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In this study, the main focus is on an investigation of the sufficient conditions of existence and uniqueness of solution for two-
classess of nonlinear implicit fractional pantograph equations with nonlocal conditions via Atanga-
na-Baleanu-Riemann-Liouville (ABR) and Atangana-Baleanu-Caputo (ABC) fractional derivative with order o € (1,2]. We
introduce the properties of solutions as well as stability results for the proposed problem without using the semigroup property. In
the beginning, we convert the given problems into equivalent fractional integral equations. Then, by employing some fixed-point
theorems such as Krasnoselskii and Banach’s techniques, we examine the existence and uniqueness of solutions to proposed
problems. Moreover, by using techniques of nonlinear functional analysis, we analyze Ulam-Hyers (UH) and generalized

Ulam-Hyers (GUH) stability results. As an application, we provide some examples to illustrate the validity of our results.

1. Introduction and Motivation

Fractional calculus and its applications have increased in
popularity because of its utility in modeling a wide range of
intricate processes in science and engineering [1-5]. In order
to meet the need to model more real-world problems, new
approaches and techniques have been created in various
fields of science and engineering to characterize the dy-
namics of real-world events. Until 2015, all fractional de-
rivatives had single kernels. So, simulating physical events
based on these singularities is difficult. In 2015, Caputo and
Fabrizio (C-F) studied a novel type of fractional derivative
(FD) in the exponential kernel [6]. In [7], Atangana and
Baleanu (AB) investigated a novel form of FD using Mittag-
Leffler kernels. In [8], Abdeljawad expanded the Atangana
and Baleanu FD to higher arbitrary orders and established
the integral operators associated with them. In [9, 10],
Abdeljawad and Baleanu discussed the discrete forms of the
new operators. For some theoretical work on

Atangana-Baleanu FD, we refer the reader to a series of
papers [11-14]. Traditional fractional operators cannot
adequately describe some models of dissipative events,
which is why fractional derivatives with nonsingular kernels
are useful. For further details on the modeling and appli-
cations of the AB fractional operator (see [15-17]). The ABC
fractional derivative is often used to simulate physical dy-
namical systems because it accurately represents the pro-
cesses of heterogeneity and diffusion at various scales (see
[18-21]). For the existence and uniqueness, as well as sta-
bility results regarding ABC and ABR operators, we refer the
readers to a series of papers [22-25]. The challenge arises
from the fact that the semigroup property in the ABC
fractional derivative is not satisfied. In this paper, we in-
troduce some properties of solutions to the implicit pan-
tograph fractional differential equation without using the
semigroup property.

The topic of stability arose from Ulam’s question re-
garding the stability of group homomorphisms in 1940 (see



[26]). In the next year, Hyers [27] offered a positive inter-
pretation of the Ulam issue in Banach spaces, which was the
first significant development and step toward additional
answers in this area. Since then, some researchers have
published different generalizations of the Ulam result and
Hyers theory. In 1978, Rassias [28] presented a generalized
Hyers concept of mappings over Banach spaces. The Rassias
result grabbed the attention of a large number of mathe-
maticians from across the world, who began investigating
the problems of functional equation stability. In stochastic
analysis, financial mathematics, and actuarial science, these
stability results are often employed. Calculating the Lya-
punov stability for various nonlinear fractional differential
equations is difficult and time-consuming, as everyone
knows, and constructing the correct Lyapunov function is
also a difficulty. Stability means that the solution of the
differential equation will not leave the e-ball. But asymptotic
stability means that the solution does not leave the e-ball and
goes to the origin. Asymptotic stability implies stability, but

Journal of Mathematics

the converse is not true in general (see [29]). For nonlinear
fractional differential equations that deal with the nonlocal
conditions, Ulam-Hyers’s stability is ideal. Not only Ulam-
Hyers’s stability but also the existence and uniqueness of
fractional differential equation solutions have attracted a
large number of scholars.

The pantograph is a vital component of electric trains
that collects electric current from overload lines. The pan-
tograph equations have been modeled by Ockendon and
Tayler [30]. Many researchers who are convinced of the
relevance of these equations have extended them into nu-
merous types and shown the solvability of such problems
both theoretically and quantitatively (for additional details,
see [31-35] and the references therein). Many researchers
have investigated the existence and UH stability results of
fractional pantograph differential equations using various
forms of FD. For example, Almalahi et al. [36] studied the
existence and uniqueness results of the following Hil-
fer-Katugampola boundary value problems.

PRI (1)) = £(1v (0, v(A),PDEY (), A€ (0,1),1€ ] = (a,bl,

Y 0r1n(@) + 3 /D (k) = BeR,
i1 =1

where PIDZ’P (), [D;Lfﬁ (-) are the Hilfer-Katugampola (FD) of
order o and )tj, respectively, o € (0,1) <1 andtypef5 € [0,1],
oz +B(1-1), (j=0,1,2...,n),°1%, P75 are the
generalized fractional integral of order vy, 0, (i=
0,1,2,...,m), respectively, 0,,7; € R, and @;«; €] are
prefixed points.

Ahmed et al. [37] studied some properties of the solu-
tions of the boundary impulsive fractional pantograph
differential equation. In [38], the authors considered the
pantograph problem as follows:

ABCDT v (1) = £ (1,v(1), v (M),

7 2
v(a) = Z ij(xj), Kj € (a,T), &
=1

the existence and uniqueness results were investigated using
Banach’s contraction principle and Krasnoselskii fixed point
theorem, and the Ulam-Hyers stabilities were addressed
using Gronwall’s inequality in the context of ABC. Almalahi
et al. [39] via Banach’s contraction principle and Krasno-
selskii fixed point theorem studied the existence, uniqueness,
and UH stability results of the following problems:

ARDIY () = f(bv(1), 1€ abl,
{ v(a) = 0,7(b) = **1.v()), (e (ab),
ABCDY v (1) = £ (5,7(1)), 1€ [a,b],
{ v(a) = 0,v(b) = *B.(0), (e (ab),

(3)

1

where ABRD?, and AB“DY, are the ABR and ABC fractional
derivatives of order o € (2,3] and o € (1,2], respectively,
AB® is the AB-integral operator such that &€ (0,1],
(€ (a,b),and f: [a,b] x R — R is a continuous function.

Motivated by the argumentations above and due to the
fact that the nonlocal condition is a suitable tool to describe
memory phenomena like nonlocal elasticity, propagation in
complex media, polymers, biological, porous media, vis-
coelasticity, electromagnetics, electrochemistry, etc. We
intend to analyze and investigate the sufficient conditions of
solution for the following two-class of nonlinear implicit
fractional pantograph equations with ABR and ABC frac-
tional derivatives in order 1 < o <2 with nonlocal conditions
as follows:

ABRIDZA/(!) = f(,v(),v(\), ABRDZJ}([),A € (0,1),

v(b) = i 07 (@;), ®; € (a,b), (4)
i=1
ABC[DZJ/([) = f(L,v(),v(A), ABCIDZA/(;),/\ € (0,1),
V@) = 0,v(b) = 3 (k) ;€ (ab), )
-1

J

where ABRDY,  ABCDY, are respectively the ABR and ABC-FD
of order o € (1,2], 6, T €R and @;, K; € (a,b) are prefixed
points such that a<®,<®,< - <®;<b, a<i; <k, <
o <K;<b(i=1,2,...,mandj=1,2,...,n), and
f: [a,b] x R* — R is continuous function satisfies some
condition described later.
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It is notable that nonlocal Cauchy type problems may be
employed to explain differential rules in the growth of a
system. These equations are frequently used to explain non-
negative values such as a species’ concentration or the
distribution of mass or temperature. Before studying any
model of real-world phenomena, the first question to ad-
dress is whether the problem genuinely exists or not. The
fixed-point theory provides the answer to this question.

The contribution of the current works is as follows:

(i) In this paper, we will study two types of fractional
problems involving new higher-order fractional
operators via ABC and ABR operators, which have
recently been expanded by Abdeljawad.

(ii) To our knowledge, this is the first study that deals
with high-order ABC and ABR fractional deriva-
tives. As a result, our findings will be a valuable
addition to the current literature on these fasci-
nating operators.

(iii) We use a novel method to establish the existence
and uniqueness of solutions for problems (4) and
(5), as well as different types of stability results,
without relying on the semigroup property and with
a minimal number of hypotheses.

(iv) If A =1, then problems (4) and (5), respectively,
reduces to the following implicit fractional differ-
ential equations:

3
ABRD? v (1) = £ (5,7 (1), ABRD7. v (1)),
120 =Y 60(@), ¢ (@b)
Capora (6)

[ ABCDI, v (1) = £ (1, v (1), ABCDv (1)),

v(a) = 0,v(b) = Z (k). ;€ (a,b).
j=1

The rest of this paper is organized as follows: in Section 2,
we review several notations, definitions, and lemmas that are
necessary for our analysis. In Section 3, we examine the
existence and uniqueness results for problems (4) and (5)
with ABC and ABR derivatives with the nonlocal condition.
In section 4, we address the stability results of problems (4)
and (5). We present two examples to demonstrate the
validity of our results in section 5. In the concluding part, we
will provide some last observations regarding our findings.

2. Preliminaries and Auxiliary Results

Let 7 = [a,b], #' = (a,b) ¢ R,and C(¥, R) be the space of
continuous functions v: F — R with the norm
[Vl = max{|v(J)|: ¢t € #}. Then (C(FZ,R),| -|) is a Banach
space.

Definition 1 (see [7]). Let 0<o<1. Then, the following
expressions,

ABRpo (= D0 d J E (26— ) 00, 1>a,
1-0di Jo o-1
% 1 (7)
2Dy (1) = (0) J E(,( g (1—0)0>v'(9)d0, 1>a,
1-0 Jo o—-1
are called ABR and ABC fractional derivatives of order o for (ABR[DU v) (1) = (ABRDﬂ 7/(n)) )
a function v, respectively. B (o) is the normalization func- @ @ ’ (10)

tion that satisfies B (o) = (6/(2-0))>0 and B(0) =
B (1) =1, and E, is the Mittag-Leffler function defined by

0 ’Vi
E,(v) = ;m, Re(o)>0,v € C. (8)

The AB fractional integral is given by

B Ly =179y

o B0 (1= w(s)ds.  (9)

o
B (0)I (o) J

Definition 2 (see [8] Definition 3.1). Let us assume that
o€ (nn+1] and v € H' (F). We set =0 —n. Then,
0<B<1 and the following expressions

(ABCD;v) (1) = (ABCIDfiw‘”’) (1),

are called the left-sided ABR and ABC fractional derivatives
of order ¢ for a function v. The correspondent (FI) is given
by

(ABI]ZJ)(t) :(I]Z+ABI]§+1/) 0). (11)

Lemma 1 (see [8] Proposition 3.1). If v(1) is a function
defined on [0,b] and 0 € (n,n + 1], then, for somen € N, we
have

(i) (ABRDZ.AB17,.9) (1) = v (1).

(ii) (ABI9,ABRDY.9) (1) = v(1) - Y1y (v (a)/ i) (1 - a)'.



(iii) (ABIZABCDT v) (1) = (1) = Y1, (0P (a)/ i) (1 - a).

Theorem 1 (see [40]). Let S+ be a closed subset from a
Banach space K, and let II: & — § be a strict contraction
such that |I1(v) - II(y)| < pllv — yll for some 0 < p <1 for all
v,y € §. Then I1 has a fixed point in §.

Theorem 2 (see [41]). Let A be a Banach space, let aset f C A
be a nonempty, closed, convex, and bounded set. If there are
two operators ®', ®? such that (i) ®'x + ®*v € A, for all
x,v € A, (ii) ®" is compact and continuous, and (iii) ®* is a
contraction mapping, then there exists a function z €  such
that z = ®'z + ®*z.

Lemma 2 (see [8] example 3.3). Let o€ (1,2] and
h e C(Z,R). Then, the solution to the following linear
problem

ABCy0 _
{ D.v() = (1), (12)
v(a) =c,v' (a) = c,,
is given by
v()) = ¢, + ¢, (1—a) + *P1% (), (13)
where
2-0
Th(1) = ( .y J h(s)ds
(14)
o-1

! o—1
+ m Ja (l - S) h(S)dS
3. Equivalent Integral Equations

In this section, we will derive the formula of the equivalent
integral equations for problems (4) and (5).

3.1. Equivalent Integral Equations for the Problem (4)

1
ml_z; 16

ABRID V(l) — ABRID

+ ABRIDJ ABl]u+h( )

= ().

Next, we replace 1 by @; in (16) and multiply by 8;, we get
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Lemma 3. Let o€ (1,2] and he C(F,R). A function
v € C(7,R) is a solution to the following ABR-problem

{ ABR[DG v() =h(), 1€ (a,b],

(15)

y(b) = ZGv ) @; € (a,b),

then, v satisfies the following fractional integral equation:

6.1 1 _AB 1
v (1) = 1191<Z ‘ a1 (b)
(16)
+ 2207, 1 (1),
Proof. By (see [8] Theorem 4.2), the solution of
ABRD? y (1) = 1 (1) is given as
v(1)) = c+*P1% 1 (). (17)
where c is an arbitrary constant and
2 L
IR0 = oo g )J h(s)ds
(18)
c-1

' o-1
- - i (s)ds.
"B(o- I (0) J (1= (9ds
Now, we replace ¢ with ®; into (17) and multiply by 0,, we
get

(19)

Y ov(@) =) bic+ ) 610 h(
i=1 i1 i=1
Making use of the condition (v(b) = ¥I",0,7(®;)), we
have

7 1—2 6, <Z€AB“*

i=1"i =

ABu;h(b)). (20)

Substituting ¢ in (17), we get (16). Conversely, let us
assume that v satisfies (16). Then, by applying the operator
ABCDY, on both sides of (16) and using Lemmas 1, we obtain

Ze,-ABu;hmi)—ABu;h(b))

i=1

(21)
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m 9 m
Y 0y (@) = lel G <Z 0,*°1%. ABI]Z+h(b)>
i=1 i=1 i=
+> 6,101 (a)
i=1
1-(1-370) [ <, Ao ABo
= R S e VA : +h 2] — +h
1-Y76; Zle (@) =) (22)
+Y 6217 (@
i1
ABpo AB [ ABpo
=Ty 19,(29 %, 10 h(b)> 1%, 72(b)
=v(b).
Thus, the nonlocal condition is satisfied. O where
2 —
Theorem 3. Let 0 € (1,2],F,: F xR*® — R be a contin- b= %(—_01),
uous function such that F,(1) = f(,v(1),v(A(1)), 7 (24)
ABRD v (1)) and YI,6,#1. A function v € C(F,R) is a o—1
solution to the problem (4) if and only if v satisfies the fol- b= Bo—1)

lowing fractional integral equation:
1
1- Zim:16i

[i@i(plj F,(s)ds +

i=1

{plj F,(s)
+<"1 IR o

v(1) =

P (@ o1
T( )J (@; - ) Fv(s)ds)

j (b-9"'F, (s)d )}

J’ (- s)”_va(s)ds>,

F()

(23)

2 - !
B g ()= 2 )J P (9ds + 5

B(o-1

By (26), we can rewrite (25) as follows:

Proof. According to Lemma 3, the solution to problem (4) is
given by

v(1) = Y 6.*%15.F, (@,) - *°1), F, (b)
1- Zz 161 i=1 (25)
+ P17 F, ().
By definition 487, in the case o € (1,2], we have
i | -9 0 (26)
- (—s s)ds.
B(o-1I'(0)



1
V= 1-30.6

|:Z 0; (% J i F,(s)ds +
i=1 4
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og-1 R o-1
B(o Do) L (@;-s) Fv(s)ds)

(27)
2-0 (P -1 o1
_<_$(G_ 5 J-aFv(s)ds+7( e j (b—s)'F (s)ds)]
¥ 2_—UJ1F()d +7J (1-5)°"'F, (s)d
Bo-1 e "ETBO-Dr(@ ). T YY)
By (24), we get 3.2. Equivalent Integral Equations for the Problem (5)
1
v() = =37 Theorem 4. Let 0 € (1,2),F,: 7 xR®> — R be a contin-
= uous  function such that F, (1) = f(,v(1),v(A(1)),
m o a; - ABCDY v (1)) and Z;’zlrjqﬁl. A function ve C(£,R) is a
[Z 0; (P1 J F, (s)ds +m J (@ -s) Fv(s)ds) solution to the problem (5) if and only if v satisfies the fol-
- lowing fractional integral equation:
b pz b o-1
_(pl j Fy(9ds + 22 j (b-s) Fv(s)ds>]
+<P1 J‘ F,(s)ds + 1};2) Jl (t-s)"'F, (s)ds).
(28)
O
(1) _& Zn: (p J’Kj P, JK,- (K‘_S)U—lF (S)d5>
1-Yia7 =1 Ha T(o) Ja M !
—(plj F (s)ds+r*(’2) J (b—s)" lFV(s)ds)] (29)
! o-1
+p, J F,(s)ds +—=— T( ) J (t=15)"" "F,(s)ds,
where 4. Main Results
P = 2_70, 4.1. Existence and Uniqueness of Solutions for Problem (4).
B(o-1) (30) In this subsection, we will discuss the existence and
o—1 uniqueness results for the ABR problem (4). For simplicity,
P, = Blo-1) we set

Proof. Let us assume that v is a solution of the first equation
of (5). Then, by Lemma 2, we get

v(1) = ¢, + ¢, (1—a) + P15 F, (1), (31)

By conditions (v(a) = 0,v(b) = Z] ’ ]V(K 1)) and by the
same technique of Theorem 3, we can easily get (29). O

B P, (@ -a)
0; —(P1(@i—‘1)+ m)

p,(b- a)")

‘%B”:G’l(b—“” T(o+1)

(32)

2[:

+ (%B,(,).

me (Ztrflei@i + Rp,
(l_mf) 1_22191'
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Theorem 5. Suppose that F,: # x R* — R is a continuous
function such that F, (1) = f (1, v (1), v(A(1)), 2BRD7, v (1)) and

Then the ABR problem (4) has a unique solution provided
that A < 1.

Zl 10;# 1. Moreover, we assume that there is a constant
number N ;>0 such that

(H): If (bx,v,2) - f (L% 7,2)|

Smf(lx—fl+|v—vl+|z—2|).

Proof. On the light of Theorem 3, we define the operator

K: C(7,R) — C(7,R)
(33)

(K») (i) = ﬁ
i=1"i

< @ -1
{Z@(mj F (S)d5+r( )j (@;-s) Fv(s)ds)

i=1

b b
_(plj F,(s)ds + *(’2) j (b—s)“'lFV(s)dsﬂ

(n e o),

Let us consider a closed ball I1; defined as

(34)

Now, we show that EI1; ¢ IT;. For all 9 € I and 1 € 7,

;=9 e C(FR): [9)<d}, (35) we have
with radius 8 > (2(,/(1 — 2A)), where
2108 + R,
?[1 :(Tm+%3’o a)f,
(36)

ws = rlré}xlf(l,0,0,0)I.
1
(R ()] € s

(37)
+<p1 IF, (s)|ds+r( )j (b9 1|Fv(s)|ds)]

P2 JI (1 - s)“_liFv (s)lds).

+(];)1 |F (s) T'(o)

By (H,), we have
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|F, 0] =| £ (1v (0, v A (1), DS v ()|

=[£ (6@, v (1), P DLy (1)) - £(1,0,0,0)| +1£ (1,0,0,0)]

(38)
<1901+ AW+ DLy ()] ) +1£ (1.0,0,0)]
< [9()| + w
1- ERf r
Hence Thus, Kv € IT;. Now, we will prove that K is a con-
m traction map. Let v,7 € I and 1 € #. Then
1Ky < 2% (Zi—19i®im+ R, %30)8
(1—92f) 1-20%06;
Y2100, + Ry, (39)
(5 e o)
=AS+ A, <6
(K%) (1) = (K») ()]
Z, 3 |:; 0; (pl J. lF (s) - FA(5)|ds + l“lzz) Jmi (@; - 5)0_1|F1,(s) - F;(s)lds)
( J O J (b- 9 Y|F, (s) - F;(s)|ds>]
+< J |F, (s) = F5(s)|ds + == F( ) J (1—s5)"" |F, (s) - FA(s)|ds>
From our assumption, we obtain
I, (9) = F5(9)| <R, (19(5) = 3 (9] +Iv (A (5) = DA ()] +|F, (9) = F5(9)])
(41)

< v =l
1_mf

Hence
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Since A < 1, we deduce that K is a contraction. Hence,
1-Y70, Theorem 1 implies that K has a unique fixed point. Con-
i

sequently, the ABR problem (4) has a unique solution. O
S P2 (‘D a)’
6; (P (@ —a)+
[; ! T(o+1)

Ky - K9 <

Theorem 6. Let us assume that the hypothesis in Theorem 5
is satisfied. Then, the ABR problem (4) has at least one

B pO-a)’\] 2% solution.
+(p1(b /¥ T(o+1) 1—mf”” i
’ Proof. Let us consider the operator K, which is defined in
+p,(t—a) + P (1-a) 2R v =7 Theorem 5 such that (Kv) (1) = (K;7) (1) + (K,) (1), where
T'(c+1) J1- ERf
=Plv-7I.
(42)
(K») () = —
SR Vilt)

y N Pz @ o-1
[; 61‘(]31 Ja Y T'(o) Ja (G)f_s) F,,(S)ds)

(43)
_(p Jb P> J (b-s)"'F (s)ds)]
1 I'(0)
(K,») (1) = plj F (s)ds+% J (1= 5)° IF, (s)ds.
Let IT; be a closed ball defined as In order to apply Krasnoselskii fixed point theorem, we
M, ={9e C(AR):  [91<d), (44) split the proof into the following steps: O
with radius 6> (2,/(1 - )), where Step 1. We show that K;v + K, 7 € I for all »,% € II;. First,
Y™ 0,0, + Ry, for the operator K;. For v € Il; and ¢ € 7, we have
U =\ =——<mg +%po |05
1-320,06; ’
(45)
ws = Ilré}x | f(1,0,0,0)|
(Kyv) (1) < =574
L @ o—-1
[Z 0, (pl j |F, (s)]ds + =25 F( o J (@;-s) IFV(S>|dS) (46)
i=1

+<plj F, @fds + 7 )j b5y 1IF, (s)|ds>]

By (38), we have
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1 sz m
"Klv“Sl_Z;:lei l_mf5+wf ;6i®i+'%3,o :
(47)
Next, for the operator K,, we have

2N
||K2v|| < (1 — ;zf o+ wf>(%3)a.

By inequalities (47) and (48), we have
K> + Ky

(48)

< [&] + K]

< 2mf (Zﬁei@i + Rp,
_(l—mf) 1-36;

+ i 6,0, + R
1-37,6;

=Ad+ A, <6

+ (%’BJ,)(S (49)

+ ‘%B,o')wf

|(K2V) (‘2) - (Kz”) (11)|

<p, J|F (9)|ds

Journal of Mathematics
Thus K,» + K, € I1;.

Step 2. K| is a contraction map. Due to the operator K being
a contraction map, we conclude that K| is a contraction too.

Step 3. K, is continuous and compact. Since f is contin-
uous, K, is continuous too. Also, by (48), K, is uniformly
bounded on II;. Now, we show that K, (Il;) is equi-
continuous. For this purpose, let v € I, a <1 <1, <b. Then,
we have

+ P> Jll [(12 - s)a_1 (4 - s)J_IHFv (s)|ds

T'(o)

+ P> JIZ (1 —5)0_1|F1, (s)|d5

F(a) I

2N
f
S(l _mf5+wf)p1 (L, —1)

(50)

W)’ =(-a)" +( - a)g].

2N _
f Pl (1
+<1 —E)lf6+wf)

Thus
“(Kz”) (12) - (Ky) (‘1)” — 0,

In view of the previous steps with the theorem of
Arzela-Ascoli, we deduce that (K,II;) is relatively compact.
Consequently, K, is completely continuous. Hence, Theo-
rem 2 shows that ABR problem (4) has at least one solution.

(51)

ast, — 1.

4.2. Existence of Unique Solutions for Problem (5)

Theorem 7. Suppose that F,: 7 x R* — R is a continuous
Sfunction such that F, (1) = f (1, v(1), v(A (1)), ABCDZ+V(I)) and

T(o+1)

Z;’L 17j#1. Moreover, we assume that there is a constant
number N ;>0 such that

lf (1, x,v,2) —f(l,?,?,?)lsinf(Ix—fl +lv =9 +|z - Z|).
(52)

Then the ABC problem (5) has a unique solution, provided
that

2N, < (b-a) [z;l:ﬂj(aj + ‘%3»0]

= +Rp, | <1, (53)
1-N; 1-Yh,1; B, )

where
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Pz(K‘— a)" Proof. In view of Theorem 4, we define the operator
C) <p1<x —a)+ ] > (54) Q:C(JR)— C(F,R) by

I'(c+1) J

() (1) = 1_(za)|;z <P1J F (s)ds+r¥()2) rj (K —s)o 1I“U(S)ds;)
j=17j

b
_(Plj- F (5)d3+r¥()2)1 (b—S)alFV(s)ds>:| (55)

! p2 ! -1
+p; L v (o) L (t—3s)" 'F,(s)ds.

b-a)|Y' 7.0, + Ry,
Let us consider a closed ball I} as Y, = < [lzj inj ! b ] + R |0y (57)
* - jlej
IT, ={re C(S,R): |91<¢}, (56)
Now, we show that QH* C H* Forallv € H* and: € 7,
with radius ¢ > (Y,/(1 -Y)), where we have

|(m)(1)|s1_(‘z‘7‘:)Tj [ZT( [ s e [ (Kj—s)a_llFV(S)|ds>

(o [

e [ I @lds s [ =9 s

5! (58)
- )j (b- 9" |F, (s)|ds>]

By (H,), we have

|F, ()| = 'f(l, v(1), v()t(l)),ABCDZ+v(1))|

=[£(6 7@,y A1), DIy (1) - £ (1,0,0,0)] +1 £ (1,0,0,0)]

59
smf<|9(,)| NOYON +|ABCIDZ+V(1)|> +1£(,0,0,0) 9)

IN

29, 9
1_mfl O+ wy.

Hence
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e 2 (T ] o
(l_mf) 1_2?:171' <
b-a 0O+ Rp,
* ( )[Z] 1”] > ]+‘%B,a ws
1- Z]:I j
=Yp+Y, <o

(60)

() (1) - () (1)

< (t —na)
1207,

=

. )
+< J 7,9~ P (9)lds +
+p J;|FV(5)—F;( i

T'(o)

From (41), we obtain

12y — Q|

_ 2y [(G-a) Y0, + Ry
(1-9y) =2

=Y[lv -9l.

. %B,(,)nv -3

(62)

Due to condition (53), we conclude that € is a con-
traction. Hence, via Theorem 1, we conclude that Q has a
unique fixed point. Consequently, the ABC problem (5) has
a unique solution. O

4.3. Ulam-Hyers Stability for the Problem (4). The UH and
GUH stabilities for problem (4) are discussed in this sub-
section. For £>0, the following inequality is taken into
account:

|ABR ()—FA(L)'<€, L€ 7. (63)

Definition 3 (see [42]). The ABR problem (4) is UH stable if
there exists a real number C >0 such that, for each ¢ > 0 and
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Thus, Qv € IT]. Now, we prove that () is a contraction.
Let v,7 € H; and 1 € #. Then

[er( J |F, (s) - FA(S)|ds+r( )Jj(x ) |F (s) - FA(s)|ds) 61)
j (b-9"YF,(s) - FA(s)|ds)]

J’ (1= 9 |F, (s) - F=(s)|ds.

each solution 7 € C(#,R) of inequality (63), there is a
unique solution v € C(7,R) of (4) with

|$(1)—v(1)|SCfs. (64)

Furthermore, the ABR problem (4) is GUH stable if we
can identify ¢ »: R, — R, with ¢(0) = 0 such that

() —v()l<gye. (65)

Remark 1. Letv € C( %, R) be the solution to inequality (63)
if and only if we have a function k € C(_7, R) that depends
on v such that

(1) |k()|<eforall i€ g,

(i) A5°Dg. 7 (1) = F5(1) + k (1), 1 € 7.

Lemma 4. If v € C(7,R) is a solution to inequality (63),
then v satisfies the following inequality:

P,
T'(o)

V(1) =¥ -py Jl F-(s)ds -

‘%B,J)’

jl (1= )" "F5(s)ds

<e Zz 16® +‘%Ba
B 1_21 19
(66)
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where
¥ = [i 6, (pl J Fo(s)ds + 22 Joi (@ - s)”lF;(s)ds>
1_21 lez i=1 r( ) (67)
—(plj FA(s)ds+%J (b -s5)° IF;(s)ds)].
Proof. In view of Remark 1, we have Then, by Lemma 3, we get
APRDIS () = B (1) + k (1),
m 68
9(a) =0,7(b) = ) 65(a,). )
i=1
V(1) = {Ze(plj (F5(s) + K (9))ds + 22 Jmi (@, —s)a-l(FA(SHk(s))dS)
1_21 101 i=1 ( ) a ! v
b b
_(plj (F5(5) +k(s))ds + ;) j (b—s)“l(F;(s)+k(s))ds)] (69)
! -1
+<p1J (FA(s)+|k(s))ds+mJ (1—s) (F;(s)+lk(s))ds),
which implies
&(1)-\1/;-;:1[ F- (s)ds-m j (1= 97 B (s)ds
1
< -
T1-30,6
S o P (@ o-
(0 [ orw 2 o worw)
(70)
p Jb i Jb (b= 9° 1k (s)]ds
! a F(U) a
! p2 ! -1
| o | a9 olas
Zz 16 +‘%Ba
( 21 161 +9?B’J)-
O

Theorem 8. Suppose that F,: 7 x R* — R is a continuous Y 6,#1. Moreover, we assume that there is a constant
function such that F, (1) = f (4, v(1),v(A (1)), ABRDZJ(I)) and number ERf >0 such that
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(Hy): If (bx,v,2) = f (L%, %,2)]
B - B (71)
sinf(lx—x|+|v—v|+|z—z|).
If
2N R
f<*B,o
- mf <1, (72)

then, the ABR problem (4) is UH stable.

Proof. Let €>0 and ¥ € C(#,R) satisfies the inequality
(63), and let v € C(#,R) be a unique solution to the fol-
lowing problem:

¥ = 1—2,11[29(‘”‘]

1

Journal of Mathematics

ABRD? 5 (1) = F;(t),
v(a) =v(a) = (73)
v(b) =3(b) = Z 0,7 (@;).

Then, by Lemma 3, we get

50) = %+p1j F- (s)ds+% J (=97 'F=(s)ds,  (74)

where

® o-1
F( ) J (@; =) F;(s)ds)

(75)

_<plj F5(s)ds + - T )J (b-s)" lF;(s)ds)].

Since v(a) =7(a) =0 and v(b) =9(b) = Y",0,7(®,).

Then ¥- =¥, and hence by Lemma 4, we have
(@) —»l
<) -¥-m j F5(s)ds -
+p; j- |F;(s) - F, (s)|ds
P> J )
+F(0) ) (t—39)
(Zz 10 @ + '%Ba
<el =—%F—=
ZI 1Vi
Thus
lv=7l<Cye, (77)
where

(((22191'@1' + ‘%B,o)/(l - 22191‘)) + ‘%B,a).

C, = (78)
! 1-(20Rp,/(1-9)))
Now, by choosing ¢, (¢) = C e such that ¢ ¢ (0) = 0, then
the ABR problem (4) has GUH stability. O

P,

! o-1
m L (t—19) F;(s)ds

(76)

! Fs(s) - F, (s)|ds

2N Ry, -
9?3,0) iy, o

4.4. Ulam-Hyers Stability for the Problem (5). The UH and
generalized UH stabilities for problem (5) are discussed in
this subsection.

Lemma 5. If v € C(%,R) is a solution of the inequality

|**Ds 3 () - B ()| <6, (79)

then v satisfies the following inequality:
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() - ¥ p, J;F;(s)ds —% J (1= 9 B (5)ds
m (80)
- (b—a)(zjzlrj@j+%3ﬂ)+%
- I_Z;‘n:lTj By
where
_ (-a) S L AN
‘I’V‘l—z?“_lfj[jzl (‘“J r |, (59 Fv(s’ds)
P -1
—(mj o )j (b-9) FA(s)ds>] (1)

9, :<p1(1cj—a)+

I'(c+1)
Proof. By the same technique of Lemma 4, one can prove it.
So, we omit the proof here. O

Theorem 9. Suppose that F,: 7 x R — R is a continuous
function such that F, (1) = f (1,v(1),v(A(1)), *B¢D?, v (1)) and

Proof. Let >0 and 7 € C(7,R) satisfies inequality (79),
and let v € C(_#, R) be the unique solution to the following
problem:

ABC IDU
a

V(1) = F> (),

ZJ 1Tj# 1. Moreover, we assume that there is a constant v(a) =v(a) =0,
number ERf >0 such that n (84)
b)=%(b) =
If (Lx,v,2) = f(L,X,9,2)] v(b) =7(b) Z Tﬂ( )
9n _ _ _ (82) !
< — - _
<y (x == +ly =7l +]e - 2)) Then, by Theorem 4, we get
If = ! Pz ! -1
V() ==+ J F-~ J (1= 5)"" "F~(s)ds,
2Ry Rpa 83 R A I'(0) Ja !
-m, (83) (85)
then the ABC problem (5) is UH stable. where
‘%:ﬂ ir-(p J F5 JTj (T —s) FA(s)ds>
I Z?:IT]' j=1 A F( o)
(86)

—(pIJ FA(s)ds+r‘(’2)J (b-s)" IF;(s)ds)].

Since v(a) =7(a) =

0 and »(b) =$(b)=Z] 1T (k).
Then ¥- =

V¥, and hence by Lemma 5, we have



16 Journal of Mathematics

OES10]!
<l - ‘I’A—plj FA(s)ds—mJ (1= 97 'P=(s)ds
ip I |F=(s) - F, (s)|ds
(87)
o [ -9 ) - B (o)l
F( ) s s s)|ds
b-a) (Y10 + Ry, 2N R
<of | (2 EhBite )+92M + LB, g,
1- Zj:lTj 1- mf
Thus Now, by choosing ¢ ¢ (¢) = C}e such that ¢ (0) = 0, then
Iy -] < C}e, (88) the ABC problem (5) has GUH stability. O
where 4.5. Examples
o _f(((<b—a>(2§”1 10+ %,))/(1 = X717))) + o)
- ((sz %Bg) /(1 mf)) : Example 1. Consider the following ABR fractional problem:
(89)
2 ABR3/2
gy = L (g DO W) 0 1
() = ( 1 O 1 ) + . +ABRD3,2_( ) 1e(0,1)
(90)
1 /1
v(0) = 0,v(1) = Zv<5>.
Here 0= (3/2) € (1,2],a=0,b=1,0, = (1/4), m=1,
®; = (1/2) and
2 ABRm\3/2—
_ /3)] Dy v (1)
). ABRpO i I ! lv () [v (s o ‘ 91
For @,y A0, 052 (0) = i e T+l T+ W3] 1+ AR5 oy
Let 1 € [0,1],7,7 € R. Then
[ (v@5(2). 40350 ) - (1 705(5 ). B3 )|
Fof L Ol @3 ARD(
< ;e + + +
20e L+lv()] 1+ (3)] 1 +ARDY25())
(92)

T S 1O I 105 I <1 0)
+—le + ——+ — + T
20e L+ " T+(3)] 1+ ARDI5 ()

S% (lv(o -l V(é) - 7(%)‘ [0y (1) - ABRDSPWD-
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Therefore, hypothesis (H,;) holds with 9t = 1/20. Also
0, =114,Rp,=2.62, and A =0.68<1. Then all condi-
tions in Theorem 5 are satisfied and hence the ABR-problem
(4) has a unique solution. For every ¢ = max{e;, ¢,} >0 and
each 7 € C (7, R) satisfies

***DgA () - B ()| <. (93)

There exists a solution v € C(#, R) to the ABC problem
(5) with

17

where

C. = (((Z:zlgi@)i + ’%B,o)/(l - Zlggi)) + ‘%B,J)
=

(2%, %, (1-,)) =89>0.

(95)

Therefore, all conditions in Theorem 8 are satisfied and
hence the ABR problem (4) is UH stable.

Example 2. Consider the following ABC fractional problem

[P -»|<Cre (94)
2 ABCy3/2
_ /3)] Dy v (1)
ABCY2,, () = : L(e " Ol + JC + 0 ) 1€ (0,1),
0 20e Lyl T+ (W3)] 1+ 28Dy (1)
(96)
1 /1
1)==%=)
v(1) 4”(2)
Here o= (3/2)¢e (1,2l,a=0,b=1,7, = (1/4),n=1,
x; = (1/2). Let 1 € [0,1], 7,7 € R. Then
l F(sr@(5). By 0) - f(l,v(l),v@,ABCD%U))‘
(97)

1
20

<

(|v<t>—w>|+

Therefore, the hypothesis (H,) holds with 9 f= (1/20).
Also ©;=1.14,%p,=2.62 and Y =0.68<1. Then all
conditions in Theorem 7 are satisfied and hence the ABC
problem (5) has a unique solution.

5. Conclusion remarks

The theory of fractional operators in the Atangana-Baleanu
framework has recently sparked interest, prompting some
scholars to investigate and create certain qualitative features
of solutions to FDEs employing such operators. We de-
veloped and investigated adequate guarantee conditions for
the existence and uniqueness of solutions for two classes of
nonlinear implicit fractional pantograph equations with the
interval ABC and ABR fractional derivatives, subjected to
nonlocal condition.

The reduction of ABC-type pantograph FDEs to FIEs, as
well as various Banach and Krasnoselskii’s fixed point
theorems, are the foundations of our technique. In addition,
we used Gronwall’s inequality in the context of the AB
fractional integral operator to derive suitable conclusions for
various forms of UH stability. The results are supported by
relevant instances. The problems under consideration are
also true in some particular circumstances, i.e., they may be
reduced to problems containing the Caputo-Fabrizio

o) it o)

fractional derivative operator. Furthermore, the examina-
tion of the generated findings was kept to a bare minimum.
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