most side of the browser. This brief information tells us which

work product, named as outputs, has to be produced within that selected task. Now

we know which work product to produce. Process Browser provides more

information about the work product when we click on it as shown in Figure 7.4. As a

result, all necessary information can be obtained from templates section to produce

work product and some samples from examples section.

87

88

Figure 7.4 Selected Work Product

7.1 Inception Iteration I1

Inception Iteration I1 is referred as Preliminary Iteration of the Inception Phase. The

activities performed in Preliminary Iteration of inception phase are shown in the

Figure 7.5. The activity diagram in the Figure 7.5 and all of its activities and tasks

can be obtained from RMC and modified to adapt on projects.

89

Figure 7.5 Inception Phase Activity Diagram

Conceive �ew Project activity brings our project from the origin of an idea to a

point at which a reasoned decision can be made to continue or abandon the project.

It consists of four tasks as shown in the Figure 7.6.

Figure 7.6 Conceive �ew Project Tasks

90

The conceive new project activity begins with Identify and Assess Risks task which

is very important for identifying, analyzing and prioritizing risks at the beginning of

the project. Within this task risks should be carefully identified. Rank the risks and

group them to avoid long list of similar risks. Identify mitigation plans to reduce the

impact of the risks on the project. Revisiting the risks is a critical issue because risks

appear dynamically in the project. The task concludes with a Risk List (see

Appendix B.I.1) that captures the potential risks of the project. Risks are defined in a

decreasing order of priority. Risk List also given below as Table 7.1.

Table 7.1 Risks for Iteration I1

Risk

Ranking/

Magnitude

Risk Description & Impact Mitigation Strategy and/or

Contingency Plan

High The team is unfamiliar with Web

architecture and technology.

This risk may impact the ability to

deliver a Web application on time.

Train the Team on Web technologies
(to be done in the second elaboration

iteration, or E2).

Allocate time (during E2) for the
learning curve and monitor progress
weekly in elaboration.

Medium Volume of users logged on during
peak periods (on holidays and special
days) may significantly degrade
system performance.

Early prototyping and extrapolation of
response time data should be done in
the elaboration phase.

Low Incompatibility with internet
browsers and specific configurations
on client machines.

Address during elaboration (E2).

The second task in Figure 7.6 is Develop Business Case and it is used to develop the

economic justification for the product and we obtain Business Case (see Appendix

B.I.2) that develops the economic plan and gives the economic value of the product.

A brief description of the product that is to be developed will be given in this

document. Business context is defined which helps stakeholders to understand

intended market for the product. Objectives of the product will be given here that

provides a support for managing risks. Some constraints specified for the system

within this document that will be obeyed from beginning to the end of the project.

These constraints could be about standards, technologies or techniques that will be

used during the development as depicted in the Figure 7.7.

91

General design and implementation constraints include:

• Only CU students and staffs can use this system.

• Software system shall be written in .NET 3.5 Technologies

• Student basically can see the courses that has been taken in that semester. But if student
use search functions, he/she can see all the courses and can download all materials.

• Instructor basically can add materials only the courses given by him/herself. But if
instructor use search functions, he/she can add materials to all courses.

• A material can be deleted only by the owner of material.

• An instructor can only activate materials that are added by him/herself or materials of the
courses that are given by him/herself in that semester.

• The documentation shall be in accordance with the IEEE Standards.

Figure 7.7 Constraints

Initiate Project sets up the necessary executive management and project planning

teams, and the criteria that will be used for successful project completion. During

this task an initial draft of Software Development Plan (see Appendix B.I.3) is

produced which defines the process of the project. It gathers all information

necessary to manage the project by the managers. By using the information that is

gathered in this task project overview is prepared including purpose, scope and

objective of the project and documented as shown in Figure 7.8. It also includes the

list of possible work products that will be produced during the development.

2. Project Overview

2.1 Project Purpose, Scope, and Objectives

The project will implement an e-Reserve application. The e-Reserve application will be an
upload/download document, reserve document application. It will provide the ability to
list details of a document and select a quantity of that document to reserve.

A CU library terminal interface will provide interface to enquire and reserve documents.

A Web based interface will allow enquiring and reserving documents using an internet
browser.

The e-Reserve application will be a C# application that uses ASP.NET. The e-Reserve
application will access a document stored in the main database.

Figure 7.8 Project Phase Plan

Project Approval Review determines whether or not the project is worth investing in

and concludes with Review Record (see Appendix B.I.4). This document captures

the results of the review activity for the current task in which identifies the possible

problems that team members faces and proposes possible solutions to these

problems. Key activity to be performed is a meeting in the current task. All

decisions about approval of the work products that are produced will be made at this

92

meeting. An example of a problem that arises while performing the task and a

possible solution to it is shown in the Figure 7.9.

Problems identified

Use Case Diagrams: The use case for view documents includes books and magazines but not

documents.

Recommendations

Use Case Diagrams: The use case for view documents will be changed to view material.

Figure 7.9 Problems and Recommendations

Prepare Project Environments activity of the Inception Phase given in Figure 7.5

is responsible for the preparation of the project environment and composed of two

sub-activities as shown in Figure 7.10.

Figure 7.10 Prepare Project Environments Sub-Activities

Prepare Environment for Project sub-activity prepares the development

environment for the project and has one major task as shown in Figure 7.11.

Figure 7.11 Prepare Environment for Project Task

Tailor the Development Process for the Project task is responsible for customizing

the development process. Analyzing the problem fires this task and arise the

requirement of a project specific process that concludes by a Development Process.

The key work product of this task is a Development Process that describes the

process a project has to follow. There are different types of processes that have to be

93

selected for the entirely of the project: Delivery Process or Capability Pattern, which

are mentioned in Chapter 4. Development Process is documented formally in

Development Case document (see Appendix B.I.5). It is developed to produce

guidance to the members of project and adaptations on development process takes

place in the Development Case document. At each phase it has to be revised to give

the major activities of that phase. The version in inception phase includes the

overview of the development process as shown in the Figure 7.12. Development

Case document also includes the major phases of inception phase not in details but

as a list of the activities to establish a path of work.

This project will consist of a full Inception phase, a two iteration Elaboration phase, a three
iteration Construction phase, and a full Transition phase. Design and code reviews will take place
at key iteration milestones, and project quality reviews will be conducted at the end of each phase.

Figure 7.12 Overview of the Development Process

Create Project Configuration Management (CM) Environments sub-activity is

responsible for the overall product development environment and has one major task

as shown in the Figure 7.13.

Figure 7.13 Create Project Configuration Management Environments Task

Set Up Configuration Management (CM) Environment task sets up the environment

of the project. We begin with setting up a hardware environment which will form

our Project Repository. It holds all the documents of the project. It also serves as a

guideline to the new members who join to project team and helps to capture main

steps of work done. It contains only documentation of the project and may be

backups only. Project Repository is documented in Configuration Management Plan

(see Appendix B.I.6). This document mainly describes the computing environment

and software tools to be used throughout the project. The critical part of

Configuration Management Plan is definition of Project Repository and its detailed

physical location. All the information about Project Repository is depicted in the

Figure 7.14. Also format for the Change Request Form is given in Configuration

Management Plan.

94

2.2 Tools, Environment, and Infrastructure

All environment files will be available at Çankaya University MP Lab. Moreover the

configuration manager will save a backup copy on the space allowed to the team in the

lab. All environment material files will be available at any time at the following address:

Host: ceng.cankaya.edu.tr/~mp

Port: 21

Login: c0771000

Password: CUeReserve

Figure 7.14 Project Repository

Prepare Environment for an Iteration activity prepares the environment for the

iterations in the project. It is examined for the current iteration that is Inception

Iteration I1. It consists of one task as shown in the Figure 7.15.

Figure 7.15 Prepare Environment for an Iteration Task

Launch Development Process rollouts the development process. Efforts in this task

primarily make the changes public to all members of the project. The selected

development process in the previous activities would be a new concept for many

team members. So training on newly proposed development process is planned. A

Change Request Form is required for this task. In Change Request Form problem

that causes a change on the product and suggestion for the solution will be given.

Current problem and proposed change is given clearly in this document. Change

Request would be prepared if a change to the product is needed. For the inception

phase we do not need to prepare it; however it changes from project to project.

Define Project Plans activity shown in Figure 7.5 provides general planning for the

release of the project and composed of one sub-activity as shown in the Figure 7.16.

Figure 7.16 Define Project Plans Sub-Activity

95

Plan the Project sub-activity develops the components and enclosures of the

Software Development Plan document. It has three major tasks as shown in the

Figure 7.17.

Figure 7.17 Plan the Project Tasks

Define Project Organization and Staffing task defines an organizational structure for

the project. Project staff is organized to be managed by the managers. In Software

Development Plan organizational structure of the project is defined clearly

depending on the characteristics of the project. Key roles are defined especially

during the inception phase team should be small. Software Development Plan (see

Appendix B.I.7) is revised to capture structuring to manage key roles on the project

as depicted in Table 7.2 in addition to Project Overview and Management Process.

Table 7.2 Project Roles

Role Inception Elaboration Construction Transition

Project

Manager

Team Member A Team Member A Team Member A Team Member A

System

Analyst /

Requirement

Specifier

Team Member B Team Member B

Software

Architect

Team Member C Team Member C Team Member C

Designer Team Member D Team Member D

Developer /

Integrator

 Team Member E
Team Member F

Team Member E
Team Member F

Team Member E

Tester Team Member G Team Member G
Team Member H

Team Member G
Team Member H

Team Member G

Deployment

Manager

 Team Member I Team Member I

Technical

Writer

 Team Member J Team Member J

System

Administrator

Team Member K Team Member K Team Member K Team Member K

Plan Phases and Iterations describes the project phases and iterations by making

estimations. Estimations on the project are made in the current task such as project

96

phase plan is developed. Milestones are defined and their dates are identified if

possible. Resources required carrying out the project are defined based on the

estimation made in the previous stages of the task. This task is concluded with the

revision of Software Development Plan (see Appendix B.I.7). By using the

information that is gathered in this task an initial project phase plan is prepared and

documented in Software Development Plan as shown in Figure 7.18.

Figure 7.18 Project Phase Plan

Project Planning Review in Figure 7.17 helps describing the review of Software

Development Plan. As we mentioned in the previous tasks key activity to be

performed is a meeting. All decisions about approval of the work products that are

produced will be made at this meeting again. At the end of Define Project Plans sub-

activity Review Record is handled again to approve the initial Software

Development Plan. If there exists any missing parts or mismatching concepts with

the project then Software Development Plan is sent back to the project manager to

review it.

Monitor and Control Project activity in Figure 7.5 is used to capture continuing

work including monitoring project status, reporting to stakeholders, and dealing with

issues. It consists of four major tasks as shown in the Figure 7.19.

Figure 7.19 Monitor and Control Project Tasks

97

Schedule and Assign Work task in the activity helps project manager to schedule the

work. The critical issue is the state of Change Request. Because we did not need to

document a Change Request Form up to this task. So if the Change Request is

examined than project manager should fix the iteration. If the Change Request is to

be held until a later iteration, the project manager simply re-plans the future

iterations. The Iteration Plan (see Appendix B.I.9) is prepared at the beginning of

this task that details the work in a fine-grained way. We are now at the early stages

of inception phase and the duty of Iteration Plan is to give a fine grained plan of

inception phase. It is detailed only as a Gantt Chart for the inception phase as shown

in Figure 7.20 and iteration overview of the current phase is reported as in the Table

7.3. Detailed Gantt Chart can be found in Project Phase Plan (see Appendix B.I.8).

Table 7.3 Iteration I1 Overview

Phase Iteration Description Risks Addressed

Inception

Phase

I1 Iteration

Preliminary

Iteration

• Define and approve Business Case

• Define high-level product

requirements
The Vision document contains key
features and constraints.

• Define project scope
A Use Case Diagram includes key
Actors and Use Cases. Only a brief
description is provided for each Actor
and Use Case.

• Plan the overall project and next

iteration
A high-level Software Development
Plan, a Risk List, and an Iteration Plan
for the first elaboration iteration are
created.

• Create a very first draft of the Test

Plan

• Define application-specific

terminology
Important terms are defined in the
Glossary.

Clarifies user

requirements up

front.

Develops realistic

Software

Development Plans

and scope.

Determines

feasibility of

project from a

business point of

view.

Another work product produced during current task is a Work Order (see Appendix

B.I.10) that provides communication between the project manager and the project

team. Each team member with a specific role has its own responsibilities which are

detailed in Work Order. The roles of team members are identified in the work

product as shown in the Figure 7.21. These responsibilities are more detailed in the

work order reports and schedules.

98

99

2.4 Responsibilities

2.4.1 Team Members

 Each team member is assigned to a role. Here are the team’s responsibilities:

 Team Member A (TMA): Project Manager

 Team Member B (TMB): System Analyst

 Team Member C (TMC): Software Architect

 Team Member G (TMG): Test Analyst

 Team Member H (TMH): Test Designer

 Team Member L (TML): Management Reviewer

Figure 7.21 Responsibilities for Iteration I1

Report Status task in Figure 7.19 describes when and how the periodic updates on

the project will be done. An important work product in this task is the Status

Assessment (see Appendix B.I.11) that has the responsibility to ensure the

expectations of all parties are consistent. A lot of the information in the Status

Assessment is copied from other sources to provide a comprehensive source of

information for the people assessing the project. For example, within the Status

Assessment document risks are examined that are already listed in the Risk List.

Status of the team members are also given in the Status Assessment as shown in the

Figure 7.22.

2. Resources

2.1 Personnel/Staffing

Inception phase staff will continue to the project also in elaboration phase.

Figure 7.22 Status of Team Members

The next task in Figure 7.19, Organize Review, describes how to facilitate the

review process and ensure the review is undertaken appropriately. Within this task

review coordinator has to ensure that required review tasks are appropriately

planned and organized. There are various approaches to planning review tasks which

are based on factors such as team size, team culture and so on. Organize Review task

is concluded with revision of Review Records.

The last task in Figure 7.19, Conduct Review and it describes how to facilitate a

review so as to maximize the productivity of the reviewers and meet defined quality

requirements. This task is under the control of reviewer of the project. Conduct

Review task is concluded with revision of Review Records.

100

Manage the Scope of the System activity in Figure 7.5 is used to ensure that

requirements are obtained clearly for that iteration. It consists of two major tasks as

shown in the Figure 7.23.

Figure 7.23 Manage the Scope of the System Tasks

Develop Vision task develops a vision for the system especially including the

stakeholders, systems key features and constraints that conclude with a Vision

document (see Appendix B.I.12). By the help of Vision document the problem being

solved simply by asking the problem. Vision document provides to understand

stakeholders view of the product to be developed. It is closely related with the work

product Business Case. Vision document provides a statement that is summarizing

the problem being solved by this project as shown in the Table 7.4.

Table 7.4 Problem Statement

The problem of A slow and less efficient manual reserving process is

currently in use; also students have to come into the library to

realize reserve operation.

Affects Reserve process efficiency, thereby affecting librarian

productivity and student satisfaction.

the impact of which is Negative librarian productivity and student satisfaction, which

in turn impacts on CU library efficiency.

A successful solution would be To improve the inquiry and reserving process.

Stakeholders are identified clearly. It also provides an overall statement that

summarizes at the highest level, the unique position product intends to fill the

marketplace depicted in the Table 7.5.

Table 7.5 Product Position Statement

For Librarian, instructor and student

Who Enquire and reserve books/documents

The e-Reserve application Is an online reserving system

That Will enable a real-time online reserving facility

Unlike The current manual reservation process

Our product Will vastly improve the reservation process, thereby creating

student satisfaction and improving CU library efficiency.

101

Based on the benefits listed in problem statement, a list of features is developed that

we want in the system. The vision document is written from the customers

perspective and provides the contract between the funding authority and the

development organization.

Prioritize Use Cases task in Figure 7.23 identifies the significant use cases. Use

cases are prioritized and significant use cases are listed. They are identified within a

Software Architecture document (see Appendix B.I.13). Inception phase version of

this document contains only a list of use cases as shown in the Figure 7.24. Use

cases in bold are significant to the architecture.

• Login

• Logout

• Insert User

• Update User

• Delete User

• Activate Course

• Update Course

• Deactivate Course

• Search Corse

• Insert Material

• Update Material

• Delete Material

• Search Material

• View Material

• Download Material

Figure 7.24 Use Case List

Software Architecture document contains different architectural views. Deployment

view of the system is also given in this work product where the system begins to

arise step by step however this view is detailed in the next tasks now it is only

conceptually formed.

Another important work product of the task is Software Requirement that contains

specifications for a condition to which a system must conform. Software

Requirements are documented in Software Requirements Specifications (see

Appendix B.I.14) document in which provides a complete definition of the software

requirements; both functional and non-functional. It includes general factors that

affect the product and its requirements and provides a background for those

102

requirements. As an example product functions for the project is depicted in the

Figure 7.25.

2. Product Functions

The functionality supported by e-Reserve project can be described in a number of major
functional areas.

Students can login to this page and display their courses. Then student can download books and
document about his/her courses. Also student can search for another courses and books.

Basically, an instructor can do all the tasks that a student can do. Also an instructor can add,
update and delete book/document. Instructor can activate/deactivate course accessibility and
update a course.

Librarian can access all the courses categorized by course ids. Can perform all operations on all
courses. (Insert/update/delete) Can make bulk activation or deactivation operation. Can view
usage reports.

Figure 7.25 Product Functions

Referring to Figure 7.5, Define the System activity is responsible on sketching key

requirements. It consists of four major tasks as shown in the Figure 7.26.

Figure 7.26 Define the System Tasks

Develop Vision task has the same functionality as in the Manage the Scope of the

System activity. Vision documented is developed during the previous activity and its

development continuous in current activity. Its final changes made on this task if

needed and the Vision document (see Appendix B.I.15) is completed at the end of

task. Revision of Vision document is completed.

Capture a Common Vocabulary task determines how project specific terms are

organized and defined during the development process. A common vocabulary,

using the most common terms in the problem domain, is constructed. All team

members should use these terms in order to define problem domain. Using a

common vocabulary between the team members improve the efficiency and provide

increased understanding of the concepts. It is concluded by developing a Glossary

(see Appendix B.I.16) that all terms are identified clearly as depicted in the

Figure 7.27.

103

2.1 ERS

e-Reserve system

2.2 ERIS

e-Reserve Information System

2.3 HTML

Hyper Text Markup Language is a text base programming language using many
symbols and codes interpreted statically by a web browser.

2.4 IM

Instructor Module

2.5 LM

Librarian Module

2.6 RUP

IBM Rational Unified Process is a software engineering process and a process
framework for successful iterative-incremental software development.

2.7 RMC

IBM Rational Method Composer is a commercial product for authoring,
configuring, viewing, and publishing processes.

2.8 RSM

IBM Rational Software Modeler is a robust collaborative platform for visual
modeling and design.

2.9 SM

Student Module

2.10 SRM

Server Module

Figure 7.27 Definitions for Iteration I1

Find Actors and Use Cases task in Figure 7.26 identifies the actors and use cases

for the system that supports the requirements. During the evaluation of task it

produces the Use Case Model (see Appendix B.I.17) that documents the systems

functionality. It helps to communicate with the stakeholder in a manner of

standardized notations and diagrams. First of all actors of the system are identified.

Actors that we found are briefly described to understand who or what interacts with

the system. All actors are identified and briefly explained as shown in the Figure

7.28. Explaining the roles of each actor provides a better understanding of the

system while reviewing the Use Case Model. After we have found the actors, the

system’s use cases should be found. As we did in the actors, we name and briefly

describe the use cases of the system. There are many informal ways to find use cases

however most effective approach is to ask that what the actor requires of the system.

Most of the time it will be difficult to find the suitable actors and use cases for the

system however working with use case gives a better understanding of the system.

104

2. Actors

Figure 7.28 Actors of the System

These actors and uses cases are represented in the use case diagrams by showing the

relationships between them that how they interact with each other. A use case

diagram is depicted in the Figure 7.29.

4.5 <<Package>> Material Operation

Figure 7.29 Use Case Diagram

105

If the number of actors and use cases becomes too large then they could be divided

into use case packages. The Figure 7.29 also shows how the use case diagrams are

packaged. This approach simplifies the view of more complex systems.

The last task of Figure 7.26 is Develop Supplementary Specification task. It helps to

capture requirements that are not readily captured in use cases. Many functional

requirements can be documented in Use Case Model however some cannot. Task is

performed and concluded with Supplementary Specification (see Appendix B.I.18)

that captures the system requirements which are not applicable to specific use cases.

An example of requirements that affect supportability is depicted in the Figure 7.30.

Task is performed especially for capturing system qualities and constraints.

Supplementary Specification is an important complement to Use Case Model in

which they are used to capture all software requirements.

3. Usability

3.1 Multichannel Access

The system will be accessed via both a web browser and CU library terminals.

3.2 Ease of Use

The system will not require user training beyond that of using a web browser.

3.3 Browser Compatibility

The web client application can run under Mozilla Firefox, Microsoft Internet Explorer

or Opera.

3.4 Online Help

The web client application provides an online help for the user.

Figure 7.30 Usability Requirements

On Figure 7.5, Perform Architectural Synthesis is an activity showing the system

is feasible and demonstrates it. It consists of three major tasks as shown in the

Figure 7.31.

Figure 7.31 Perform Architectural Synthesis Tasks

Architectural Analysis task tries to define architecture of the system based on similar

systems or similar problem domains. An architecture overview is developed at the

106

early stages of the project. This architecture provides an early understanding of the

high-level structure of the intended system to the stakeholders. In inception phase

we only deal with the Deployment Model (see Appendix B.I.19) of the system that

shows the nodes, devices, and connections between them. Deployment Model

represents a high-level overview of the system. We acquire an understanding of the

geographical distribution and operational complexity of the system. Deployment

Model is documented in the Software Architecture Document (see Appendix B.I.20)

that is depicted in the Figure 7.32.

Figure 7.32 Deployment Model

Referring to Figure 7.31, Construct Architectural Proof-of-Concept task is the

critical point of the management that defines how to develop an Architectural Proof-

of-Concept for the system. Architectural Proof-of-Concept can be documented as a

list of known technologies which seem appropriate to the solution, a sketch of a

conceptual model of a solution using a notation such as UML, or an executable

prototype. Using the technique that is listed above Architectural Proof-of-Concept is

constructed. In this case our Deployment model is defined as the Architectural

Proof-of-Concept for the system that shows a solution for the problem domain.

Assess Viability of Architectural Proof-of-Concept task is required for evaluating

defined Architectural Proof-of-Concept. The key work product for the task is

107

Reference Architecture (see Appendix B.I.21) whose purpose is to form a starting

point for the architectural development. Reference Architecture should be defined

through different viewpoints and these views map to the 4+1 Views of software

architecture. From that 4+1 Views, logical view has four functional layers which are

defined in the Reference Architecture document. These layers are; interface layer,

business layer, middleware layer, and system software layer. Table 7.6 depicts the

middleware layer defined in the document.

Table 7.6 Middleware Layer

Area Products/Services/Components

Application Servers Microsoft COM+

BEA Weblogic V7

Messaging Services Microsoft MSMQ/MQ Series Interface

Directory Services Active Directory/LDAP

Data Distribution Strategies No distributed two-phase commit processing will be supported.
Centralized data access is encouraged at all times.

Data Access APIs .NET Framework

ADO.NET

On Figure 7.5, Define Evaluation Mission activity identifies the test efforts to be

taken for the iteration. It consists of one major task as shown in the Figure 7.33.

Figure 7.33 Define Evaluation Mission Tasks

Define Test Approach task focuses on test strategies for the desired testing. Effect of

the software architecture is considered for the test approach by gaining information

from Software Architecture Document. After completing all test approaches,

existing test techniques are identified to improve test approaches. In the case of

insufficient existing test techniques, new test techniques could be identified briefly.

For the inception phase this task is performed shallowly. A Test Strategy document

(see Appendix B.I.22) is created at the end of task that defines the strategic plan for

how the test effort will be conducted against one or more aspects of the target

system. For the inception phase only test strategies are given as a list that will be

performed at next phases as shown in the Figure 7.34.

108

2. Test Strategy

• Function Testing

• User Interface Testing

• Data and Database Integrity Testing

• Performance Profiling

• Load Testing

• Stress Testing

• Volume Testing

• Security and Access Control Testing

• Failover/Recovery Testing

• Configuration Testing

• Installation Testing

Figure 7.34 Test Strategies

On Figure 7.5, Manage Iteration activity contains the activities that begin, end and

review the iteration. It consists of five major tasks as shown in the Figure 7.35.

Figure 7.35 Manage Iteration Tasks

Acquire Staff task is used to organize members into teams. Teams are formed with

required skills for the problem domain. Project manager assigns each role to a

specific member in the team. This action was already documented in Software

Development Plan (see Appendix B.I.7) as in Table 7.2. It is now summarized in

Table 7.7. In some cases team members will need a training to develop skills in the

project.

Table 7.7 Team Member Roles

Role Resource

Project Manager Team Member A

System Analyst / Requirement Specifier Team Member B

Software Architect Team Member C

Tester Team Member G

System Administrator Team Member K

109

Initiate Iteration task allocates team members to the activities identified for the

current iteration. In the previous tasks members are assigned into specific roles.

Now activities are assigned to team members that they have to perform. For that

operation Work Order (see Appendix B.I.23) is revised and work order reports are

prepared for each team member. As an example of the description of the works is

given in these reports as shown in the Figure 7.36.

Work Order for e-Reserve Created on: <11/14/08>

Identification

Work Order ID: <TMA-I1-W02-01> WBS ID: <1.10.1>

Responsibility (Holder)

Team Member A

Associated Change Reports

None

Schedule

Start: < 11/24/08> Completion: < 11/24/08> Critical Path: <NA>

Efforts and Other Resources

Staff Hours: 1 Hour Other Resources: None

Description

Work Description: Acquire Staff

Expected Output(s): Revise Software Development Plan

Signature Agreement

Project Manager: Team Member A
Signed on: <dd/mm/yy>

Work Order Holder: Team Member A
Signed on: <dd/mm/yy>

Figure 7.36 Work Order Reports for Iteration I1

Identify and Assess Risks task is primarily performed in the beginning of the project

at Conceive New Project activity. As we mentioned before, risks are dynamic

elements that could arise at every stage of the project. We will reduce the effects of

risks by updating the Risk List to reflect the current project status periodically. So

risks could be avoided before they happen or handled rapidly as they appear with a

minimum effect on the project.

Next task, Assess Iteration evaluates the results of an iteration assess related project

information. Main purpose of this task is to determine success or failure of the

iteration. Within this task we compare the actual and expected results of the

110

iteration. Also we have to ensure that evaluation criteria for the current iteration are

realistic. Based on the results of the assessment Change Requests for any work

product could be generated. An Iteration Assessment (see Appendix B.I.24) is

created for evaluation of this task that captures the results of the iteration. Objectives

that are reached within the iteration are given in Iteration Assessment. An example

for the use cases are shown as in the Figure 7.37.

2.1 Use Cases and Scenarios Identified

The use cases in this system are listed below.

• Login

• Logout

• Insert User

• Update User

• Delete User

• Activate Course

• Update Course

• Deactivate Course

• Search Corse

• Insert Material

• Update Material

• Delete Material

• Search Material

• View Material

• Download Material

 All of these use cases will be completed with details during the design process.

Figure 7.37 Objectives Reached for Iteration I1

The last task of Figure 7.35 is Iteration Evaluation Criteria Review task. It

determines how to approve the criteria if the iteration is completed with its meeting

objectives. As in the previous review tasks a meeting is planned and all materials

about the activity are distributed across related team members to perform review. At

the end of the meeting a decision is made to approve or reject the criteria. If the

criteria are approved then the next activity will be performed otherwise the project

team should address the identified deficiencies and re-submit revised iteration

evaluation criteria for a follow-up review. Review Record is completed at the end of

meeting that captures the results of the current review activity.

Plan for �ext Iteration activity is the last activity of Inception Phase given in

Figure 7.5. It guides project team to the next iteration. It consists of two major tasks

as shown in the Figure 7.38.

111

Figure 7.38 Plan for �ext Iteration Tasks

Develop Iteration Plan task composes an iteration plan. At the early stages of

inception phase we created an Iteration Plan (see Appendix B.I.9) for the Inception

Phase Iteration I1 which focuses on proving the concept of the product. Now we are

creating an Iteration Plan for the next iteration which is Elaboration Phase Iteration

E1 (see Appendix B.I.26). The scope of the next iteration is determined. Again we

define the iteration evaluation criteria for Iteration E1 as we did for the Iteration I1.

In elaboration phase we will focus on creating a stable architecture. With this

conscious we have to select a set of tasks to be performed within Iteration E1.

Typically some use cases will be fully developed in Iteration E1 so they are

documented in an Iteration Plan that is specially created for Elaboration Phase

Iteration E1. The iteration overview for this iteration is depicted in the Table 7.8.

Detailed Gantt Chart can be found in Project Phase Plan (see Appendix B.I.25).

Table 7.8 Iteration E1 Overview

Phase Iteration Description Risks Addressed

Elaboration
Phase

E1 Iteration

Architectural

Prototype for

e-Reserve

Application

• Complete analysis & design for

high risk requirements
- Create Use Case Specification for
each of the Login, Logout use cases,
derive an Analysis Model, and
refine it into a Design Model.
- Document the architecture (high-
level design) in the Software
Architecture Document.

• Develops the architectural

prototype for e-Reserve

application
- Code the part of the application
implementing the Login, Logout use
cases.

• Demonstrate feasibility and

performance through testing

Architectural issues
related to ERIS

clarified.

Technical risks
related to ERIS
mitigated.

Early prototype for
user review.

Performance risks
related to high
volume of requests
mitigated on the
ERIS side.

Iteration Plan Review task determines to approve the proposed work plan for the

current iteration or not. It is held after the current iteration has been developed. For

this review operation again a meeting is planned and all materials about the activity

are distributed across related team members to perform review. There is a

112

consideration with this task is that at the end of the review we determine to begin

next iteration or not. So the Review Record for the current task has to be created

carefully.

7.2 Lifecycle Objectives Milestone

Lifecycle Objectives Milestone given in Figure 7.1, marks the end of the inception

phase. It is the first major milestone of the project that is reached at the end of

Inception Phase. Now we are standing on a critical region that we have to decide

either to proceed with the project or cancel it. At this point a tentative architecture

should be established which we will develop further during the next phase.

Evaluation criteria for the Inception Phase can be listed as follows:

• Stakeholder concurrence on scope definition and cost and schedule

estimates.

• Agreement that requirements are understood.

• All risks and mitigation strategies have been identified.

The project may be aborted or considerably re-thought if it fails to reach this

milestone.

Inception Phase Iteration I1 work products are tabulated in Table 7.9. All the work

products are given in the Appendix B of the thesis as B.I.1-26, also on CD to be

reached by:

• ~/Appendices/AppendixB/InceptionIterationI1

113

Table 7.9 Inception Iteration I1 Work Products (APPE�DIX B)

eReserve_RiskList_1.0

eReserve_BusinessCase_1.0

eReserve_SoftwareDevelopmentPlan_1.0

eReserve_ReviewRecord_11_11_08_1.0

eReserve_DevelopmentCase_1.0

eReserve_ConfigurationManagementPlan_1.0

eReserve_SoftwareDevelopmentPlan_1.1

eReserve_ProjectPhasePlan_1.0

eReserve_IterationPlanI1_1.0

eReserve_WorkOrder_1.0

eReserve_StatusAssessment_1.0

eReserve_Vision_1.0

eReserve_SoftwareArchitectureDocument_1.0

eReserve_SoftwareRequirementsSpecifications_1.0

eReserve_Vision_1.1

eReserve_Glossary_1.0

eReserve_UseCaseModel_1.0

eReserve_SupplementarySpecification_1.0

eReserve_DeploymentModel_1.0

eReserve_SoftwareArchitectureDocument_1.1

eReserve_ReferenceArchitecture_1.0

eReserve_TestStrategy_1.0

eReserve_WorkOrder_1.1

eReserve_IterationAssessment_1.0

eReserve_ProjectPhasePlan_1.1

eReserve_IterationPlanE1_1.0

114

CHAPTER 8

ELABORATIO� PHASE

We had already completed the Inception Phase of our project and ready for the next

phase namely Elaboration Phase. The next point in delivery processes is the

Elaboration Phase that baselines the architecture of the system. Elaboration Phase of

our project consists of two iterations in which each of them includes several

activities and concluded by a milestone as shown in the Figure 8.1.

Figure 8.1 Elaboration Phase

As we mentioned in Chapter 7, RMC provides templates and examples of various

types of work products. Again, the guide for work products can be reached in the

same way as explained in Chapter 7.

8.1 Elaboration Iteration E1

Elaboration Iteration E1 forms the basis for developing an architectural prototype for

e-Reserve application in our project. The activities performed in Elaboration

Iteration E1 of the elaboration phase are shown in the Figure 8.2. The activity

diagram in the Figure 8.2 and all of its activities and tasks can be obtained from

RMC and modified to adapt on projects.

115

Figure 8.2 Elaboration Phase Activity Diagram

Prepare Environment for an Iteration activity prepares the development

environment for the project. It is examined for the current iteration that is

Elaboration Iteration E1. It consists of one task as shown in the Figure 8.3.

Figure 8.3 Prepare Environment for an Iteration Task

Launch Development Process task is initially performed in the previous phase which

is the Inception Phase. This task is performed again at the beginning of the first

iteration of the Elaboration Phase to make necessary changes on the project, if

needed, before further development in the project. It is important to make necessary

changes in the early stages of development that reduces cost and time by defining

the malfunctioning or missing parts. If a change is made then the related team

members are trained by a short seminar. If training on proposed development

116

process is planned in the Inception Phase then trainings will begin. Changes are

written formally on Change Request Forms that briefly describe the problem and

possible solution to the problem. This document simply formulates the changes

within a format as shown in Figure 8.4. Currently we do not need any change on the

project for now.

Change Request for <Project �ame> Created on: <dd/mm/yy>

Identification

Title:

Priority: Status:

Submitted on:

Change Request ID: <>

Submitter: Type: <>

Current Problem

Description:
Critical Failure:

�uisance:

Source of the Problem:

Enhancement/�ew Requirement/Other:

Observation conditions:

Proposed Change (Submitter)

Description:

Proposed Change (Review Team)

Approval:

Reviewed Description:

Affected Configuration Items Category
Enhancement/�ew

Requirements/Other

Resolution

Estimated effort (staff hours):

Change Review Team Disposition

Changes approved and accepted on: By:

Changes implemented on: By:

Figure 8.4 Change Request Form

117

A change request form is a document containing a call for an adjustment of a system

and it is of great importance in the change management process.This template

format is used for enhancements, new requirements or other requests that will be

reported during the development of project.

Revise and Complete Project Plans activity in Figure 8.2 gives a general planning

for the release and it consists of two sub-activities as shown in the Figure 8.5.

Figure 8.5 Revise and Complete Project Plans Sub-Activities

Plan the Project sub-activity is performed primarily within the Inception Iteration I1

of the Inception Phase that is performed for developing initial plans. This time we

are going to complete these plans. We have two iterations in Elaboration Phase so

we will complete this task in the second iteration of Elaboration Phase. Now plans

are revised for only the current iteration that is Elaboration Iteration E1. This sub-

activity has three major tasks as shown in the Figure 8.6.

Figure 8.6 Plan the Project Tasks

Define Project Organization and Staffing task has the same responsibility as

performed in the Inception Iteration I1 of the inception phase. In this task again

project team members and their roles are defined. However during Elaboration

Phase, the focus is primarily on the architecture and the architectural prototype. So,

most of the effort comes from your architecture team and a designated prototyping

118

team. Because of this necessity team members have to be chosen carefully. The size

of the project team will vary across phases, and the Software Development Plan will

be updated to reflect these changes. The Software Development Plan (see Appendix

C.I.1) is revised to describe the responsibilities of defined roles in the project as

shown in the Table 8.1.

Table 8.1 Roles

Role Description

Project Manager Allocates resources, shapes priorities, coordinates interactions with the

customers and users and generally tries to keep the project team

focused on the right goal. The project manager establishes a set of

practices to ensure the integrity and quality of project artifacts.

System Analyst /

Requirement

Specifier

Leads and coordinates requirements elicitation and use-case modeling

by outlining the system’s functionality and delimiting the system.

Details the specification of a part of the system's functionality by

describing the Requirements aspect of one or several use cases and

other supporting software requirements. The requirements specifier

may also be responsible for a use-case package, and maintains the

integrity of that package.

Software

Architect

Leads and coordinates technical activities and artifacts throughout the

project. The architect establishes the overall structure for each

architectural view: the decomposition of the view, the grouping of

elements and the interfaces between these major groupings.

Designer Defines the responsibilities, operations, attributes, and relationships of

one or several classes, and determines how they will be adjusted to the

implementation environment. In addition, the designer role may have

responsibility for one or more design packages, or design subsystems,

including any classes owned by the packages or subsystems.

Developer /

Integrator

Responsible for developing and testing components, in accordance with

the project’s adopted standards. Additionally, the Developer / Integrator

integrates components into the system.

Tester Responsible for the core activities of the test effort, which involves

conducting the necessary tests and logging the outcomes of that testing.

Deployment

Manager

Provides the overall Configuration Management (CM) infrastructure

and environment to the product development team.

Technical Writer Responsible for writing a meeting minutes document after each team-

wide meeting and making it available to all team members.

System

Administrator

Responsible for maintaining the project web site, which contains

project news, general project information and project documentation.

Plan Phases and Iterations task has the same responsibility as performed in the

Inception Iteration I1 of the Inception Phase. We know that this task has an

119

importance for the project that the most common estimations about the project are

made here. From the previous iteration we obtained an initial overview of the overall

duration of the project. By the help of this view we complete the estimations about

the budget of the project within this task. This task is concluded with the revision of

the Software Development Plan, and estimations about budget of the project as

shown in the Figure 8.7.

3.2.4 Budget

The budget for the Inception Phase is $100,000.00.
The budget for the Elaboration Phase is $200,000.00.
The budget for the Construction Phase is $300,000.00.
The budget for the Transition Phase is $150,000.00.

Figure 8.7 Budget

Project Planning Review task of Figure 8.6 helps describing the review of Software

Development Plan. As we mentioned in the tasks of the previous iteration, key

activity to be performed is a meeting. All decisions about approval of the work

products that are produced will be made at this meeting again. At the end of Plan the

Project sub-activity Review Record is handled again to approve the revised Software

Development Plan. If there exists any missing parts or mismatching concepts with

the project then Software Development Plan is sent back to the project manager to

review it.

Plan the Integration sub-activity in Figure 8.5 plans the integration of the system

and composed of one task as shown in the Figure 8.8.

Figure 8.8 Plan the Integration Task

Plan System Integration task identifies the plan of integration. The first step of the

task is defining the subsystems, if available. In complex systems we have to define

build sets to manage the complexity. The purpose of defining these build sets is to

make it easier to do the integration planning. The task is concluded with an

Integration Build Plan (see Appendix C.I.2) that defines the details of the integration

120

for the current iteration. Build for the project is given in the Integration Build Plan

as shown in the Table 8.2.

Table 8.2 Build Set

Build 1 This build will include the use cases Login, Logout.

Build 2 This build will add the use cases Insert User, Update User, Delete User.

Ongoing Management and Support on Figure 8.2 activity covers the various

management and support activities that are repeated on an ongoing basis throughout

the project. It is composed of five sub-activities as shown in the Figure 8.9.

Figure 8.9 Ongoing Management and Support Sub-Activities

Manage Iteration sub-activity contains the activities that begin, end and review the

iteration. It consists of five major tasks as shown in the Figure 8.10.

Figure 8.10 Manage Iteration Tasks

121

Acquire Staff task has the same responsibility as primarily performed in the

Inception Iteration I1 of the inception phase. Within this task teams are formed with

required skills for the Elaboration Iteration E1. Role to specific members are

assigned in the team for the Elaboration Iteration E1 by the project manager. If any

changes occurs on team members then Software Development Plan is revised to

represent that changes and assign a role to new members.

Initiate Iteration task allocates team members to the activities identified for the

current iteration. In the previous tasks members are assigned into specific roles.

Now activities are assigned to team members that they have to perform. For that

operation Work Order (see Appendix C.I.3) is revised and work order reports are

prepared for each team member for the Elaboration Iteration E1. Description of the

works is given in these reports as shown in the Figure 8.11.

Work Order for e-Reserve Created on: <12/02/08>

Identification

Work Order ID: <TMQ-E1-W01-01> WBS ID: <8.3.1>

Responsibility (Holder)

Team Member Q

Associated Change Reports

None

Schedule

Start: < 12/22/08> Completion: < 12/22/08> Critical Path: <NA>

Efforts and Other Resources

Staff Hours: 2 Hours Other Resources: None

Description

Work Description: Implement Test Suit

Expected Output(s): Test Suit

Signature Agreement

Project Manager: Team Member A
Signed on: <dd/mm/yy>

Work Order Holder: Team Member Q
Signed on: <dd/mm/yy>

Figure 8.11 Work Order Reports for Iteration E1

Identify and Assess Risks task has the same responsibility as primarily performed in

the beginning of the Inception Iteration I1 of the Inception Phase. As we mentioned

before, risks are dynamic elements and we have to update the Risk List to reflect the

current project status periodically for avoiding risks before they happen or handle

122

them rapidly as they appear with a minimum effect on the project. So the Risk List

(see Appendix C.I.4) is updated to capture the potential risks of the project. Within

the Elaboration Iteration E1 some other potential risks are identified and defined in a

decreasing order of priority. Some priorities of the existing risks are changed within

the new identified list and new risks are added as shown in the Table 8.3.

Table 8.3 Risks for Iteration E2

Risk

Ranking/

Magnitude

Risk Description & Impact Mitigation Strategy and/or

Contingency Plan

Medium R1 and R2 Releases may slip and not
be available by 05/12/2009.

Monitor progress against the schedule
and milestones.

Update effort to complete and time to
complete on a regular basis.

Medium Interfaces to the old legacy Library
System may introduce performance
and response time issues.

Continue to develop prototype. Monitor
this issue at weekly progress meetings.

Low The team is unfamiliar with Web

architecture and technology.

This risk may impact the ability to

deliver a Web application on time.

Train the Team on Web technologies
(to be done in the second elaboration

iteration, or E2).

Allocate time (during E2) for the
learning curve and monitor progress
weekly in elaboration.

Low Volume of users logged on during
peak periods (on holidays and special
days) may significantly degrade
system performance.

Early prototyping and extrapolation of
response time data should be done in

the elaboration phase.

Mitigated Incompatibility with internet
browsers and specific configurations
on client machines.

Address during elaboration (E2).

On Figure 8.10, Assess Iteration task evaluates the results of an iteration assess

related project information as in the Inception Iteration I1. The success or failure of

the current iteration is determined. The actual and expected results of the current

iteration are compared. Also we have to ensure that evaluation criteria for the

current iteration are realistic. Test results are also given roughly, not in details. At

the end of this task Iteration Assessment (see Appendix C.I.5) document is revised

for the Elaboration Iteration E2. Objectives that are reached within the Elaboration

Iteration E2 are given in Iteration Assessment. An example for the use cases that are

implemented are shown as in the Figure 8.12.

123

2.2 Use Cases and Scenarios Implemented

The following use cases were completed with details uncovered during the
design process:

• Login

• Logout

Figure 8.12 Objectives Reached for Iteration E2

The last task of Figure 8.10, Iteration Evaluation Criteria Review task determines

how to approve the criteria if the iteration is completed with its meeting objectives.

As we did in all previous review tasks, a meeting is planned and all materials about

the activity are distributed across related team members to perform review. At the

end of the meeting a decision is made to approve or reject the criteria for the

Elaboration Iteration E2. If the criteria are approved then the next activity will be

performed otherwise the project team should address the identified deficiencies and

re-submit revised iteration evaluation criteria for a follow-up review. Review Record

is completed at the end of meeting that captures the results of the current review

activity.

Monitor and Control Project activity of Figure 8.9 is used to capture continuing

work including monitoring project status, reporting to stakeholders, and dealing with

issues. It consists of four major tasks as shown in the Figure 8.13.

Figure 8.13 Monitor and Control Project Tasks

Schedule and Assign Work task helps project manager to schedule the work at any

iteration. As we mentioned in the previous iteration Change Requests are critical for

this task. Also for this iteration Change Requests have critical importance in this

task for project manager to fix the iteration. If necessary, the Iteration Plan E1 is

revised, and any impact on future iterations should be reflected in the Software

Development Plan. The iteration overview of the Elaboration Iteration E1 that is

reported in the Software Development Plan is shown in the Table 8.4.

124

Table 8.4 Iteration E1 Overview

Iteration Description Risks Addressed

E1 Iteration

Architectural

Prototype for

e-Reserve

Application

• Complete analysis & design for high

risk requirements
- Create Use Case Specification for each
of the Login, Logout use cases, derive an
Analysis Model, and refine it into a
Design Model.
- Document the architecture (high-level
design) in the Software Architecture
Document.

• Develops the architectural prototype

for e-Reserve application
- Code the part of the application
implementing the Login, Logout use
cases.

• Demonstrate feasibility and

performance through testing

Architectural issues related

to ERIS clarified.

Technical risks related to

ERIS mitigated.

Early prototype for user

review.

Performance risks related

to high volume of requests

mitigated on the ERIS side.

During this task Work Order is revised to ensure that responsibilities that are given

in the work order reports and schedules are satisfied. Each team member with a

specific role has its own responsibilities. If any changing occurs on these roles or on

the development team members of the project then this action have to be reported in

the Work Order document. The roles of team members are identified for the

Elaboration Iteration E1 is shown in the Figure 8.14.

2.4 Responsibilities

2.4.1 Team Members

 Each team member is assigned to a role. Here are the team’s responsibilities:
 Team Member A (TMA): Project Manager
 Team Member B (TMB): System Analyst
 Team Member C (TMC): Software Architect
 Team Member G (TMG): Test Analyst
 Team Member H (TMH): Test Designer
 Team Member L (TML): Management Reviewer
 Team Member M (TMM): Implementer
 Team Member N (TMN): Integrator
 Team Member O (TMO): User-Interface Designer
 Team Member P (TMP): Test Manager
 Team Member Q (TMQ): Tester
 Team Member R (TMQ): Database Designer

Figure 8.14 Responsibilities for Iteration E2

125

Report Status task of Figure 8.13 is performed to identify when and how the

periodic updates on the project will be done as performed in the previous iteration.

An important work product in this task is the Status Assessment (see Appendix

C.I.6). Many work products are produced until this task and many of them are still in

progress. So status of each work product is given in Status Assessment Document

for the current iteration. Risks are again given in the Status Assessment Document to

point them out. The technical progress during the Elaboration Iteration E1 is

reported in the Status Assessment as shown in the Figure 8.15.

4. Technical Progress

During this iteration, the following artifacts were produced:

• Software Development Plan

• Review Record

• Iteration Assessment

• Work Order

• Integration Build Plan

The following artifacts were updated:

• Analysis Model

• Change Request

• Design Model

• Development Infrastructure

• Implementation Model

• Software Architecture Document

• Software Requirements Specifications

• Test Evaluation Summary

• Test Ideas List

• Test Log

• Use Case Model

Figure 8.15 Technical Progress

Organize Review task of Figure 8.13 describes how to facilitate the review process

and ensure the review is undertaken appropriately. Within this task review

coordinator has to ensure that required review tasks are appropriately planned and

organized. There are various approaches to planning review tasks which are based

on factors such as team size, team culture and so on. Organize Review task is

concluded with revision of Review Records.

The last task of Figure 8.13, Conduct Review describes how to facilitate a review so

as to maximize the productivity of the reviewers and meet defined quality

requirements. This task is under the control of reviewer of the project. Conduct

Review task is concluded with revision of Review Records.

126

Referring back to Figure 8.9, Manage Changing Requirements sub-activity used to

manage changes to requirements and assesses their overall impact. It consists of two

major tasks as shown in the Figure 8.16.

Figure 8.16 Manage Changing Requirements Tasks

Structure the Use-Case Model task is performed to make the requirements easier to

understand and to maintain by structuring use case models. First of all review the

use cases that are modeled in the previous iteration to form an understanding for the

requirements. In this task use cases are analyzed in more details. Include and extend

relationships are formed between use cases. An include relationship between use

cases means that the base use case explicitly incorporates the behavior of another

use case at a location specified in the base. Only the base use case knows of the

relationship between the two use cases. An extend relationship between use cases

means that the base use case implicitly incorporates the behavior of another use case

at a location specified indirectly by the extending use case. Only the extension use

case knows of the relationship between the two use cases. Also generalization

between use cases, and between actors can be defined. As we mentioned in the

previous iteration if the number of actors and use cases becomes too large then they

could be divided into use case packages. At the end of this task the Use Case Model

(see Appendix C.I.7) is revised for the Elaboration Iteration E1 that is created in the

Inception Iteration I1. Include and extend relationships are added to the use case

diagrams as shown in the Figure 8.17.

Another work product of this task is the Glossary (see Appendix C.I.8) in which a

common vocabulary, using the most common terms in the problem domain, is

constructed. In some cases Glossary is the primary artifact that is used to capture

information about the project’s business domain. So it is important to update terms

that are defined in the Glossary.

127

4.5 <<Package>> Material Operation

Figure 8.17 Use Case Diagram

Review Requirements task identifies how to review the requirements work products.

The main purpose of this task is to review the results of the tasks that are related

with requirements. Each review should include a recommendation. These

recommendations are discussed in review meetings as done in the previous review

tasks. At the end of meetings a Review Record is created that documents the review

results.

Manage Change Requests sub-activity of Figure 8.9 is used to manage Change

Request reports. The sub-activity ensures that due consideration is given to the

impact of change on the project and that approved changes are made within a project

in a consistent manner. It consists of four major tasks as shown in the Figure 8.18.

Figure 8.18 Manage Change Requests Tasks

128

Submit Change Request task identifies to how to create a Change Request. An

advantage of this task is that it can be performed by any role who submits a change

request throughout the project lifecycle. The work product of the task is Change

Request (see Appendix C.I.9) that documents and tracks requests for a change to the

product. Change Request can include new features, enhancement requests, defects,

changed requirements, and so on. After we completed the Change Request it is

submitted to its destination. Also a stakeholder on the project can submit a Change

Request. Current problem and a proposed solution for that problem are shown in the

Figure 8.19 from the Change Request.

Current Problem

Description: Currently system is accessible
by Student, Lecturer, and Librarian. However
system cannot recognize which type of user
currently uses the system. That causes security
problems.

Critical Failure: N/A

�uisance: When accessing the system
privileges cannot be assigned.

Source of the Problem: Misunderstanding of
the Software Requirements Specification

Enhancement/�ew Requirement/Other: User types will be received first before displaying its
own form and a new attribute will be added to the user information tables.

Observation conditions: During a review of prototype of the e-Reserve System.

Proposed Change (Submitter)

Description: Add a new attribute to the user information table in the database to determine the
type of the user. Retrieve the user type from the user information tables when a student,
instructor or librarian logins the system. Access the proper functions from the form depending
on the received user type.

Figure 8.19 Change Request Sections

Review Change Requests task of Figure 8.18 performs prioritizing Change Requests.

This task determines to accept or reject a Change Request. Submitted Change

Requests are viewed by a meeting to determine if it is a valid request or not. Change

Requests include all state changes along with dates and reasons for the change. This

information will be available for any repeat reviews. At the end of this task

submitted Change Requests are reviewed. At the beginning of the meeting a Change

Request is determined that it is valid or not. If it is valid but out of scope for the

current release then it will be put in the Postponed state and will be held and

reconsidered for future releases. If a Change Request is believed to be a duplicate of

another Change Request that has already been submitted then it will be put in the

129

Duplicate state. If a Change Request has been determined to be in scope for the

current release then it will be put in the Opened state and is awaiting resolution. If it

is invalid then it will be put in the Closed state.

Confirm Duplicate or Rejected CR task of Figure 8.18 determines that the Change

Request be rejected or labeled as Duplicate. First of all, change control manager

retrieves the Change Request which will be labeled. In this task Change Requests

are examined to decide whether it is a Duplicate or it must be Rejected. In some

cases reports will return to the submitter to provide more information about the

related Change Requests. At the end of the task Change Request is updated to

represent its current status.

The last task of Figure 8.18, Schedule and Assign Work task describes all the things

that must be accomplished for an approved Change Request to be incorporated in the

development schedule. The Change Requests are examined and essential

modifications are made on them in the previous tasks within this activity. As a result

if the Change Request is to be held until a later iteration then the future iterations

have to be re-planed by updating Software Development Plan, Iteration Plan, and

Work Order documents.

Support Environment During an Iteration sub-activity of Figure 8.9 supports the

development environment for a project. It consists of one major task as shown in the

Figure 8.20.

Figure 8.20 Support Environment During an Iteration Task

Support Development task is performed to support development with hardware and

software. It regroups a large range of technical services such as, maintaining the

development infrastructure, backup, document creation and reproduction, and so on.

The task is concluded with Development Infrastructure (see Appendix C.I.10) that

includes hardware and software. As an example Project Management discipline in

the RUP and the tools that are used to perform the activities and produce the artifacts

necessary for the project development process are shown in the Figure 8.21 and

reported in Development Infrastructure.

130

3. Project Management

3.1 Hardware

This discipline is focused on the project management activities. The tools for this

include Microsoft Excel, Word and Microsoft Project. These tools are located on

each user’s desktop.

3.2 Software

The details on the minimum required software include:

• Version 2000 or higher for all three tools.

• MS Project recommended ideal version is 2007.

Figure 8.21 Project Management Discipline

Refine the System Definition activity of Figure 8.2 identifies the requirements for

the current iteration. It consists of three major tasks as shown in the Figure 8.22.

Figure 8.22 Refine the System Definition Task

Detail a Use Case task examines use cases in more details. The task begins with

reviewing the scenarios for the current iteration which is previously defined in the

Inception Iteration I1. After reviewing use cases, flow of events are detailed for each

of them. While defining flow of events for use cases it is important to be careful

about what is done in the use case. The flow of event simply defines how and when

the use case starts, how it interacts with the actors, what action does it takes, and

how it ends. In some cases one action can be divided into several sub-actions. Each

sub-action has to be defined in details as a main action. Preconditions and

postconditions for a use case are defined within the flow of events. A precondition

on a use case explains the state the system must be in order for the use case to be

possible to start. A postcondition on a use case lists possible states the system can be

in at the end of the use case. If a use case is extended by another use case it is

specified in the flow of events. At the end of the task use cases are reviewed with the

stakeholders to confirm that the required system is well understood. The Use Case

Model (see Appendix C.I.11) is reviewed that is created in the previous iteration and

flow of events is added for the use cases which are specified for the Elaboration

Iteration E1. A flow of event for the use case “Login” is shown in the Table 8.5.

131

Table 8.5 Flow of Events

Use Case Name Login

Actor Student, Instructor, Librarian

Description Student, Instructor or Librarian can access the system.

Preconditions

Post conditions Actor accessed the system successfully.

Priority High

Normal Course Login

 Actor Actions

1) Enter the username and
password.

3) -

5) If Actor reached wanted result
then press view button, if not
reached go to state 1.

System Responses

2) Check validation control.

4) If not valid go to Alternative
Course 1. If valid apply the criteria
and display the result.

6) View the account information.

Alternative Course 1

 Actor Actions

1) -

3) Correct the errors and
resubmit.

5) If Actor reached wanted result
then press view button, if not
reached go to Normal Course
state 1.

System Responses

2) Give the message that the
submitted password criterion is not
valid.

4) If not valid go to state 1. If valid
apply the criteria and display the
result.

6) View the account information.

Exceptions

 Actor Actions System Responses

Includes

Special requirements

Detail the Software Requirements task of Figure 8.22 identifies the requirements for

the system that is to be developed. The task is initiated by detailing the software

requirements clearly. These requirements can be managed by using special tools for

graphical or textual documentation. At the end of the task all the requirements are

packaged in the Software Requirements Specifications (see Appendix C.I.12)

document that captures the software requirements for the system. Some specific

functional requirements are defined in the Software Requirements Specifications for

the Elaboration Iteration E1 is shown in the Figure 8.23.

132

3.3 Librarian Module

• The user shall be able to load the LM within Web Browser.

• The initial window of the LM shall contain a label for enter user id and

password, and a button for login.

• When Librarian selects login. SRM checks the user and returns the

successful message. After successful message a new page is loaded which is

LM specific.

3.4 Server Module

• The SRM shall be the only intermediate between SM, IM, LM, and the

database.

• The SRM shall receive all the requests and format the pages.

• The SRM shall accept all connections from the SM, IM, and LM.

• The SRM shall validate and execute all requests coming from LM.

• An error of execution, communication or else shall be identified and

appropriate display.

• The SRM shall try recovery from most common errors.

Figure 8.23 Librarian and Server Modules for E1

Develop Supplementary Specifications task of Figure 8.22 is used to capture

requirements that do not apply to specific use cases. As we mentioned in the

previous iteration this task helps to capture requirements that are not readily

captured in use cases. System wide functional requirements are identified in this

task. Some constraints and compliance requirements such as licensing of the system

are given in the Inception Iteration I1 of the inception phase. In Elaboration Iteration

E1 Supplementary Specification (see Appendix C.I.13) document is revised to

capture the interfaces of the system that must be supported by the application. An

example of interfaces is depicted in the Figure 8.24.

10.2 Hardware Interfaces

All components must be able to execute on a personal computer.

10.3 Software Interfaces

Student Module, Instructor Module, and Librarian Module must be ASP running

within browser. The server Module must integrate within a DBMS through Microsoft

SQL Database Connectivity. The Server must run within a Web Server available for

Windows NT.

10.4 Communications Interfaces

Student Module, Instructor Module, and Librarian Module must communicate within

the server over a TCP/IP connection. The Server and Database components should be

located on the same host.

Figure 8.24 Interfaces

133

Define a Candidate Architecture activity of Figure 8.2 establishes an initial sketch

of the architecture. It consists of two major tasks as shown in the Figure 8.25.

Figure 8.25 Define a Candidate Architecture Tasks

Architectural Analysis task defines the architecture of the system. An architecture

overview is developed at the Inception Iteration I1 of the Inception Phase. During

architectural analysis of Elaboration Iteration E1, we focus on the high-level layers.

Within the current iteration we define the analysis mechanisms and services used by

designers. A logical view is defined for the system and it is documented in the

Software Architecture Document (see Appendix C.I.14). Logical view of a system

illustrates the key use-case realizations, subsystems, packages and classes that

encompass architecturally significant behavior. The most important classes, their

organization in service packages and subsystems, and the organization of these

subsystems into layers are described. The logical view of the system is comprised of

three main packages as shown in the Figure 8.26.

Figure 8.26 Logical View of the System

134

Use-Case Analysis task develops use case realization using predefined use cases. A

work product is created for this task which is an Analysis Model (see Appendix

C.I.15). It is the document that is created to identify set of analysis classes. Analysis

Model is used to identify the behavior of the system that illustrates how it works.

Responsibilities of analyses classes have to be identified that each analysis class

should have several responsibilities. After finding responsibilities, we have to find

associations between analysis classes that help us to understand class coupling. It is

important to focus only on associations needed to realize the use cases. Use case

realizations are reconciled that two different analysis use case realizations might

include an analysis class that is conceptually the same. So the duplications can be

reduced within this stage. Analyses classes that are identified for the Elaboration

Iteration E1 are depicted in the Figure 8.27.

Figure 8.27 Analysis Classes for Iteration E1

Behavior of use cases are defined using a work product Use Case Realization

Specification Document (see Appendix C.I.16). There should be a use case

realization for each use case which needs to be expressed in the design model. This

document enables the transition between requirements, and analysis and design

tasks. For each use case realization within the Use Case Realization Specification

Document there is one or more interaction diagrams depicting its participating

objects and their interactions. We know that there are two types of interaction

diagrams: communication diagrams and sequence diagrams. They express similar

information, but show it in different ways. Communication diagrams show the

communication links, whereas sequence diagrams show the explicit sequence of

messages. Within the Use Case Realization Specification document sequence

135

diagrams and communication diagrams are created for the use cases Login and

Logout that are planned to be developed in Elaboration Iteration E1. Use Case

Diagram, Communication Diagram and Sequence Diagram for the use case “Login”

is given in Figures 8.28 – 8.30 respectively as example.

Figure 8.28 Use Case Diagram for Login

At the end of current task a review is performed to verify that the analysis objects

meet the functional requirements and if the analysis objects are consistent.

Figure 8.29 Communication Diagram for Login

136

137

Refine the Architecture activity of Figure 8.2 completes the architecture for the

current iteration. It consists of seven major tasks as shown in the Figure 8.31.

Figure 8.31 Refine the Architecture Tasks

Identify Design Mechanisms task adjusts analysis mechanisms into design

mechanisms. First of all clients of analysis mechanisms are identified by looking at

the characteristics they require for that mechanism. Characteristic profiles are also

identified. They can be performance, footprint, security, economic cost and so on.

All clients of analysis mechanisms are grouped according the characteristic profiles.

This grouping is defined in Software Architecture Document that is also produced

by Design Model (see Appendix C.I.17). As a result three layers are used as shown

already in Figure 8.26.

Identify Design Elements task identifies subsystems, classes, interfaces, events and

signals. In the first step of this task analysis classes are refined into appropriate

design model elements. Analysis classes are very simple and they can be directly

mapped to the design classes. Design classes are packaged in order to maintain

configuration management processes. In some cases analysis classes become too

complex to depict the behavior of a single class alone. In such a case analysis classes

mapped into design subsystems which is modeled as a UML component having only

interfaces as public elements. If a subsystem is defined within the system then we

have to identify interface for each subsystem. For our project we do not need a

subsystem so we do not deal with subsystem concept. At the end of the task Design

Model (see Appendix C.I.18) the resulting document is reviewed. In the previous

task we defined only the packages that will hold the design classes. Now for each

package design classes are identified and placed under appropriate layers. The

current version of Design Model Document contains the design classes for the

Elaboration Iteration E1 as depicted in the Figure 8.32.

138

2.1.1 Presentation Package

Figure 8.32 Presentation Layer Design Classes for Iteration E1

Incorporate Existing Design Elements task of Figure 8.31 refines the Design Model.

Reusable model elements from other projects or marketplace are incorporated. In the

previous task design classes are identified and placed into appropriate packages and

now all design classes are examined to identify relationships between them. The

Design Model (see Appendix C.I.19) Document is revised to give the detailed

relationships between design classes as shown in the Figure 8.33 on the next page.

Some of the common components to other projects can provide many of the

architectural mechanism needed for current project. In the next step of the task the

logical view of the system is revised where new elements will be added to the

Design Model and it requires updating logical view. For our project no updating is

required that all elements that are added to Design Model adapts the current logical

view of the system. Newly added elements in Design Model are represented in

Software Architecture Document (see Appendix C.I.20) as in the Design Model

document that is shown in Figure 8.32 because the design classes and packages are

important from an architectural perspective. This task performs the identification of

interactions between analysis classes.

Structure the Implementation Model task of Figure 8.31 establishes the structure of

the implementation elements. Main goal in this task is to construct first version of

the Implementation Model (see Appendix C.I.21) document. Implementation model

structures are represented in the work product Implementation Model by packages

and component diagrams. Design Packages will have corresponding Implementation

139

Subsystems and dependencies between these subsystems are identified carefully. For

each subsystem it is defined which other subsystems it imports. The Build package

is created that is the topmost level of the hierarchy of the implementation

subsystems and represents a collection of executable programs produced by a build

process. For the e-Reserve project packages from the Implementation Model are

shown in the Figure 8.34 on the next page. At the end of the task the Software

Architecture Document (see Appendix C.I.22) is revised and the implementation

view is added. This section of the document contains component diagrams that show

the layers and the allocation of implementation subsystems to layers, as well as

import dependencies between subsystems as shown in the Figure 8.35 on the

next page.

Figure 8.33 Design Class View for Iteration E1

Describe Distribution task of Figure 8.31 is used to describe how the functionality

of the system is distributed. The distribution requirements and the network

configuration are analyzed within this task. The initial design of the deployment is

made in the previous iteration. Any changes on deployment view have to be reported

in Deployment Model that is previously created.

140

Figure 8.34 System Access – Overview (Level 1)

 8.1 App_Code

App_Code package includes the C# class files in Presentation, Application, and Data

Access Layers that are previously identified in Logical View of the system.

Figure 8.35 Implementation Model Package

Review the Architecture task is the last task of Figure 8.31 and it performs the

review of the architecture. At the end of the Inception Phase, there is usually little of

a concrete architecture in place. The most natural place for a software architecture

assessment is at the end of the elaboration phase. For this iteration of the elaboration

phase the scope and the goals of the review is defined. The review can be done in

three different approaches as representation driven, information driven, or scenario

driven. In representation driven review, a representation of the architecture is build

and questions are asked on this representation. In information driven review, a list of

information data is produced that is necessary for reasoning and then this

information is compared to the requirements. In scenario driven review, general

questions are transformed and asked in a set of scenarios. At the end of the review of

the architecture defects are identified and detailed again in Review Record as done

in the previous tasks.

Referring to Figure 8.2, Develop Components [within Scope] activity performs a

group of sub-activities that are required to develop components within the scope

141

identified in the iteration plan for Elaboration Iteration E1. It is composed of four

sub-activities as shown in the Figure 8.36.

Figure 8.36 Develop Components Sub-Activities

Analyze Behavior sub-activity transforms behavioral descriptions into a set of

elements upon which the design can be based. It consists of four major tasks as

shown in the Figure 8.37.

Figure 8.37 Analyze Behavior Tasks

Use-Case Analysis task develops use case realization using predefined use cases.

This task is performed one more time while developing components. Use Case

Realization Specification document is created in the previous tasks with the use case

diagrams, sequence diagrams and communication diagrams. Now object diagrams

142

are added to Use Case Realization Specification (see Appendix C.I.23) document to

express the behavior of the use case in more details. These object diagrams show the

relations and constraints between classes and objects involved in the use case. The

object diagram for the use case Login is created as shown in the Figure 8.38.

Figure 8.38 Object Diagram for Use Case Login

Design the User Interface task conducts graphical user interface design. The task is

initiated by describing the characteristics of the users of the system. Task continues

with identifying primary requirements that are captured in the previous activities.

Primary windows for the system are created which are the essential windows when

the user accesses the system. An important point is to always minimize the number

of primary windows. Based on defined primary windows a Navigation Map (see

Appendix C.I.24) is created which describes the structure of the user interface

elements in the system and their pathways. This document contains only the main

pathways, not a detailed view of the path. Potential paths are identified for the

Elaboration Iteration E1 as shown in the Figure 8.39.

Figure 8.39 �avigation Map for Iteration E1

By the help of navigation maps users can simply figure out how many steps they

require to reach their target page in the system.

143

Prototype the User-Interface task of Figure 8.37 explains how to develop a graphical

user interface. A prototype for the user interface is created for the Elaboration

Iteration E1 and documented in User Interface Prototype (see Appendix C.I.25)

document that shows an example of user interface. In this task it is important to

work closely with potential users of the system when prototyping the user interface

that helps designers to discover any uncovered requirements. These prototypes

provide a baseline for the system’s user interface. Prototyping focuses on visualizing

the significant aspects of the user interface instead of achieving a good structure and

modularization of the source code. Prototyping is much cheaper than developing real

interfaces at the early stages of the development. Because several changes on user

interfaces and code are needed that causes waste of budget. A user interface

prototype is created for the Elaboration Iteration E1 that is documented in the User

Interface Prototype document as shown in the Figure 8.40.

Figure 8.40 User Interface Prototype for Iteration E1

The last task of Figure 8.37 is Review the Design task and it defines a review of the

design up to current task. The Design Model is reviewed to ensure that it is well

formed. Within the Elaboration Iteration E1 the review on Design Model is focused

144

on the overall structure of it. Also the Use Case Realizations are reviewed to ensure

that the behavior of the system matches the required behavior. Results and defects

are reported in Review Records as in all review meetings.

Design Components sub-activity of Figure 8.36 refines the design of the system. It

consists of three major tasks as shown in the Figure 8.41.

Figure 8.41 Design Components Tasks

Use-Case Design task refines use case realizations that are defined in the previous

tasks. Analysis mechanisms are identified in the previous tasks within this task any

applicable design mechanisms are incorporated into the use case realizations. For

each use case realization the interaction between design objects are shown by using

sequence diagrams. The interaction between an object and an actor is represented

briefly in sequence diagrams. Also each flow variant can be defined in a separate

sequence diagram. Flow of events is refined within this task in which they are

defined in the previous tasks and may need to be added additional description to the

sequence diagrams using annotations or notes. At the end of the task design model is

checked, but not in detail, to verify the work is in the right direction.

Class Design task is used to design the class structure of a component in the system.

The main goal in this task is to ensure that classes provide the behavior required by

the use case realizations. Classes are created firstly while producing analysis classes

as boundary, control, and entity classes. Boundary classes represent the interface so

the design of them depends on the user interface development tools that are available

to the project. Entity classes represent manipulated units of information and they are

detailed in when designing the database. Control classes are responsible for

managing the flow of a use case. In the next step of the task, visibilities are defined

for each class. Operations are defined for each class that is required for message

passing in a sequence diagram. After defining operations briefly their visibilities are

identified. Attributes are identified that are needed by the class to carry out its

operations. Name, type, and visibilities of attributes are identified. Finally

associations and generalizations between classes are identified. At the end of the

145

task design model is checked again as in the previous task, but not in detail, to verify

the work is in the right direction.

Review the Design task defines a review of the design for the current activity. It is

primarily performed in the previous sub-activity. The Design Model and Use Case

Realizations are reviewed again but including current changes to these documents.

Results and defects are reported in Review Records as in all review meetings.

Design the Database sub-activity of Figure 8.36 designs the corresponding database

structures. It consists of two major tasks as shown in the Figure 8.42.

Figure 8.42 Design the Database Tasks

Database Design task defines the way of designing a database for the current

iteration. Before beginning the task optionally a logical data model can be created. It

is not a necessity but provides an idealized view of the key logical data entities and

their relationships. It is in the third normalized form that minimizes the redundancy.

The main goal of this task is to develop a physical design of the database. The

physical database design represents the physical structure of the database. This

physical data model is represented in Data Model (see Appendix C.I.26) that

describes the logical and physical representations of persistent data used by the

application. The system access operations database tables created for the Elaboration

Iteration E1 is depicted in Figure 8.43.

Figure 8.43 Database Tables for Iteration E1

For developing physical database designs, first of all domains are defined. Then the

physical data model elements are designed using tables and columns in tables. One

or more columns are selected as a primary key to uniquely identify the row of tables.

146

For Elaboration Iteration E1 it is not necessary to detail the design because there is

only one database table in our application.

Review the Design task of Figure 8.42 defines a review of the design for the current

activity. This task is performed to verify that design model fulfills the requirements.

Now Data Model is reviewed in addition to Design Model to ensure that it fulfills

the objectives. As in all previous review tasks, a meeting is performed then the

results and defects are reported in Review Records for that task.

Referring to Figure 8.36, Implement Components sub-activity completes a part of

implementation. It consists of two major tasks as shown in the Figure 8.44.

Figure 8.44 Implement Components Tasks

Plan Subsystem Integration task plans the order in which the elements contained in

an implementation subsystem should be integrated. First of all the build is defined

by selecting the use cases and scenarios for the Elaboration Iteration E1. In the next

step of the task, classes are identified that will be participated in the selected

scenario from use case realizations. These scenarios are described in the use case

realizations by using sequence and communication diagrams. The task concludes by

revising the Integration Build Plan (see Appendix C.I.27) that is added integration

build one for the Elaboration Iteration E1 as shown in the Figure 8.45.

Integration Build One includes the following Subsystem and Components:

Subsystem Components

System Access • LoginForm CS File

• UserForm CS File

• SystemAccess CS File

• WebClient CS File

• SystemAccessData CS File

• UserAccessTable DBO File

• back GIF File

• logo GIF File

• Default ASPX File (index file)

• Student ASPX File

• Instructor ASPX File

• Librarian ASPX File

Figure 8.45 Build for Iteration E1

147

Review Code task of Figure 8.44 is performed to review the code to verify the

implementation. There three different techniques for reviewing the code. By

inspection technique, the implementation is examined in detail. By walkthrough

technique, the author of the implementation leads one or more reviewers through the

implementation. By code reading technique, one or two persons read the code. At

the end of the task, a meeting is performed then the results and defects are reported

in Review Records for that task, as in all previous review tasks.

Integrate and Test activity of Figure 8.2 includes tasks to fully integrate and test

the product. It is composed of three sub-activities as shown in the Figure 8.46.

Figure 8.46 Integrate and Test Sub-Activities

Verify Test Approach sub-activity represents that the techniques outlined in the Test

Approach will facilitate the planned test effort. It consists of one major task as

shown in the Figure 8.47.

Figure 8.47 Verify Test Approach Task

Implement Test Suite task identifies the grouping of tests to be executed. Test Suite

is a collection of related test cases. Test cases can be grouped together to perform

different types of activities, such as unit test, integration test, system test, or

acceptance test. First of all some Test Suite candidates are selected to be

implemented by using test ideas list. Dependencies between tests are identified. If

148

there exists any dependencies then the correct sequence of execution of the tests

have to be defined. On the other hand, identifying opportunities for reuse improves

the Test Suite maintainability. Test Suite is stabilized to resolve any dependency

problems both in terms of system state and test execution sequences. Errors can

occur when tests are executed together within a given Test Suite. So it is better to

run the Test Suite regularly as new tests are added. Unit tests are the initial tests that

will be performed for our project so a Test Suite is created for the unit tests to be run

in a given order. Every method of every class will be tested in the project so a Test

Suite (see Appendix C.I.28) is created for each class. Test Suites will be documented

in the work product that will be created in the next task.

Integrate and Validate Build sub-activity of Figure 8.46 includes activities that are

required to integrate, build and validate the build for the entire system. It is

composed of three more sub-activities as shown in the Figure 8.48.

Figure 8.48 Integrate and Validate Build Sub-Activities

Integrate each Subsystem sub-activity is used to create a consistent implementation

subsystem. It consists of three major tasks as shown in the Figure 8.49.

Figure 8.49 Integrate each Subsystem Tasks

149

Implement Developer Test task is used to create a set of test to validate components

before other tests are performed. The task begins by identifying the components that

are to be tested. While identifying components, its scope and test type is also

defined. After defining fundamental concepts, an appropriate technique is

determined to implement the tests in terms of manual and automated testing. Now it

is the time to implement the tests that are defined in the previous steps of the task.

External data sets can also be created that allows other tests to use current test

results. Finally tests are verified to ensure that they work correctly. If any defects

occur then discover it during debugging and fix it. At the end of the task a Developer

Test (see Appendix C.I.29) is produced. Developer Test defines types of testing that

are used in the project, such as Function Testing, User Interface Testing, Data and

Database Integrity Testing, Performance Profiling, Load Testing, Volume Testing,

Configuration Testing. Testing of the project is begun with unit testing that is

reported in the Developer Test as shown in the Figure 8.50.

5. Unit Tests

A new project is created named TesteReserve in the project repository. Unit tests are
performed for each class and its each method of the project eReserve. Generated unit
test classes are listed as follows:

• System Access

• WebClientTest

• SystemAccessDataTest

• SystemAccessTest

• LoginFormTest

• UserFormTest

Figure 8.50 Unit Test for Iteration E1

Execute Developer Tests task of Figure 8.49 runs and evaluates the tests designed in

the previous task before more formal tests are performed. For each unit in the test

suit a sequence of operations are performed. First of all the test environment is set

up and initialized then each unit test is executed. Execution of each unit test is

examined to ensure that they complete its execution successfully. If any test is halted

for any reason, after determining and correcting the problem test is executed again

from the beginning. When testing is completed, the test results are reviewed to

ensure the test results are reliable. At the end of the task the Test Log (see Appendix

C.I.30) is produced which is the raw output captured during a unique execution of

the tests. The Test Log represents the output resulting from the execution of each

150

Test Suite that is defined in the previous tasks. As an example, the execution of a

Test Suit is resulted by a Test Log in which a small partition of it is shown in the

Figure 8.51.

<UnitTestResult

 executionId="9413f140-8368-4c25-a08a-513b345b791d"

 parentExecutionId="8853e85e-024f-4ebe-bf84-35ab80c98ec5"

 testId="1d7266db-328e-128e-410f-7be4f56c85f9"

 testName="checkSessionTest"

 computerName="TUFAN-PC"

 duration="00:00:01.3569185"

 startTime="2008-12-29T11:59:55.5772166+02:00"

 endTime="2008-12-29T11:59:56.9990916+02:00"

 testType="13cdc9d9-ddb5-4fa4-a97d-d965ccfc6d4b"

 outcome="Passed"

 testListId="8c84fa94-04c1-424b-9868-57a2d4851a1d">

</UnitTestResult>

Figure 8.51 Unit Test Result of checkSessionTest

Integrate Subsystem task of Figure 8.49 integrates the elements in an

implementation subsystem, then deliver the implementation subsystem for system

integration which will be performed in the next task. The order of implementation

elements and integration subsystem is previously defined. So the implementation

elements are integrated in a bottom up fashion as in their defined order. At each

increment only one element is added to the system. After performing all increments,

the implementation subsystem is delivered into the system integration.

Integrate the System sub-activity of Figure 8.48 integrates implementation

subsystems to create a new consistent version of the overall system in the current

iteration. It consists of one major task as shown in the Figure 8.52.

Figure 8.52 Integrate the System Task

Integrate System task integrates the implementation subsystems into a build.

Depending on the complexity and the number of subsystem to be integrated, the

build is produced in a number of steps. The sequence of components that is to be

integrated is previously defined in the Integration Build Plan (see Appendix C.I.27)

and the details about the build are documented in Implementation Model (see

Appendix C.I.21). After performing all steps, the build becomes ready for system

151

testing. When the build testing is finished, associated baselines are promoted by

marking baselines as having passed or failed a certain level of testing.

Validate Build Stability sub-activity of Figure 8.48 performs validation operations

that if the build is stable enough for detailed test and evaluation effort to begin. It

consists of one major task as shown in the Figure 8.53.

Figure 8.53 Validate Build Stability Task

Execute Test Suite task executes the appropriate collections of tests required to

evaluate product quality. First of all the test environment is established to execute

the Test Suite. Tools are configured that is used in the Test Suite execution. After

setting the environment, the appropriate time is selected and the Test Suite is

executed. The Test Suite is previously executed in the previous tasks by the

implementer, but now it is executed by the tester and a new version of Test Log is

obtained at the end of task. The steps for executing a Test Suite are same as done in

the previous tasks.

Test and Evaluate [within Scope] sub-activity of Figure 8.46 includes the activities

required for testing within a particular scope. It is composed of three more sub-

activities as shown in the Figure 8.54.

Figure 8.54 Test and Evaluate Sub-Activities

152

Test and Evaluate sub-activity achieves appropriate breadth and depth of the test

effort to enable a sufficient evaluation of the items being targeted by the tests. It

consists of five major tasks as shown in the Figure 8.55.

Figure 8.55 Test and Evaluate Tasks

Identify Test Ideas task is used to identify test cases. The task begins with

identifying the test motivators that driving the test effort for the Elaboration Iteration

E1. Team members brainstorm to create potential test ideas and the most appropriate

ones are documented in the Test Case (see Appendix C.I.31) document for each use

case included within the current iteration. At the next step all test ideas are refined to

make further revisions and improvements. At that moment it is very important to

collect many test ideas as much as possible. Finally the task concludes by verifying

it to ensure that has been completed appropriately. The Test Case created for the

Login use case is depicted in the Table 8.6 (V: Valid, I: Invalid).

Table 8.6 Test Case for Use Case Login

TC

ID #

Scenario �ame Page

Info

User

ID

Password User

Type

Expected Result

Li1 Successful Login V V V V Successful Login.

Li2 Invalid Redirection I n/a n/a n/a Error Message. Home

Page is not available.

Li3 Incorrect Validation

(No User ID)

V n/a V n/a Error Message. Return to

Basic Flow 2.

Li4 Incorrect Validation

(No Password)

V V n/a n/a Error Message. Return to

Basic Flow 2.

Li5 Incorrect Validation

(No User ID and

Password)

V n/a n/a n/a Error Message. Return to

Basic Flow 2.

Li6 Incorrect Access V I I n/a Redirected to home page.

Return to Basic Flow 2.

Li7 Invalid User Form V V V I Error Message. Return to

Basic Flow 1.

153

Structure the Test Implementation task of Figure 8.55 defines the overall structure

for the test suite implementation. Structuring the test implementation begins with

examining the test approach, target test items and assessment needs to understand

how the testing will be assessed. After performing this step, an initial Test Suite is

structured before its implementation. Test cases are produced in the previous task so

the only remaining work is assembling them with the Test Suit. The Test Suite

structure is adapted to reflect team organization and tool constraints to work with the

team responsibility assignments. Within Test Suites, each Test Case is called in a

prescribed order so the test designer has to be ensuring the correct system state is

passed through from one Test Case to the next. Some initial dependencies between

Test Suite elements are also defined at current task. Finally Test Suite structure is

refined to make necessary adjustments to maintain the integrity of the test

implementation.

Implement Test Suite task identifies which tests should be executed together. This

task is primarily performed in the previous activities but for the unit testing. Now the

Test Suite has to be implemented for the Test Cases. Firstly the candidate Test Suite

is defined by reviewing Test Cases that are related with each other. All steps are

performed again same as done for the unit testing to the workspace that is previously

reported in the Developer Test. There are only two Test Cases for the Elaboration

Iteration E1 and they are placed in a Test Suite (see Appendix C.I.32) System

Access Operations that holds Login and Logout Test Cases.

Execute Test Suite task of Figure 8.55 executes the appropriate collections of tests

required to evaluate product quality. This task is again primarily performed in the

previous activities but for the unit testing. Now the Test Suite has to be executed for

the Test Cases. The test environment is established to execute the Test Suite and the

tools are configured. After all configurations are finished, the Test Suite is executed.

Execution of each Test Case is examined to ensure that they complete its execution

successfully. If any test is halted for any reason, after determining and correcting the

problem Test Suite is executed again from the beginning. At the end of the execution

of Test Suite a Test Log (see Appendix C.I.33) is obtained that contains the raw

output from Test Cases. A Sample Test Log from the execution of the Test Suite is

shown in the Table 8.7.

154

155

The last task of Figure 8.55, Determine Test Results task reports and summarizes the

test findings. The task begins by forming an understanding on resulting problems.

Test Logs are analyzed and the Test Results (see Appendix C.I.34) document is

created that provides a detailed assessment of the quality of the target test items and

the status of the test effort. Test Results document summarizes the status of Test

Cases after their execution as shown in the Table 8.8.

Table 8.8 Test Case Login Execution Results

Test Results – Login

Test Case Status

Li1 Succeeded

Li2 Succeeded

Li3 Succeeded

Li4 Succeeded

Li5 Succeeded

Li6 Succeeded

Li7 Succeeded

By using the summary in Test Results document a Defect Report (see Appendix

C.I.35) is created for each failed test. It is important for Defect Report to be

understandable and unambiguous. A sample defect report is given in Figure 8.56.

This report identifies the problem occurred in testing effort and provides candidate

solutions, as many as practical to that problem. It provides an indication to the

management and development staff of the severity of the problem. After specifying

the problems and their solutions task continues by giving a feedback on the current

perceived quality in the software product. An assessment is made to identify the

areas that have not yet been addressed in terms of quality risk. At the end of the task

a Test Evaluation Summary (see Appendix C.I.36) is created that organizes and

represents a summary analysis of the Test Results and key measures of test for

review and assessment. In the Test Evaluation Summary document a summary

assessment of the test coverage analysis is performed. To evaluate test execution

coverage, Test Logs are reviewed. So the ratio between how many test cases has

been performed in this test cycle and a total number of tests for all intended target

test items, and the ratio of successfully performed test cases are determined. Also the

defect sources and their status are reported. The requirements-based test coverage is

reported in the Test Evaluation Summary as shown in the Figure 8.57.

156

Defect Report for <Project �ame> Created on: <dd/mm/yy>

Identification

Title:

Priority: Status:

Submitted on:

Defect Report ID: <>

Submitter: Type: <>

Current Defect

Description:
Critical Failure:

�uisance:

Source of the Problem:

Observation conditions:

Proposed Change (Submitter)

Description:

Proposed Change (Review Team)

Approval:

Reviewed Description:

Affected Configuration Items Category Error Fix

Resolution

Affected number lines of code:

Estimated effort (staff hours):

Assessment

Test Methods:

Test Cases:

Figure 8.56 Defect Report

157

3. Requirements-based Test Coverage

The tests to be performed on the System Access are defined in the appropriate
documents. The test coverage results are as follows:

Module Performed Test
Cases

Successful Test
Cases

Failed Test Cases

Login 7 7 0

Logout 3 2 1

Total 10 9 1

Ratio Test Cases Performed = 10/10 = 100%
Ratio Test Cases Successful = 9/10 = 90%

The area of tests with the highest failure rate was:

• Load tests involving access to the e-Reserve System.

Figure 8.57 Requirements-based Test Coverage for Iteration E1

Achieve Acceptable Mission sub-activity of Figure 8.54 delivers a useful evaluation

result of the test efforts to the stakeholders. It consists of one major task as shown in

the Figure 8.58.

Figure 8.58 Achieve Acceptable Mission Task

Assess and Advocate Quality task identifies quality gaps, assesses their risks and

finds acceptable solutions. Test Evaluation Summary is examined to perform this

task efficiently. This step deals with assessing the software quality by gathering

information. Test Results are examined based on the Test Evaluation Summary.

Also the Change Requests are examined to gain more information about the possible

risks and their solutions. Each gap in quality is identified and the associated impact

and risk of each issue is assessed that creates the gap. Potential mitigation and

contingency strategies are considered for each gap. The initial findings are

formulated to discuss them with the team members. It is an important work to

validate performed thoughts. Work priority is negotiated to advocate for an

appropriate solution that does not reduce the quality of the product. Monitoring the

work progress is an important issue in this task that provides to remain supportive on

the resolution of the issue. At the end of the current task the resolutions for key

issues are confirmed that should improve the quality.

158

Improve Test Assets sub-activity of Figure 8.54 is used to maintain and improve test

assets. It consists of one major task as shown in the Figure 8.59.

Figure 8.59 Improve Test Assets Task

Define Test Approach task defines the test strategies. After performing the desired

tests, this task is handled to improve test assets by examining the Test Strategy

document that is previously created in the Iteration I1. All test motivators are

examined and for each of them it is considered that what test approach and

associated techniques might be required to address them. Completeness of the test

approaches is considered. After completing all tests, existing test techniques are

identified to improve test approaches. In the case of insufficient existing test

techniques, new test techniques could be identified briefly.

Recall that the last activity of Figure 8.2 was Plan for �ext Iteration activity that

guides project team to the next iteration which is Elaboration Iteration E2. It consists

of two major tasks as shown in the Figure 8.60.

Figure 8.60 Plan for �ext Iteration Tasks

Develop Iteration Plan task composes an iteration plan. The scope of the next

iteration is determined. In the elaboration iterations scope is defined by risks,

criticality, and coverage. Risks have to be mitigated as early as possible. For

criticality, project manager have to be sure that the most fundamental function or

services provided by the system are included. For coverage, project manager have to

be sure that the architecture addresses all aspects of the software to be developed.

The iteration evaluation criteria for Iteration E2 are defined. In elaboration phase we

are focusing on creating a stable architecture so the evaluation criteria are focused

on assessing the stability of the architecture. Finally Elaboration Iteration E2

activities are defined based on the goals. At the end of the task an Iteration Plan

159

(see Appendix C.I.38) is created for the Elaboration Iteration E2. The iteration

overview for this iteration is depicted in the Table 8.9.

Table 8.9 Iteration E2 Overview

Phase Iteration Description Risks Addressed

Elaboration
Phase

E2 Iteration

Architectural

Prototype for

System User

Connectivity

and Access

• Train the team on Web

Technologies.

• Complete analysis & design for

high risk requirements
- Create Use Case Specification for
each of the Insert User, Update
User, Delete User use cases, derive
analysis elements and refine the
Design Model.
- Refine the architecture (high-level
design) in the Software Architecture
Document.

• Refine the architectural prototype

for system user connectivity and

access, so it establishes the

connectivity between ERIS and

System Users
- Code the elements related to the
Insert User, Update User, Delete

User use cases.

• Demonstrate feasibility through

testing (integrate as necessary)

Risks of low skills
related to Web
technologies and
unknown
technology
mitigated.

Architectural issues
related to Web
technologies
partially clarified.

Technical risks
related to Web
technologies
partially mitigated.

Iteration Plan Review task determines to approve the proposed work plan for the

current iteration or not. It is held after the current iteration has been developed. For

this review operation again a meeting is planned and all materials about the activity

are distributed across related team members to perform review. It is important to

provide sufficient lead time to allow the participants to review the project materials

that will be used as the basis for the approval decision. There is a consideration with

this task is that at the end of the review we determine to begin next iteration or not.

So the Review Record for the current task has to be created carefully by capturing

any important discussions or action items, and recording the result of the Iteration

Plan Review.

After we have performed the Iteration Plan Review task of Elaboration Iteration E1

we decided to approve proposed work plan for the current iteration which means that

we have completed work products of the current iteration successfully. Elaboration

Phase Iteration E1 work products are tabulated in Table 8.10.

160

Table 8.10 Elaboration Iteration E1 Work Products (APPE�DIX C.I)

eReserve_SoftwareDevelopmentPlan_2.0

eReserve_IntegrationBuildPlan_1.0

eReserve_WorkOrder_2.0

eReserve_RiskList_2.0

eReserve_IterationAssessment_2.0

eReserve_StatusAssessment_2.0

eReserve_UseCaseModel_2.0

eReserve_Glossary_2.0

eReserve_ChangeRequestCR_01_1.0

eReserve_DevelopmentInfrastructure_1.0

eReserve_UseCaseModel_2.1

eReserve_SoftwareRequirementsSpecifications_2.0

eReserve_SupplementarySpecification_2.0

eReserve_SoftwareArchitectureDocument_2.0

eReserve_AnalysisModel_1.0

eReserve_UseCaseRealizationSpecification_1.0

eReserve_DesignModel_1.0

eReserve_DesignModel_1.1

eReserve_DesignModel_1.2

eReserve_SoftwareArchitectureDocument_2.1

eReserve_ImplementationModel_1.0

eReserve_SoftwareArchitectureDocument_2.2

eReserve_UseCaseRealizationSpecification_1.1

eReserve_NavigationMap_1.0

eReserve_UserInterfacePrototype_1.0

eReserve_DataModel_1.0

eReserve_IntegrationBuildPlan_1.1

eReserve_TestSuite_1.0

eReserve_DeveloperTest_1.0

eReserve_TestLog_1.0

eReserve_TestCase_1.0

eReserve_TestSuite_1.1

eReserve_TestLog_1.1

eReserve_TestResults_1.0

eReserve_DefectReportDF_01_1.0

eReserve_TestEvaluationSummary_1.0

eReserve_ProjectPhasePlan_2.0

eReserve_IterationPlanE2_1.0

eReserve_Build_1.0

161

8.2 Elaboration Iteration E2

We have successfully completed Iteration E1 of the Elaboration Phase. Now we are

ready to begin development of Elaboration Iteration E2 that is the final iteration of

the Elaboration Phase. In this iteration our purpose is to complete analysis and

design for all remaining high risk requirements of the e-Reserve project which is the

User Operations. The activities performed in Elaboration Iteration E2 of the

Elaboration Phase are the same as done in the Elaboration Iteration E1 (see Figure

8.2 on page 115). Tasks for all activities in Elaboration Iteration E2 are also same as

in Elaboration Iteration E1 and can be found in the previous section. It is depicted in

the Iteration Plan (see Appendix C.I.38) that is created for the Elaboration Iteration

E2 at the end of the previous iteration. This Iteration Plan defines the activities and

tasks of the current iteration briefly within a schedule.

In the previous iteration, we implemented the system access capability of the

e-Reserve System. Now it makes sense to give system the capability of user

operations that includes the use cases are implemented within Elaboration Iteration

E2 as follows:

• Insert User

• Update User

• Delete User

They are the core use cases and have a great importance for further operations that

will be implemented in construction phase iterations. So by implementing these use

cases early in the project, the risks would be mitigated by the testing that would

occur during the rest of the project.

Some of the work products that were previously created in Elaboration Iteration E1

are updated with additional requirements and changes. Remaining work products are

created newly to suit the specific objectives of Elaboration Iteration E2 that are

listed in the Iteration Plan for the Elaboration Iteration E2. Complete set of work

products that are created and updated within the Elaboration Iteration E2 can be

found in Appendix C.II.

162

The current iteration of the Elaboration Phase again includes the analysis of the

problem domain. As mentioned before, analysis means finding the right things to do,

after it is clarified, the probability that the system fulfills its goals is increased and

the amount of just-in-case programming minimized. Creation of the Use Case Model

is one part of this analysis which includes the uses cases and their flow of events. So

the flow of events for the related use cases are added in Use Case Model (see

Appendix C.II.8) within the current iteration. As an example Table 8.11 depicts the

flow of events created for the use case “Insert User”.

Table 8.11 Flow of Events for Insert User

Use Case Name Insert User

Actor Librarian

Description Librarian adds new user to the system.

Preconditions Login must be satisfied and Librarian must have enough permission.

Post conditions User successfully created.

Priority Low

Normal Course Insert User

 Actor Actions

1) -

3) -

5) Fill the form and submit.

7) -

System Responses

2) Checks permission of Librarian.

4) If Librarian has enough
permission then display page. If
Librarian has not enough
permission then go to alternative
course 1.

6) Create user and integrate it with
system.

8) Give message to Librarian that
user added to system successfully.

Alternative Course 1

 Actor Actions

1) -

System Responses

2) Give message that you have not
enough permission to the Librarian.

Exceptions

 Actor Actions System Responses

Includes Login

Special requirements

163

The iteration continues with analyzing the iteration specific use cases that are

defined in the Use Case Model. Now we have to identify a preliminary mapping of

required behavior onto modeling elements in the system for the Elaboration Iteration

E2. So the Analysis Model is updated (see Appendix C.II.11) that was previously

created during the analysis of Elaboration Iteration E1 elements. This model

includes the analysis classes for the current iteration as done in the previous iteration

that is depicted in the Figure 8.61. Iteration specific analysis class diagrams have an

advantage that the designer will only deal with analysis classes that are related with

the current iteration. It reduces complexity of the view that the designer is capable to

see analysis classes created within the current iteration. Such an analysis technique,

which contains iteration specific analysis class diagrams, also provides developers to

concentrate on part of a whole much more easily during the development of the

system for the current iteration.

Figure 8.61 Analysis Classes for Iteration E2

However, the Analysis Model has an additional field for this iteration which

includes the analysis classes for overall system (also further iterations will include)

as shown in Figure 8.62. This kind of analysis classes gives the overall view of the

system. It does not have an additional property that is just the union of all analysis

classes of all iterations. Such an analysis class diagram helps us to view the whole

structure of the system that we are modeling. They also give rise to the major

abstractions of the system design. As an example Figure 8.62 shows the analysis

classes for overall system that includes the analysis classes from Elaboration

Iteration E1 and Elaboration Iteration E2.

164

Figure 8.62 Analysis Classes for Overall System

Object design is very much about assigning responsibilities, which are basically of

two types: knowing and doing. At the design the responsibility choices are usually

considered in the process of creating interaction diagrams; remember that the UML

has two diagram types for them: sequence diagrams and collaboration diagrams that

were already created in the previous iteration of the project.

The development team then created sequence diagrams and communication

diagrams based on the iteration specific use cases. Since Elaboration Iteration E2

includes very complex use cases, the sequence diagrams and communication

diagrams are also more complex than the diagrams that were created in Elaboration

Iteration E1. Within this iteration the development team spent quite a bit of time

analyzing the user operations.

The sequence diagram is created for the Insert User use case as shown in the Figure

8.63 to understand which objects will be needed and how to interact with those

objects. Then the communication diagram is created for the same use case as shown

in the Figure 8.64 to understand all of the effects on a given object and for algorithm

design. The Insert User sequence and communication diagrams are one set of the

interaction diagrams that are to be handled for the user operations within the

Elaboration Iteration E2 and the other interaction diagrams can be found in Use Case

Realization Specification (see Appendix C.II.12) document.

165

166

Figure 8.64 Communication Diagram for Insert User

In parallel with creation of the interaction diagrams, the design classes for the

e-Reserve system started taking form. Many new classes and associations were

added to the design class diagram within the Elaboration Iteration E2. After each

sequence diagram was created and refined the design classes are updated, so the

Design Model is updated (see Appendix C.II.14) for the Elaboration Iteration E2.

This model includes the design classes for the current iteration as done in the

previous iteration that is depicted in the Figure 8.65. Iteration specific design class

diagrams provide the same advantage that is mentioned for the iteration specific

analysis class diagrams. Also, the Design Model has an additional field for this

iteration which includes the design classes for overall system (also further iterations

will include) which gives the overall view of the system as shown in Figure 8.66.

167

168

Figure 8.66 Design Classes for Overall System

The iteration continues with graphical user interface design. We describe the

characteristics of the user operations for the system. By identifying primary

requirements, primary windows for the system are created which are the essential

windows when the user operations to be performed. Based on defined primary

windows the Navigation Map (see Appendix C.II.19) is updated which was created

in the previous iteration of Elaboration Phase. We know that by using the

Navigation Map, users can simply figure out how many steps they require to reach

their target page in the system. Potential paths that are identified for the Elaboration

Iteration E2 are added into existing paths as shown in the Figure 8.67.

Figure 8.67 �avigation Map for Iteration E2

169

The Elaboration Iteration E2 activities continue with the construction of related user

interface prototypes. So that we are able to test out the user-interface design,

including its usability before the real development starts. Insert User page prototype

is depicted in the Figure 8.68. All other user interface prototypes that are related to

the Elaboration Iteration E2 can be found in the User Interface Prototype (see

Appendix C.II.20) document.

Figure 8.68 User Interface Prototype for Iteration E2

Additionally, database tables and relations are formed as shown in the Figure 8.69

that is detailed in Data Model (see Appendix C.II.21) document.

Figure 8.69 Database Tables for Iteration E2

170

Implementing Elaboration Iteration E2 related components takes several days that is

detailed in the Iteration Plan of the Elaboration Iteration E2. These implementation

activities lead team members to achieve objectives with expected results for the

e-Reserve system within Elaboration Iteration E2.

In the next step, the implemented features are tested. First of all, unit tests are added

in this iteration to exercise the system’s user operations capability that determines

whether the individual units of source code fit for use. To perform these unit tests,

new test suite is created and implemented for the user operations. It is important to

verify that all the unit tests are executed successfully. After this verification the log

is prepared in which the results of unit tests for the user operations are presented.

Now it is time to prepare test cases to determine whether e-Reserve system meets

the required specifications by using the set of conditions and variables for the

Elaboration Iteration E2 features. So the test suite is updated to store these test cases.

After execution of test cases, the result of each test case is reported in a Test Log

(see Appendix C.II.28) as shown in Table 8.12 that depicts a part of log for the test

case insert user. This Test Log is a raw data that will subsequently be analyzed to

help determine the results of some aspect of the test effort within the Test Results

(see Appendix C.II.29) and more detailed in Test Evaluation Summary (see

Appendix C.II.32). The defects that are captured during these test activities are

detailed in Defect Report (see Appendix C.II.30 and C.II.31) documents.

Finally new version of build for the e-Reserve system is ready that is developed

within the Elaboration Iteration E2. Now we have to prepare an Iteration Plan (see

Appendix C.II.34) for the next iteration which will be the first iteration of the

Construction Phase.

Again we are in a critical point that we reached to the end of Elaboration Phase. So

we have to make a decision to continue on Construction Phase or go back to

Elaboration Phase. This decision is made by checking the objectives of Lifecycle

Architecture Milestone that whether it is satisfied or not.

171

172

8.3 Lifecycle Architecture Milestone

Lifecycle Architecture Milestone marks the end of the Elaboration Phase as shown

in Figure 8.1. It is the second important major milestone of the project that we

reached at the end of second iteration of Elaboration Phase. Now we are standing at

a point that we have to you examine the detailed system objectives and scope, the

choice of architecture, and the resolution of the major risks.

Evaluation criteria for the Elaboration Phase can be listed as follows:

• The Vision and requirements of e-Reserve system are stable.

• The architecture is stable.

• The key approaches that are used in test and evaluation are proven.

• Test and evaluation of executable prototypes from the two elaboration

iterations have demonstrated that the major risk elements have been

addressed and have been credibly resolved.

• The Iteration Plan for the construction phase has sufficient detail and fidelity

to allow the work to proceed.

• Stakeholders agree that the current vision can be met if the current plan is

executed in the context of the presented architecture to develop the entire

system.

• The rate of actual resource expenditure to planned expenditure is acceptable.

The project may be aborted or considerably rethought if it fails to reach this

milestone same as in the previous milestone. The decision to proceed to the

Construction Phase is made based on mitigating the technical risks that are

identified.

Elaboration Phase Iteration E2 work products are tabulated in Table 8.13. All the

work products are given in the Appendix C of the thesis as C.I.1-39 and C.II.1-35,

also on CD to be reached by:

• ~/Appendices/AppendixC/ElaborationIterationE1

• ~/Appendices/AppendixC/ElaborationIterationE2

173

Table 8.13 Elaboration Iteration E2 Work Products (APPE�DIX C.II)

eReserve_SoftwareDevelopmentPlan_3.0

eReserve_WorkOrder_3.0

eReserve_RiskList_3.0

eReserve_IterationAssessment_3.0

eReserve_StatusAssessment_3.0

eReserve_Glossary_3.0

eReserve_ChangeRequestCR_02_1.0

eReserve_UseCaseModel_3.0

eReserve_SoftwareRequirementsSpecifications_3.0

eReserve_SupplementarySpecification_3.0

eReserve_AnalysisModel_2.0

eReserve_UseCaseRealizationSpecification_2.0

eReserve_DesignModel_2.0

eReserve_DesignModel_2.1

eReserve_SoftwareArchitectureDocument_3.0

eReserve_ImplementationModel_2.0

eReserve_SoftwareArchitectureDocument_3.1

eReserve_UseCaseRealizationSpecification_2.1

eReserve_NavigationMap_2.0

eReserve_UserInterfacePrototype_2.0

eReserve_DataModel_2.0

eReserve_IntegrationBuildPlan_2.0

eReserve_TestSuite_2.0

eReserve_DeveloperTest_2.0

eReserve_TestLog_2.0

eReserve_TestCase_2.0

eReserve_TestSuite_2.1

eReserve_TestLog_2.1

eReserve_TestResults_2.0

eReserve_DefectReportDF_02_1.0

eReserve_DefectReportDF_03_1.0

eReserve_TestEvaluationSummary_2.0

eReserve_ProjectPhasePlan_3.0

eReserve_IterationPlanC1_1.0

eReserve_Build_2.0

174

CHAPTER 9

CO�STRUCTIO� PHASE

We already completed the Inception and Elaboration phases of our project

successfully and ready for the next phase. The next point in delivery processes is the

Construction phase that focuses on completing the analysis then, design and the

implementation of the system as mentioned in Chapter 3. Construction Phase of our

project consists of three iterations in which each of them includes several activities

and concluded by a milestone as shown in the Figure 9.1.

Figure 9.1 Construction Phase

175

9.1 Construction Iterations

The Construction phase has three iterations that are decided for e-Reserve project.

The activities performed in Construction Iterations of the construction phase are

shown in the Figure 9.2. The activity diagram in the Figure 9.2 and all of its

activities and tasks can be obtained from RMC and modified to adapt on projects.

Figure 9.2 Construction Phase Activity Diagram

All of the three iterations performed in Construction phases, consist of same

activities and tasks with the same work breakdown structure. As we mentioned in

Chapter 3, this repetition is the major functionality of iterative development

methodology.

176

The work breakdown structure that is depicted in Figure 9.2 contains the same

activities with Elaboration Phase iterations but not all of them. Within elaboration

phase, we mainly focus on to baseline the architecture of the system. Also design

and implementation of the system is done with a little effort. Because of this,

elaboration phase includes activities that are used for implementation issues. We

know that construction phase iterations focuses on design and implementation of the

current system. So iterations for the construction phase have to include activities that

are related with design and implementation. As a result we should use some of the

activities that were already used in elaboration phase iterations which are highly

related with design and implementation issues. By using RMC, we can easily see the

differences and the similarities between iterations that are performed in elaboration

and construction phases that are depicted in Figure 9.3.

Figure 9.3 Elaboration and Construction Phase Activity Diagrams

177

The top window shows a part of activity diagram that represents the activities used

in an iteration of elaboration phase. The bottom window shows a part of activity

diagram that represents the activities used in an iteration of construction phase. As

shown in the Figure 9.3 some of the activities within elaboration phase iterations are

also used in the construction phase iterations. As we mentioned before, these

activities are highly related with design and implementation of the system, so they

are performed again in construction phase iterations with more effort.

All tasks and activities performed in each iteration are depicted briefly in iteration

plans. The Iteration Plan (see Appendix C.II.34) for the Construction Iteration C1 is

created at the end of Elaboration Iteration E2. The Iteration Plan (see Appendix

D.I.31) for the Construction Iteration C2 is created at the end of Construction

Iteration C1. Finally, the Iteration Plan (see Appendix D.II.31) for the Construction

Iteration C3 is created at the end of Construction Iteration C2. All of these plans can

be found in related work products.

In the previous iterations of Elaboration Phase, we implemented the system access

capability and user operations of the e-Reserve System. These are the core

capabilities for the system that will form a baseline for our Construction Phase. The

use cases that are implemented within each iteration of Construction Phase are listed

as follows.

We give system the capability of course operations that includes the use cases which

are implemented within Construction Iteration C1 as follows:

• Activate Course

• Update Course

• Deactivate Course

• Search Course

We give system the capability of material operations that includes the use cases

which are implemented within Construction Iteration C2 as follows:

• Insert Material

• Update Material

• Delete Material

178

We update the system capability of material operations by giving additional

properties that includes the use cases which are implemented within Construction

Iteration C3 as follows:

• View Material

• Search Material

• Download Material

Construction phase is the main development phase during which the first operational

release of the product is realized. The analysis and design activities in the

Elaboration phase have shown what to do and how to do it. The critical parts have

also been implemented and interfaces stabilized to make sure that the design works.

The construction phase involved a continuation of design and implementation of

components in the project, finalization of more predictive components such as the

user interface, and the identification of limitations within the system. The iterations

of construction phase are focused on implementation of features. During these

iterations all high priority and major features were implemented and tested. In the

last iteration of the construction phase development was completed for the overall

e-Reserve system.

As we mentioned before, the primary goal of Construction Phase is the design and

implementation of components for e-Reserve System. Within each iteration of

Construction Phase, firstly all iteration specific components are designed in details.

As an example, in Construction Iteration C1, while we are studying on Activate

Course use case the design element named as CourseData is produced as shown in

Figure 9.4. The design element CourseData can also be found in Design Model (see

Appendix D.I.11) in more details.

Figure 9.4 Design Class of CourseData

179

The most important activity of Construction Phase iterations is implementation of

the components that are designed within these iterations. Implementation has a great

effort within this phase. Implementation of iteration specific components is

performed in a thoughtful manner by satisfying all requirements that are captured

during the design activities. In the previous example we examined the design of

CourseData element during Construction Iteration C1. Now, the CourseData element

is implemented as shown in Figure 9.5 by adhering to restrictions of the design that

are previously defined as depicted in Figure 9.4. All attributes and methods for the

CourseData class are clearly implemented as shown in Figure 9.5. Now the system is

ready to be programmed for the desired activities that are previously defined in

Activate Course use case.

Figure 9.5 CourseData Class Implementation

180

As we mentioned before, the system is designed using Design Classes and in the

next step all of these design issues are satisfied during the implementation of classes.

All attributes and methods of our CourseData class are shown in Figure 9.5. All of

these methods have empty bodies that are ready to provide the required functionality

of the system. So all method bodies are completed based on the required

functionality that is necessary to satisfy the system integrity. As an example the first

method in CourseData class is the isDuplicate method. This method provides one of

the control mechanisms of the system that checks for the duplicate insertions on

accounts. This method is firstly created by the help of its related Design Class with

an empty body. Finally, the method implementation is completed by providing its

behavior to perform successfully.

Figure 9.6 CourseData Method Implementation

181

Again some of the artifacts from previous iterations are updated with changes

implemented during iterations. Remaining work products are created newly to suit

the specific objectives of each iteration of construction phases that are listed in the

iteration plans. Complete set of work products that are created and updated within

the Construction Iteration C1 can be found in Appendix D.I, work products for

Construction Iteration C2 can be found in Appendix D.II, and work products for

Construction Iteration C3 can be found in Appendix D.III.

Again we are in a critical point that we reached to the end of Construction Phase.

The finalization of the construction phase marked the completion of all major

components and modules of the e-Reserve system. At the conclusion of the

Construction phase, we expect the product is suitable for beta testing or end user

testing. We have to make a decision to continue on Transition Phase or postpone it.

This decision is made by checking the objectives of Initial Operational Capability

Milestone that whether it is satisfied or not.

9.2 Initial Operational Capability Milestone

As it is shown in Figure 9.1, Initial Operational Capability Milestone marks the end

of the Construction Phase. It is the third important major milestone of the project

that we reached at the end of third iteration of Construction Phase. Now we are

standing on a point that e-Reserve system is ready to be handed over to the

Transition Phase. All functionality has been developed and all alpha testing has been

completed.

Evaluation criteria for the Construction Phase involves the answers of the questions

listed as follows:

• Is this product release stable and mature enough to be deployed in the user

community?

• Are all the stakeholders ready for the transition into the user community?

• Are actual resource expenditures versus planned still acceptable?

If the project fails to reach this milestone for any reason then, move to the Transition

Phase may have to be postponed by one release.

182

Construction Phase Iteration C1, C2 and C3 work products are tabulated in Table

9.1, Table 9.2 and Table 9.3 respectively. All the work products are given in the

Appendix D of the thesis as D.I.1-32, D.II.1-32 and D.III.1-32, also on CD to be

reached by:

• ~/Appendices/ AppendixD/ConstructionIterationC1

• ~/Appendices/ AppendixD/ConstructionIterationC2

• ~/Appendices/ AppendixD/ConstructionIterationC3

183

Table 9.1 Construction Iteration C1 Work Products (APPE�DIX D.I)

eReserve_WorkOrder_4.0

eReserve_RiskList_4.0

eReserve_IterationAssessment_4.0

eReserve_StatusAssessment_4.0

eReserve_Glossary_4.0

eReserve_ChangeRequestCR_03_1.0

eReserve_UseCaseModel_4.0

eReserve_SoftwareRequirementsSpecifications_4.0

eReserve_AnalysisModel_3.0

eReserve_UseCaseRealizationSpecification_3.0

eReserve_DesignModel_3.0

eReserve_DesignModel_3.1

eReserve_SoftwareArchitectureDocument_4.0

eReserve_ImplementationModel_3.0

eReserve_SoftwareArchitectureDocument_4.1

eReserve_UseCaseRealizationSpecification_3.1

eReserve_NavigationMap_3.0

eReserve_UserInterfacePrototype_3.0

eReserve_DataModel_3.0

eReserve_IntegrationBuildPlan_3.0

eReserve_TestSuite_3.0

eReserve_DeveloperTest_3.0

eReserve_TestLog_3.0

eReserve_TestCase_3.0

eReserve_TestSuite_3.1

eReserve_TestLog_3.1

eReserve_TestResults_3.0

eReserve_DefectReportDF_04_1.0

eReserve_TestEvaluationSummary_3.0

eReserve_ProjectPhasePlan_4.0

eReserve_IterationPlanC2_1.0

eReserve_Build_3.0

184

Table 9.2 Construction Iteration C2 Work Products (APPE�DIX D.II)

eReserve_WorkOrder_5.0

eReserve_RiskList_5.0

eReserve_IterationAssessment_5.0

eReserve_StatusAssessment_5.0

eReserve_Glossary_5.0

eReserve_ChangeRequestCR_04_1.0

eReserve_UseCaseModel_5.0

eReserve_SoftwareRequirementsSpecifications_5.0

eReserve_AnalysisModel_4.0

eReserve_UseCaseRealizationSpecification_4.0

eReserve_DesignModel_4.0

eReserve_DesignModel_4.1

eReserve_SoftwareArchitectureDocument_5.0

eReserve_ImplementationModel_4.0

eReserve_SoftwareArchitectureDocument_5.1

eReserve_UseCaseRealizationSpecification_4.1

eReserve_NavigationMap_4.0

eReserve_UserInterfacePrototype_4.0

eReserve_DataModel_4.0

eReserve_IntegrationBuildPlan_4.0

eReserve_TestSuite_4.0

eReserve_DeveloperTest_4.0

eReserve_TestLog_4.0

eReserve_TestCase_4.0

eReserve_TestSuite_4.1

eReserve_TestLog_4.1

eReserve_TestResults_4.0

eReserve_DefectReportDF_05_1.0

eReserve_TestEvaluationSummary_4.0

eReserve_ProjectPhasePlan_5.0

eReserve_IterationPlanC3_1.0

eReserve_Build_4.0

185

Table 9.3 Construction Iteration C3 Work Products (APPE�DIX D.III)

eReserve_WorkOrder_6.0

eReserve_RiskList_6.0

eReserve_IterationAssessment_6.0

eReserve_StatusAssessment_6.0

eReserve_Glossary_6.0

eReserve_ChangeRequestCR_05_1.0

eReserve_UseCaseModel_6.0

eReserve_SoftwareRequirementsSpecifications_6.0

eReserve_AnalysisModel_5.0

eReserve_UseCaseRealizationSpecification_5.0

eReserve_DesignModel_5.0

eReserve_DesignModel_5.1

eReserve_SoftwareArchitectureDocument_6.0

eReserve_ImplementationModel_5.0

eReserve_SoftwareArchitectureDocument_6.1

eReserve_UseCaseRealizationSpecification_5.1

eReserve_NavigationMap_5.0

eReserve_UserInterfacePrototype_5.0

eReserve_DataModel_5.0

eReserve_IntegrationBuildPlan_5.0

eReserve_TestSuite_5.0

eReserve_DeveloperTest_5.0

eReserve_TestLog_5.0

eReserve_TestCase_5.0

eReserve_TestSuite_5.1

eReserve_TestLog_5.1

eReserve_TestResults_5.0

eReserve_DefectReportDF_06_1.0

eReserve_TestEvaluationSummary_5.0

eReserve_ProjectPhasePlan_6.0

eReserve_IterationPlanT1_1.0

eReserve_Build_5.0

186

CHAPTER 10

TRA�SITIO� PHASE

We completed the Construction phase of our project successfully and ready for the

next and the last phase of our project. The next point in delivery processes is the

Transition phase that focuses on beta testing and deployment as mentioned in

Chapter 3. Transition Phase of our project will consist of two iterations in which

each of them includes several activities and concluded by a milestone as shown in

the Figure 10.1.

Figure 10.1 Transition Phase

10.1 Transition Iterations

The Transition phase has two major iterations that are decided for e-Reserve project.

The activities performed in Transition Iterations of the transition phase are shown in

the Figure 10.2. The activity diagram in the Figure 10.2 and all of its activities and

tasks can be obtained from RMC and modified to adapt on any type of project.

All of the two iterations performed in Transition phases, consist of same activities

and tasks with the same work breakdown structure as already done in the previous

phases which are Elaboration and Construction.

187

Figure 10.2 Transition Phase Activity Diagram

The work breakdown structure that is depicted in Figure 10.2 contains the same

activities with Construction Phase iterations but not all of them. Within construction

phase, we mainly focus on to design and implementation of the e-Reserve system by

refining it. Also testing of the system is performed as done in elaboration phase.

Testing activities has a great importance both in elaboration and construction phases.

These testing activities provide a feedback to team members about the status,

stability and reliability of the system that is developed up to that point.

We know that transition phase iterations focuses on testing and deployment of the

current system. While performing testing activities within transition phase it is

possible to capture any new defects that could not be handled before. So there must

be some activities that are related to design and implementation again in iterations of

transition phase to fix these captured defects. However these design and

188

implementation activities will not be as detailed as in construction phase in which

there will be only small changing, if needed. So iterations for the transition phase

have to include activities that are related with design, implementation and test. As a

result we should use some of the activities that were already used in construction

phase iterations which are highly related with design, implementation and test

issues. By using RMC, we can easily see the differences and the similarities between

iterations that are performed in construction and transition phases that are depicted

in Figure 10.3.

Figure 10.3 Construction and Transition Phase Activity Diagrams

The top window shows a part of activity diagram that represents the activities used

in an iteration of construction phase. The bottom window shows a part of activity

diagram that represents the activities used in an iteration of transition phase. As

shown in the Figure 10.3 some of the activities within construction phase iterations

are also used in the transition phase iterations. As we mentioned before, these

activities are highly related with design, implementation and test of the system, so

189

they are accommodated again in transition phase iterations and ready for use if

needed after performing the activities that are related with fixing defects that will be

captured.

As shown in Figure 10.3 the main difference between the construction phase

iterations and the transition phase iterations is the activity called “Fix Defects in

Components” which is placed in the iterations of transition phase. This is the key

activity that forms the iterations of transition phase. Fix Defects in Components

activity completes a part of the implementation so that it can be delivered for

integration, if any defect is captured.

All tasks and activities performed in each iteration are depicted briefly in iteration

plans. The Iteration Plan (see Appendix D.III.31) for the Transition Iteration T1 is

created at the end of Construction Iteration C3. Finally, the Iteration Plan (see

Appendix E.I.7) for the Transition Iteration T2 is created at the end of Transition

Iteration T1. All of these plans can be found in related work products.

In the previous iterations of Elaboration and Construction phases, we implemented

the system access capability, user operations, course operations, material operations,

and browse operations of the e-Reserve System. These capabilities form the overall

structure of the e-Reserve system by implementing the following use cases:

• Login • Search Course

• Logout • Insert Material

• Insert User • Update Material

• Update User • Delete Material

• Delete User • View Material

• Activate Course • Search Material

• Update Course • Download Material

• Deactivate Course

Each iteration of the transition phase tries to improve the functionality of these use

cases by resolving defects. Final release of the system includes all of these use cases

that are implemented successfully without any defects at the end of the transition

phase.

190

As we mentioned in this section, the Transition phase focuses on delivering the

system into production. In other words, the principal objective of the transition

phase is to integrate the product in the user’s environment and correct the

operational version until customers provide positive acceptance tests. The transition

phase involved final user feedback and acceptance, rollout of beta testing and bug

elimination. There will be testing by both system testers and end-users, and

corresponding rework and fine tuning. Our e-Reserve system is a Web application

for the Internet. So the beta version is tested by a group of acceptance testers before

going online.

As we did in the previous phases, some of the artifacts from previous iterations are

updated with changes occurred while iterations are performed. Remaining work

products are created newly to suit the specific objectives of each iteration of

transition phases that are listed in the iteration plans. Complete set of work products

that are created and updated within the Transition Iteration T1 can be found in

Appendix E.I, and work products for Transition Iteration T2 can be found in

Appendix E.II.

Again we are in a critical point that we reached to the end of Transition Phase. The

finalization of the transition phase marked the completion of components and

modules, tests of the e-Reserve system with corrected defects. At the conclusion of

the Transition phase, we expect the product ready for release. We have to make a

decision to release the product or to postpone it. This decision is made by checking

the objectives of Product Release Milestone that whether it is satisfied or not.

10.2 Product Release Milestone

Product Release Milestone marks the end of the Transition Phase in Figure 10.1 also

the end of the project. It is the fourth important major milestone of the project that

we reached at the end of second iteration of Transition Phase. Now we are standing

on a point that e-Reserve system is ready to be released. All functionality has been

developed and all beta testing has been completed. At this point, we have to decide

if the objectives were met, and if we should start another development cycle. In

some cases this milestone may coincide with the end of the inception phase for the

191

next cycle. The Product Release Milestone is the result of the customer reviewing

and accepting the project deliverables.

Evaluation criteria for the Transition Phase involves the answers of the questions

listed as follows:

• Is the user satisfied?

• Are actual resources expenditures versus planned expenditures acceptable?

If the project fails to reach this milestone for any reason then, release of the product

may have to be postponed.

Transition Phase Iteration T1 and T2 work products are tabulated in Table 10.1 and

Table 10.2 respectively. All the work products are given in the Appendix E of the

thesis as E.I.1-7 and E.II.1-5, also on CD to be reached by:

• ~/Appendices/ AppendixE/TransitionIterationT1

• ~/Appendices/ AppendixE/TransitionIterationT2

Table 10.1 Transition Iteration T1 Work Products (APPE�DIX E.I)

eReserve_WorkOrder_7.0

eReserve_RiskList_7.0

eReserve_IterationAssessment_7.0

eReserve_StatusAssessment_7.0

eReserve_TestEvaluationSummary_6.0

eReserve_ProjectPhasePlan_7.0

eReserve_IterationPlanT2_1.0

Table 10.2 Transition Iteration T2 Work Products (APPE�DIX E.II)

eReserve_WorkOrder_8.0

eReserve_RiskList_8.0

eReserve_IterationAssessment_8.0

eReserve_StatusAssessment_8.0

eReserve_TestEvaluationSummary_7.0

192

CHAPTER 11

SUMMARY A�D CO�CLUSIO�S

11.1 Summary

This thesis has described the adoption of RUP on a software development project as

a case study. Without any reliable document, developing a required system or

understanding of an existing software system can be a very wearisome and

expensive task. Consequently, some standard methodology should be applied on

software development projects to manage them properly.

After some introductory remarks in Chapter1, in Chapter 2, we started with a

literature review concerning with UML. UML plays a central role to capture

requirements, to analyze and design the system. It provides the communication

between the project team members and stakeholders that reduces the misunderstood

issues. Today UML uses version 2.0 which is the strongest version and has more

advantages than its older versions. So we concentrated on version 2.0 with its

thirteen diagrams in our study.

Chapter 3 also continues with literature review concerning with RUP. There are

totally nine disciplines defined in RUP, six of which are core disciplines and three

core supporting disciplines. These disciplines provide us to construct and manage

our project safely with high quality. All nine disciplines should be applied carefully

within a project lifecycle that uses RUP to obtain a successfully developed product

193

by the help of best practices that is suitable for a wide range of projects and

organizations.

In order to achieve determined thesis goals we have used two different IBM tools

which are IBM Rational Method Composer (RMC) and IBM Rational Software

Modeler (RSM) that are briefly explained in Chapter 4. RUP has to be applied

correctly to get a successful result from the project. At this point RMC provides

everything you need to conduct your software development project based on RUP. It

helps you to define, configure and tailor processes with its guidance in details.

During the development of the project we produce some work products which

requires some modeling work. The models that are needed in development were

produced using the RSM which is a visual modeling and design tool of IBM based

on UML 2.0.

We treated a real world problem for our software development project in Chapter 5

as a case study. Features and functioning of the existing system that is still working

in the organization is summarized to form a better understanding for the structure of

the system. Existing problems, in other words the complaints of users, of this system

is determined in details. Possible solutions are identified to reduce or eliminate these

problems according to the requests of users.

After determining the problem, project is initiated as discussed in Chapter 6. In the

first step, RMC environment is prepared by creating method plug-ins where all

content about the project is organized in this package. RMC also provides its method

plug-ins to reference other method plug-ins that will have content contributed to

extended or replaced. Then the method content is created to provide step-by-step

explanations, describing how specific development goals are achieved independent

of the placement of these steps within a development lifecycle. By creating method

configuration we are able to specify working sets of content and processes for a

specific context. In the next step, we begin to construct our capability patterns that

are used as building blocks to assemble delivery processes. These capability patterns

form four sequential phases of our project. The construction of capability patterns

concludes with defining them by identifying activities and tasks for each of these

activities. Finally in the last step of RMC preparation, delivery processes are created

that describes a complete and integrated approach for performing a specific type of

194

project. By the help of delivery processes we can easily figure out what is produced,

how it is produced and the required staffing for the entire project lifecycle. The

construction of delivery processes concludes with defining them by using the

capability patterns that we have constructed in the previous step. As a result, RMC

preparation is terminated when we obtained delivery processes including inception,

elaboration, construction, and transition phases. For UML modeling of the system

RSM environment is prepared by creating model project that holds our UML 2.0

model artifacts which will be created while the development of the project

continues.

During the development of our project we perform four sequential phases as defined

in delivery processes. They are Inception Phase, Elaboration Phase, Construction

Phase, and Transition Phase which are discussed in details respectively in Chapter 7,

Chapter 8, Chapter 9, and Chapter 10, respectively. In Inception Phase, we define

the scope of the system and establish the feasibility of the system. In Elaboration

Phase, we capture the functional requirements of the system. In Construction Phase,

we focus on completing the analysis of the system, performing the majority of the

design and the implementation of the system. Finally in the Transition Phase, we

move the system into the user’s environment. These four phases have a great

importance on managing iterative-incremental software development projects based

on RUP methodology. Each phase concludes with a milestone that checks whether

the requirements for the current phases are satisfied or not. This control mechanism

provides project managers to take decisions about the continuation of the project.

These four sequential phases are split into several iterations. Number of iterations

may vary from project to project depending on features and requirements of the

software development project. In our project Inception Phase has one iteration,

Elaboration Phase has two iterations, Construction Phase has three iterations, and

Transition Phase has two iterations. All iterations consist of several activities. Some

of these activities contain same features but some of them differentiate from each

other depending on the phases they belong. Processing activities in parallel, which

are not sequential, prevents loss of time and provides resolving possible risks

quickly. Each activity consists of one or more tasks. Tasks are the major elements

where the actual part of the job is done. Each task is concluded by a work product

195

that points the critical parts and summarizes the task. Work products are important

to complete the project successfully and achieve its objectives. So they are prepared

correctly by following unique method that will be easily understood by team

members and an appropriate format with universal practices. All these structures are

properly established and managed by the help of the RMC tool. Here the most

important thing is to produce work products properly and in time, because some of

these work products are used as input to initiate another task. So management of the

process is critical. Some work products require using UML diagrams in order to

perform desired analysis and design of the system. This problem was overcome by

using the RSM tool based on UML 2.0. Both RMC and RSM are IBM developed

and supported tools.

The work products resulted using RMC for the software development are placed as

APPENDIX B, C, D and E. Their lists are given at the end of thesis. The

documentation of appendices B-E is placed on a CD that is attached to the Thesis at

the end.

11.2 Conclusions

In this thesis we have presented how RUP is applied on a software development

project. We studied a real world problem as a case study to reflect most possible

problems encountered by project teams. Eventually, we tried to find suitable

solutions to such problems.

A successful software development means not only a reliable and secure product; it

should also be ready on the date previously agreed. So accurate scheduling is an

important issue in software development projects while managing the development

of the project. Projects that do not end on delivery dates causes budget to be

exceeded and especially credibility of the developer organization gets a loss by

customers. It is possible to prevent these major problems by applying RUP on our

software development projects. For this purpose, we use RMC tool to apply RUP

properly and efficiently. During our project, we have experienced that, RMC

provides guidelines for project team members to develop projects safely and rapidly.

Each task within an activity tells clearly which job to do at that moment. Such an

196

approach eliminates the confusion within the project team. Everybody knows their

liabilities and concentrates on it. Every work product that is produced at the end of

each task provides a safe development activity and saves time through previously

determined risks on the project. All components used in the processes ranging from

tasks to phases are identified in detailed plans based on RUP methodology. Thus,

the desired product has been approached in a safe manner at the end of each

successful iteration. All actions that are taken within our software development

project are clearly explained step by step by the help of RMC tool.

As noted earlier, we studied a small sized software development project. An overall

attitude of software groups about small sized projects is that, RUP for such projects

is not agile enough and is too rigid. At this point we have benefited from RMC tool

to show that this claim is not true. RMC includes several best practices and

templates for many kind of projects including small sized ones. We can easily add,

remove or change processes based on these templates and best practices of RMC to

adapt them into our small sized project. This feature allows us to get a smaller and

lighter process framework and validate the decisions with real work efforts. So the

desired agility was protected in terms of overall functioning of RUP methodology.

On the other hand, successfully created and updated work products, that are a

consequence of applying RUP, provide a clear and safe path in the process during

the development of our project. Our study shows that creation of work products does

not cause loss of agility. Contrarily well defined work products form a better

understanding about the system that is to be developed. Also it provides a better

communication between team members and especially stakeholders which

eliminates major problems, such as scheduling and budget problems, encountered in

software development projects. As a result, RMC supports many kind of projects

regardless of their sizes. Thus, desired agility is reached also in small projects that

use RUP.

A criticism that is often cited in the software engineering circles is the large volume

of documentation that RUP produces. At the end of the project the bulk of the

documentation is placed in the APPENDIX. That material is summarized in the

following table:

197

Table 11.1 Volume of Work Products

APPENDIX A B C D E

I II I II III I II

No. of Pages 9 181 256 311 392 460 535 42 34

Total 2220

As it is seen in the above table even for such a small project hundreds even a few

thousand pages of documentation is tremendous. In order to see the real picture we

put no limitation on the number and size of the work products of the project. We,

therefore, may say that volume would not differ much for medium or even large

projects. The crucial point here is that RMC provides us the relevant templates and

even examples so that filling them up are not that hard. Moreover, some of the

information in the templates is repeated. One can, therefore, reduce the size easily

for practical limits. In fact, one can state that the original number of pages of work

products is about 684. Yet, for critical and long life application projects, the author

strongly believes that the documentation, say long, will be very vital and useful for

efficient maintenance and enhancement purposes.

R1

REFERE�CES

Ambler, S. W. (2005a), A Manager’s Introduction to The Rational Unified Process

(RUP), Prentice Hall.

Ambler, S. W. (2005b), The Elements of UML 2.0 Style, Cambridge University

Press.

Ambler, S. W., J. �albone and M. Vizdos (2005), Enterprise Unified Process:

Extending the Rational Unified Process, Prentice Hall.

Aniszczyk, C. and Gallardo, D. (2007), Get started with the Eclipse Platform, IBM

Corporation Software Group, New York.

Bell, D. (2003), UML basics: An introduction to the Unified Modeling Language,

The Rational Edge.

Boggs, W. and M. Boggs (2002), Mastering UML with Rational Rose, SYBEX.

Booch, G., J. Rumbaugh and I. Jacobson (2005), The Unified Modeling Language

User Guide, Addison Wesley.

Brown, A.W. (2008), MDA Redux: Practical Realization of Model Driven

Architecture, ACM/IEEE International Conference on Composition Based Software

Systems (ICCBSS) 2008, Washington, DC.

Cernosek, G. (2004), -ext-generation model-driven development, IBM Corporation

Software Group, New York.

Cernosek, G. and E. �aiburg (2004), A technical discussion of software modeling:

The Value of Modeling, IBM Corporation Software Group, New York.

Erickson, M. and McIntyre, A. (2001), What is Eclipse, and how do I use it?, IBM

Corporation Software Group.

R2

Fowler, M. (2003), UML Distilled: A Brief Guide to the Standard Object Modeling

Language, Third Edition, Addison Wesley.

Gornik, D. (2001), IBM Rational Unified Process: Best Practices for Software

Development Teams, IBM Corporation Software Group, New York.

Hamilton, K. and R. Miles (2006), Learning UML 2.0, O’Reilly.

Haumer, P. (2005), IBM Rational Method Composer: Part 1: Key concepts, The

Rational Edge.

Hunt, J. (2003), Guide to the Unified Process featuring UML, Java and Design

Patterns, Second Edition, Springer.

IBM (June 2006a), On Demand Business: IBM Rational Method Composer, IBM

Corporation Software Group, New York.

IBM (December 2006b), On Demand Business: IBM Rational Method Composer,

IBM Corporation Software Group, New York.

IBM (2007a), On Demand Business: Supporting Agile Development, IBM

Corporation Software Group, New York.

IBM (2007b), Rational Unified Process, RAH11027usen-00.

IBM Rational University (2004), Essentials of Visual Modeling with UML 2.0,

IBM Corporation, California.

IBM Redbooks (2007), The IBM Rational Unified Process for System z, Vervante.

Kroll, P. and B. MacIsaac (2006), Agility and Discipline Made Easy: Practices

from OpenUP and RUP, Addison Wesley.

Kroll, P. and W. Royce (2005), Key principles for business-driven development,

The Rational Edge.

Kruchten, P. (2003), The Rational Unified Process: An Introduction, Third Edition,

Addison Wesley.

Mittal, K. (2005), Introducing Rational Software Modeler: Gain true application

visualization, IBM Developer Works.

Pilone, D. and �. Pitman (2005), UML 2.0 in a -utshell, O'Reilly.

R3

Selic, B. (2005), Unified Modeling Language version 2.0, IBM Developer Works.

Shuja, A. K. and J. Krebs (2008), IBM Rational Unified Process Reference and

Certification Guide, IBM Press.

Smith, B. (2006), Model Structure Guidelines For Rational Software Modeler,

Rational Systems Developer, and Rational Software Architect (“Traditional RUP”

Orientation), IBM Corporation Software Group.

Smith, W. T. (2008), IBM Rational Architecture Management software model

structure guidelines: Part 1. Fundamentals, IBM Corporation Software Group.

Wessberg, M. (2005), Introducing the IBM Rational Unified Process essentials by

analogy, IBM Developer Works.

West, D. (2002), Planning a Project with the Rational Unified Process, IBM

Corporation Software Group.

http://library.cankaya.edu.tr/faaliyetraporu.htm

A1

APPE�DIX A

RUP DISCIPLI�E WORKFLOWS

The capability patterns can be in the form of discipline workflows. These discipline

workflows are captured from the RUP poster [e.g. IBM, 2007b] and more details can

be found in RMC.

1. PROJECT MA�AGEME�T

1.1 Conceive New Project

1.1.1 Identify and Assess Risks

1.1.2 Develop Business Case

1.1.3 Initiate Project

1.1.4 Project Approval Review

1.2 Evaluate Project Scope and Risk

1.2.1 Identify and Assess Risks

1.2.2 Develop Business Case

1.3 Plan the Project

1.3.1 Develop Measurement Plan

1.3.2 Develop Risk Management Plan

1.3.3 Develop Product Acceptance Plan

1.3.4 Develop Problem Resolution Plan

1.3.5 Develop Quality Assurance Plan

1.3.6 Define Project Organization and Staffing

1.3.7 Define Monitor and Control Processes

1.3.8 Plan Phases and Iterations

1.3.9 Compile Software Development Plan

1.3.10 Project Planning Review

1.4 Plan Reminder of Initial Iteration

1.4.1 Develop Iteration Plan

1.4.2 Develop Business Case

1.4.3 Iteration Plan Review

A2

1.5 Monitor & Control Project

1.5.1 Schedule and Assign Work

1.5.2 Monitor Project Status

1.5.3 Report Status

1.5.4 Handle Exceptions and Problems

1.5.5 Project Review Authority (PRA) Project Review

1.5.6 Organize Review

1.5.7 Conduct Review

1.6 Manage Iteration

1.6.1 Acquire Staff

1.6.2 Initiate Iteration

1.6.3 Iteration Evaluation Criteria Review

1.6.4 Identify and Assess Risks

1.6.5 Assess Iteration

1.6.6 Iteration Acceptance Review

1.7 Reevaluate Project Scope and Risk

1.7.1 Identify and Assess Risks

1.7.2 Develop Business Case

1.8 Plan for Next Iteration

1.8.1 Develop Iteration Plan

1.8.2 Develop Business Case

1.8.3 Iteration Plan Review

1.9 Refine the Development Plan

1.9.1 Develop Measurement Plan

1.9.2 Develop Risk Management Plan

1.9.3 Develop Product Acceptance Plan

1.9.4 Develop Problem Resolution Plan

1.9.5 Develop Quality Assurance Plan

1.9.6 Define Project Organization and Staffing

1.9.7 Define Monitor and Control Processes

1.9.8 Plan Phases and Iterations

1.9.9 Compile Software Development Plan

1.9.10 Project Planning Review

1.10 Close Out Phase

1.10.1 Prepare for Phase Close-Out

1.10.2 Lifecycle Milestone Review

1.11 Close Out Project

1.11.1 Prepare for Project Close-Cut

1.11.2 Project Acceptance Review

A3

2. BUSI�ESS MODELI�G

2.1 Assess Business Status

2.1.1 Assess Target Organization

2.1.2 Set and Adjust Objectives

2.1.3 Identify Business Goals and KPIs

2.1.4 Business Architectural Analysis

2.1.5 Capture a Common Business Vocabulary

2.1.6 Maintain Business Rules

2.2 Describe Current Business

2.2.1 Assess Target Organization

2.2.2 Set and Adjust Objectives

2.2.3 Identify Business Goals and KPIs

2.2.4 Find Business Actors and Use Cases

2.2.5 Business Architectural Analysis

2.2.6 Capture a Common Business Vocabulary

2.2.7 Maintain Business Rules

2.2.8 Functional Area Analysis

2.3 Define Business

2.3.1 Identify Business Processes

2.3.2 Refine Business Process Definitions

2.3.3 Design Business Process Realizations

2.3.4 Define Business Operations

2.3.5 Refine Roles and Responsibilities

2.4 Explore Process Automation

2.4.1 Set and Adjust Objectives

2.4.2 Define Automation Requirements

2.4.3 Construct Business Architectural

2.4.4 Proof-of-Concept

2.5 Develop Domain Model

2.5.1 Capture a Common Business Vocabulary

2.5.2 Maintain Business Rules

2.5.3 Business Architecture Analysis

2.5.4 Detail a Business Entity

2.5.5 Review the Business Analysis Model

3. REQUIREME�TS

3.1 Analyze the Problem

3.1.1 Capture a Common Vocabulary

3.1.2 Find Actors and Use Cases

3.1.3 Develop Vision

3.1.4 Develop Requirements Management Plan

A4

3.2 Understand Stakeholder Needs

3.2.1 Capture a Common Vocabulary

3.2.2 Elicit Stakeholder Requests

3.2.3 Develop Vision

3.2.4 Find Actors and Use Cases

3.2.5 Develop Supplementary Specification

3.2.6 Manage Dependencies

3.3 Define the System

3.3.1 Develop Vision

3.3.2 Capture a Common Vocabulary

3.3.3 Find Actors and Use Cases

3.3.4 Develop Supplementary Specifications

3.3.5 Manage Dependencies

3.4 Manage the Scope of the System

3.4.1 Develop Vision

3.4.2 Manage Dependencies

3.4.3 Prioritize Use Cases

3.5 Refine the System Definition

3.5.1 Detail a Use Case

3.5.2 Develop Supplementary Specifications

3.5.3 Detail the Software Requirements

3.6 Manage Changing Requirements

3.6.1 Structure the Use-Case Model

3.6.2 Manage Dependencies

3.6.3 Review Requirements

4. A�ALYSIS & DESIG�

4.1 Perform Architectural Synthesis

4.1.1 Define a System Context

4.1.2 Architectural Analysis

4.1.3 Construct Architectural Proof-of-Concept

4.1.4 Assess Viability of Architectural Proof-of-Concept

4.2 Define a Candidate Architecture

4.2.1 Define a System Context

4.2.2 Architectural Analysis

4.2.3 Use-Case Analysis

4.2.4 Operation Analysis

4.2.5 Identify Security Patterns

4.3 Service Identification

4.3.1 Domain Decomposition

4.3.2 Goal-Service Modeling

A5

4.3.3 Existing Asset Analysis

4.4 Refine the Architecture

4.4.1 Identify Design Mechanisms

4.4.2 Identify Design Elements

4.4.3 Operation Analysis

4.4.4 Incorporate Existing Design Elements

4.4.5 Structure the Implementation Model

4.4.6 Describe the Run-time Architecture

4.4.7 Describe Distribution

4.4.8 Review the Architecture

4.5 Analyze Behavior

4.5.1 Identify Design Elements

4.5.2 Use-Case Analysis

4.5.3 Operation Analysis

4.5.4 Design the User Interface

4.5.5 Prototype the User Interface

4.5.6 Review the Design

4.6 Design Components

4.6.1 Use-Case Design

4.6.2 Subsystem Design

4.6.3 Operation Design

4.6.4 Class Design

4.6.5 Define Testability Elements

4.6.6 Design Testability Elements

4.6.7 Capsule Design

4.6.8 Review the Design

4.7 Design the Database

4.7.1 Class Design

4.7.2 Specify Data Migration

4.7.3 Database Design

4.7.4 Review the Design

4.8 Service Specification

4.8.1 Perform Service Specification

4.8.2 Perform Subsystem Analysis

4.8.3 Perform Component Specification

5. IMPLEME�TATIO�

5.1 Structure the Implementation Model

5.1.1 Structure the Implementation Model

5.2 Plan the Integration

5.2.1 Plan System Integration

A6

5.3 Service Realization

5.3.1 Realize Decisions

5.4 Implement Components

5.4.1 Plan Subsystem Integration

5.4.2 Implement Design Elements

5.4.3 Analyze Runtime Behavior

5.4.4 Implement Testability Elements

5.4.5 Implement Developer Test

5.4.6 Execute Developer Tests

5.4.7 Review Code

5.5 Integrate Each Subsystem

5.5.1 Implement Developer Test

5.5.2 Execute Developer Test

5.5.3 Integrate Subsystem

5.6 Integrate the System

5.6.1 Integrate System

6. TEST

6.1 Define Evaluation Mission

6.1.1 Identify Test Motivators

6.1.2 Agree on the Mission

6.1.3 Identify Targets of Test

6.1.4 Define Assessment and Traceability Needs

6.1.5 Identify Test Ideas

6.1.6 Define Test Approach

6.2 Verify Test Approach

6.2.1 Define Test Environment Configurations

6.2.2 Identify Testability Mechanisms

6.2.3 Define Testability Elements

6.2.4 Define Test Details

6.2.5 Implement Test

6.2.6 Implement Test Suite

6.2.7 Obtain Testability Commitment

6.3 Validate Build Stability

6.3.1 Define Test Details

6.3.2 Implement Test

6.3.3 Execute Test Suite

6.3.4 Analyze Test Failure

6.3.5 Determine Test Results

6.3.6 Assess and Advocate Quality

A7

6.4 Test and Evaluate

6.4.1 Define Test Details

6.4.2 Implement Test

6.4.3 Implement Test Suite

6.4.4 Execute Test Suite

6.4.5 Analyze Test Failure

6.4.6 Structure the Test Implementation

6.4.7 Identify Test Ideas

6.4.8 Determine Test Results

6.5 Achieve Acceptable Mission

6.5.1 Assess and Improve Test Effort

6.5.2 Assess and Advocate Quality

6.5.3 Determine Test Results

6.6 Improve Test Assets

6.6.1 Prepare Guidelines for the Project

6.6.2 Define Test Approach

6.6.3 Define Testability Elements

6.6.4 Structure the Test Implementation

6.6.5 Identify Test Ideas

6.6.6 Define Test Details

6.6.7 Define Assessment and Traceability Needs

6.6.8 Implement Test

6.6.9 Implement Test Suite

7. DEPLOYME�T

7.1 Plan Deployment

7.1.1 Develop Deployment Plan

7.1.2 Define Bill of Materials

7.2 Develop Supporting Material

7.2.1 Develop Training Material

7.2.2 Develop Support Material

7.2.3 Create Product Artwork

7.2.4 Develop Installation Work Products

7.3 Manage Acceptance Test

7.3.1 Manage Acceptance Test

7.3.2 Support Development

7.3.3 Execute Test Suite

7.3.4 Determine Test Results

7.4 Produce Deployment Unit

7.4.1 Write Release Notes

7.4.2 Create Deployment Unit

A8

7.5 Beta Test Product

7.5.1 Manage Beta Test

7.6 Manage Acceptance Test for Custom Install

7.6.1 Manage Acceptance Test

7.6.2 Support Development

7.6.3 Execute Test Suite

7.6.4 Determine Test Results

7.7 Package Product

7.7.1 Release to Manufacturing

7.7.2 Verify Manufactured Product

7.8 Provide Access to Download Site

7.8.1 Provide Access to Download Site

8. CO�FIGURATIO� & CHA�GE MA�AGEME�T

8.1 Manage Change Requests

8.1.1 Submit Change Request

8.1.2 Update Change Request

8.1.3 Review Change Request

8.1.4 Confirm Duplicate or Reject CR

8.1.5 Schedule and Assign Work

8.1.6 Verify Changes in Build

8.2 Plan Project Configuration & Change Control

8.2.1 Establish Configuration Management (CM) Policies

8.2.2 Write Configuration Management (CM) Plan

8.2.3 Establish Change Control Process

8.3 Create Project Configuration Management (CM) Environments

8.3.1 Set Up Configuration Management (CM) Environment

8.3.2 Create Integration Workspaces

8.4 Monitor & Report Configuration Status

8.4.1 Report on Configuration Status

8.4.2 Perform Configuration Audit

8.5 Change & Deliver Configuration Items

8.5.1 Create Development Workspace

8.5.2 Make Changes

8.5.3 Deliver Changes

8.5.4 Update Workspace

8.5.5 Create Baseline

8.5.6 Promote Baselines

A9

8.6 Manage Baselines & Releases

8.6.1 Create Deployment Unit

8.6.2 Create Baselines

8.6.3 Promote Baselines

9. E�VIRO�ME�T

9.1 Prepare Environment for Project

9.1.1 Tailor the Process for the Project

9.1.2 Develop Development Case

9.1.3 Prepare Guidelines for the Project

9.1.4 Prepare Templates for the Project

9.1.5 Select and Acquire Tools

9.2 Prepare Environment for an Iteration

9.2.1 Develop Development Case

9.2.2 Prepare Guidelines for the Project

9.2.3 Develop Manual Styleguide

9.2.4 Prepare Templates for the Project

9.2.5 Launch Development Process

9.2.6 Set Up Tools

9.2.7 Verify Tool Configuration & Installation

9.3 Support Environment for an Iteration

9.3.1 Support Development

A10

APPE�DIX B

I�CEPTIO� PHASE WORK PRODUCTS

I. Inception Iteration I1 Work Products (B.I)

B.I.1 eReserve_RiskList_1.0

B.I.2 eReserve_BusinessCase_1.0

B.I.3 eReserve_SoftwareDevelopmentPlan_1.0

B.I.4 eReserve_ReviewRecord_11_11_08_1.0

B.I.5 eReserve_DevelopmentCase_1.0

B.I.6 eReserve_ConfigurationManagementPlan_1.0

B.I.7 eReserve_SoftwareDevelopmentPlan_1.1

B.I.8 eReserve_ProjectPhasePlan_1.0

B.I.9 eReserve_IterationPlanI1_1.0

B.I.10 eReserve_WorkOrder_1.0

B.I.11 eReserve_StatusAssessment_1.0

B.I.12 eReserve_Vision_1.0

B.I.13 eReserve_SoftwareArchitectureDocument_1.0

B.I.14 eReserve_SoftwareRequirementsSpecifications_1.0

B.I.15 eReserve_Vision_1.1

B.I.16 eReserve_Glossary_1.0

B.I.17 eReserve_UseCaseModel_1.0

B.I.18 eReserve_SupplementarySpecification_1.0

B.I.19 eReserve_DeploymentModel_1.0

B.I.20 eReserve_SoftwareArchitectureDocument_1.1

B.I.21 eReserve_ReferenceArchitecture_1.0

B.I.22 eReserve_TestStrategy_1.0

B.I.23 eReserve_WorkOrder_1.1

B.I.24 eReserve_IterationAssessment_1.0

B.I.25 eReserve_ProjectPhasePlan_1.1

B.I.26 eReserve_IterationPlanE1_1.0

All of the Inception Iteration I1 work products can be found in the CD with detailed

documentation and can be accessed separately as follows:

• ~/Appendices/AppendixB/InceptionIterationI1

Samples and detailed explanations for work products can be found in RMC.

A11

APPE�DIX C

ELABORATIO� PHASE WORK PRODUCTS

I. Elaboration Iteration E1 Work Products (C.I)

C.I.1 eReserve_SoftwareDevelopmentPlan_2.0

C.I.2 eReserve_IntegrationBuildPlan_1.0

C.I.3 eReserve_WorkOrder_2.0

C.I.4 eReserve_RiskList_2.0

C.I.5 eReserve_IterationAssessment_2.0

C.I.6 eReserve_StatusAssessment_2.0

C.I.7 eReserve_UseCaseModel_2.0

C.I.8 eReserve_Glossary_2.0

C.I.9 eReserve_ChangeRequestCR_01_1.0

C.I.10 eReserve_DevelopmentInfrastructure_1.0

C.I.11 eReserve_UseCaseModel_2.1

C.I.12 eReserve_SoftwareRequirementsSpecifications_2.0

C.I.13 eReserve_SupplementarySpecification_2.0

C.I.14 eReserve_SoftwareArchitectureDocument_2.0

C.I.15 eReserve_AnalysisModel_1.0

C.I.16 eReserve_UseCaseRealizationSpecification_1.0

C.I.17 eReserve_DesignModel_1.0

C.I.18 eReserve_DesignModel_1.1

C.I.19 eReserve_DesignModel_1.2

C.I.20 eReserve_SoftwareArchitectureDocument_2.1

C.I.21 eReserve_ImplementationModel_1.0

C.I.22 eReserve_SoftwareArchitectureDocument_2.2

C.I.23 eReserve_UseCaseRealizationSpecification_1.1

C.I.24 eReserve_NavigationMap_1.0

C.I.25 eReserve_UserInterfacePrototype_1.0

C.I.26 eReserve_DataModel_1.0

C.I.27 eReserve_IntegrationBuildPlan_1.1

C.I.28 eReserve_TestSuite_1.0

C.I.29 eReserve_DeveloperTest_1.0

C.I.30 eReserve_TestLog_1.0

C.I.31 eReserve_TestCase_1.0

A12

C.I.32 eReserve_TestSuite_1.1

C.I.33 eReserve_TestLog_1.1

C.I.34 eReserve_TestResults_1.0

C.I.35 eReserve_DefectReportDF_01_1.0

C.I.36 eReserve_TestEvaluationSummary_1.0

C.I.37 eReserve_ProjectPhasePlan_2.0

C.I.38 eReserve_IterationPlanE2_1.0

C.I.39 eReserve_Build_1.0

All of the Elaboration Iteration E1 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixC/ElaborationIterationE1

Samples and detailed explanations for work products can be found in RMC.

II. Elaboration Iteration E2 Work Products (C.II)

C.II.1 eReserve_SoftwareDevelopmentPlan_3.0

C.II.2 eReserve_WorkOrder_3.0

C.II.3 eReserve_RiskList_3.0

C.II.4 eReserve_IterationAssessment_3.0

C.II.5 eReserve_StatusAssessment_3.0

C.II.6 eReserve_Glossary_3.0

C.II.7 eReserve_ChangeRequestCR_02_1.0

C.II.8 eReserve_UseCaseModel_3.0

C.II.9 eReserve_SoftwareRequirementsSpecifications_3.0

C.II.10 eReserve_SupplementarySpecification_3.0

C.II.11 eReserve_AnalysisModel_2.0

C.II.12 eReserve_UseCaseRealizationSpecification_2.0

C.II.13 eReserve_DesignModel_2.0

C.II.14 eReserve_DesignModel_2.1

C.II.15 eReserve_SoftwareArchitectureDocument_3.0

C.II.16 eReserve_ImplementationModel_2.0

C.II.17 eReserve_SoftwareArchitectureDocument_3.1

C.II.18 eReserve_UseCaseRealizationSpecification_2.1

C.II.19 eReserve_NavigationMap_2.0

C.II.20 eReserve_UserInterfacePrototype_2.0

C.II.21 eReserve_DataModel_2.0

C.II.22 eReserve_IntegrationBuildPlan_2.0

C.II.23 eReserve_TestSuite_2.0

C.II.24 eReserve_DeveloperTest_2.0

C.II.25 eReserve_TestLog_2.0

C.II.26 eReserve_TestCase_2.0

C.II.27 eReserve_TestSuite_2.1

C.II.28 eReserve_TestLog_2.1

C.II.29 eReserve_TestResults_2.0

C.II.30 eReserve_DefectReportDF_02_1.0

C.II.31 eReserve_DefectReportDF_03_1.0

A13

C.II.32 eReserve_TestEvaluationSummary_2.0

C.II.33 eReserve_ProjectPhasePlan_3.0

C.II.34 eReserve_IterationPlanC1_1.0

C.II.35 eReserve_Build_2.0

All of the Elaboration Iteration E2 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixC/ElaborationIterationE2

Samples and detailed explanations for work products can be found in RMC.

A14

APPE�DIX D

CO�STRUCTIO� PHASE WORK PRODUCTS

I. Construction Iteration C1 Work Products (D.I)

D.I.1 eReserve_WorkOrder_4.0

D.I.2 eReserve_RiskList_4.0

D.I.3 eReserve_IterationAssessment_4.0

D.I.4 eReserve_StatusAssessment_4.0

D.I.5 eReserve_Glossary_4.0

D.I.6 eReserve_ChangeRequestCR_03_1.0

D.I.7 eReserve_UseCaseModel_4.0

D.I.8 eReserve_SoftwareRequirementsSpecifications_4.0

D.I.9 eReserve_AnalysisModel_3.0

D.I.10 eReserve_UseCaseRealizationSpecification_3.0

D.I.11 eReserve_DesignModel_3.0

D.I.12 eReserve_DesignModel_3.1

D.I.13 eReserve_SoftwareArchitectureDocument_4.0

D.I.14 eReserve_ImplementationModel_3.0

D.I.15 eReserve_SoftwareArchitectureDocument_4.1

D.I.16 eReserve_UseCaseRealizationSpecification_3.1

D.I.17 eReserve_NavigationMap_3.0

D.I.18 eReserve_UserInterfacePrototype_3.0

D.I.19 eReserve_DataModel_3.0

D.I.20 eReserve_IntegrationBuildPlan_3.0

D.I.21 eReserve_TestSuite_3.0

D.I.22 eReserve_DeveloperTest_3.0

D.I.23 eReserve_TestLog_3.0

D.I.24 eReserve_TestCase_3.0

D.I.25 eReserve_TestSuite_3.1

D.I.26 eReserve_TestLog_3.1

D.I.27 eReserve_TestResults_3.0

D.I.28 eReserve_DefectReportDF_04_1.0

D.I.29 eReserve_TestEvaluationSummary_3.0

D.I.30 eReserve_ProjectPhasePlan_4.0

D.I.31 eReserve_IterationPlanC2_1.0

A15

D.I.32 eReserve_Build_3.0

All of the Construction Iteration C1 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixD/ConstructionIterationC1

Samples and detailed explanations for work products can be found in RMC.

II. Construction Iteration C2 Work Products (D.II)

D.II.1 eReserve_WorkOrder_5.0

D.II.2 eReserve_RiskList_5.0

D.II.3 eReserve_IterationAssessment_5.0

D.II.4 eReserve_StatusAssessment_5.0

D.II.5 eReserve_Glossary_5.0

D.II.6 eReserve_ChangeRequestCR_04_1.0

D.II.7 eReserve_UseCaseModel_5.0

D.II.8 eReserve_SoftwareRequirementsSpecifications_5.0

D.II.9 eReserve_AnalysisModel_4.0

D.II.10 eReserve_UseCaseRealizationSpecification_4.0

D.II.11 eReserve_DesignModel_4.0

D.II.12 eReserve_DesignModel_4.1

D.II.13 eReserve_SoftwareArchitectureDocument_5.0

D.II.14 eReserve_ImplementationModel_4.0

D.II.15 eReserve_SoftwareArchitectureDocument_5.1

D.II.16 eReserve_UseCaseRealizationSpecification_4.1

D.II.17 eReserve_NavigationMap_4.0

D.II.18 eReserve_UserInterfacePrototype_4.0

D.II.19 eReserve_DataModel_4.0

D.II.20 eReserve_IntegrationBuildPlan_4.0

D.II.21 eReserve_TestSuite_4.0

D.II.22 eReserve_DeveloperTest_4.0

D.II.23 eReserve_TestLog_4.0

D.II.24 eReserve_TestCase_4.0

D.II.25 eReserve_TestSuite_4.1

D.II.26 eReserve_TestLog_4.1

D.II.27 eReserve_TestResults_4.0

D.II.28 eReserve_DefectReportDF_05_1.0

D.II.29 eReserve_TestEvaluationSummary_4.0

D.II.30 eReserve_ProjectPhasePlan_5.0

D.II.31 eReserve_IterationPlanC3_1.0

D.II.32 eReserve_Build_4.0

All of the Construction Iteration C2 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixD/ConstructionIterationC2

Samples and detailed explanations for work products can be found in RMC.

A16

III. Construction Iteration C3 Work Products (D.III)

D.III.1 eReserve_WorkOrder_6.0

D.III.2 eReserve_RiskList_6.0

D.III.3 eReserve_IterationAssessment_6.0

D.III.4 eReserve_StatusAssessment_6.0

D.III.5 eReserve_Glossary_6.0

D.III.6 eReserve_ChangeRequestCR_05_1.0

D.III.7 eReserve_UseCaseModel_6.0

D.III.8 eReserve_SoftwareRequirementsSpecifications_6.0

D.III.9 eReserve_AnalysisModel_5.0

D.III.10 eReserve_UseCaseRealizationSpecification_5.0

D.III.11 eReserve_DesignModel_5.0

D.III.12 eReserve_DesignModel_5.1

D.III.13 eReserve_SoftwareArchitectureDocument_6.0

D.III.14 eReserve_ImplementationModel_5.0

D.III.15 eReserve_SoftwareArchitectureDocument_6.1

D.III.16 eReserve_UseCaseRealizationSpecification_5.1

D.III.17 eReserve_NavigationMap_5.0

D.III.18 eReserve_UserInterfacePrototype_5.0

D.III.19 eReserve_DataModel_5.0

D.III.20 eReserve_IntegrationBuildPlan_5.0

D.III.21 eReserve_TestSuite_5.0

D.III.22 eReserve_DeveloperTest_5.0

D.III.23 eReserve_TestLog_5.0

D.III.24 eReserve_TestCase_5.0

D.III.25 eReserve_TestSuite_5.1

D.III.26 eReserve_TestLog_5.1

D.III.27 eReserve_TestResults_5.0

D.III.28 eReserve_DefectReportDF_06_1.0

D.III.29 eReserve_TestEvaluationSummary_5.0

D.III.30 eReserve_ProjectPhasePlan_6.0

D.III.31 eReserve_IterationPlanT1_1.0

D.III.32 eReserve_Build_5.0

All of the Construction Iteration C3 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixD/ConstructionIterationC3

Samples and detailed explanations for work products can be found in RMC.

A17

APPE�DIX E

TRA�SITIO� PHASE WORK PRODUCTS

I. Transition Iteration T1 Work Products (E.I)

E.I.1 eReserve_WorkOrder_7.0

E.I.2 eReserve_RiskList_7.0

E.I.3 eReserve_IterationAssessment_7.0

E.I.4 eReserve_StatusAssessment_7.0

E.I.5 eReserve_TestEvaluationSummary_6.0

E.I.6 eReserve_ProjectPhasePlan_7.0

E.I.7 eReserve_IterationPlanT2_1.0

All of the Transition Iteration T1 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixE/TransitionIterationT1

Samples and detailed explanations for work products can be found in RMC.

II. Transition Iteration T2 Work Products (E.II)

E.II.1 eReserve_WorkOrder_8.0

E.II.2 eReserve_RiskList_8.0

E.II.3 eReserve_IterationAssessment_8.0

E.II.4 eReserve_StatusAssessment_8.0

E.II.5 eReserve_TestEvaluationSummary_7.0

All of the Transition Iteration T2 work products can be found in the CD with

detailed documentation and can be accessed separately as follows:

• ~/Appendices/AppendixE/TransitionIterationT2

Samples and detailed explanations for work products can be found in RMC.

A18

APPE�DIX F

IBM RATIO�AL TOOL PLUG-I�S

All RMC and RSM materials that are used in our software development project can

be found in the CD as in the form of plug-ins with details and can be accessed

separately as follows:

• ~/Appendices/AppendixF/RMC

• ~/Appendices/AppendixF/RSM

These plug-ins can be easily integrated into RMC and RSM tools to reach the

content.

