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Abstract: In this study, we have presented two new alternative definitions corresponding to the basic
definitions of the discrete delta and nabla fractional difference operators. These definitions and
concepts help us in establishing a relationship between Riemann-Liouville and Liouville-Caputo
fractional differences of higher orders for both delta and nabla operators. We then propose and
analyse some convexity results for the delta and nabla fractional differences of the Riemann-Liouville
type. We also derive similar results for the delta and nabla fractional differences of Liouville-Caputo
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type by using the proposed relationships. Finally, we have presented two examples to confirm the
main theorems.

Keywords: Riemann-Liouville fractional difference; Liouville-Caputo fractional difference; convexity
analysis
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1. Introduction

Discrete fractional operators represent several fundamental models in order to understand the
discrete fractional calculus phenomena. Furthermore, the study of these operators and their properties
has motivated the innovation of new mathematical tools which have provided useful insights for a
number of problems arising in various fields of application. On the other hand, several tools and
techniques borrowed from mathematical analysis [1-3], stability analysis [4—6], probability
theory [7-9], geometry [10, 11], ecology [12, 13] and topology [14—16] have contributed to a better
understanding of the properties of these discrete fractional operators.

In addition to many experiments, the rules of discrete fractional operators have also been under
active investigations emerging from theoretical and computational discrete fractional calculus. The
discrete fractional calculus theory has been successfully applied to analyze the positivity and
monotonicity of discrete delta and nabla fractional operators of the Riemann-Liouville,
Liouville-Caputo, Atangana-Baleanu and Caputo-Fabrizio types (see [17-21]).

While, in recent years, several results have been obtained for monotonicity and positivity analysis
involving discrete fractional operators, fewer results are available in the convexity analysis setting
(see [22-24]). In this study, at first we establish a relationship between the A fractional difference
of order B of the Riemann-Liouville type (R,ﬁAﬁ g) (z) and the Liouville-Caputo type (LICOAﬁ g) (z), and

a relationship between the V fractional difference of order B of Riemann-Liouville type (R};vﬁg) (z)

and Liouville-Caputo type (LgVﬁ g) (z) foreach N — 1 < 8 < N with N € §;. We then establish some
convexity results for the A and V fractional difference of the Riemann-Liouville type as well as for the
Liouville-Caputo type by using our derived relationships. For a systematic investigation of fractional
calculus and its widespread applications, we refer the reader to the monograph by Kilbas et al. [25] (see
also [26-29] for some recent developments based upon the Riemann-Liouville and Liouville-Caputo
fractional integrals and fractional derivatives as well as their associated dufference operators).

The remainder of the study is organized as follows. Section 2 presents a brief overview of the delta
and nabla fractional differences and a description of the essentials of the discrete fractional calculus
methods. It also gives alternative discrete fractional definitions equivalent to the standard definitions
and provides the relationships between the fractional Riemann-Liouville and Liouville-Caputo
difference operators. Section 3 establishes several convexity results for the fractional
Riemann-Liouville and Liouville-Caputo differences. Section 4 contains the application examples.
These are achieved by using two basic formulas for A?> and V2. Several concluding remarks and
thoughts on open questions are offered in Section 5.
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2. Basic tools and fractional difference relationships

In this section, we consider the discrete fractional sums and differences in both of
Riemann-Liouville and Liouville-Caputo senses. The reader can refer to [30-33] for the relevant
details about these definitions and many other properties associated with them.

Let us define the sets S, := {to, 7o + 1,7+ 2,...} and Z,(g) ={g: g:S, > R for ae€ R} For
g € Dy,+5(2) with B > 0, the A fractional sum of order 5 can be expressed as follows:

1

(IOA_ﬁg) (Z) = r_(ﬁ)

z—B
D (z=s—1F"g(s), forzinS,.,. 2.1)

S=1p

Moreover, for g € Z,(g), the V fractional sum of order 8 can be expressed as follows:

1

1_—(5) Z (z—s+ l)ﬂg(s), for z in S, ;. (2.2)

s=ro+1

(,OV_Bg) (z) =

Here, and in what follows, 72 and 7P are defined by

_ T@+D i F-Le+p
“Treri-p Y T T T

(2.3)

such that the right-hand sides of these identities are well defined. Besides, we use z= = 0 and =0
when the numerators in each identities are well-defined, but the denominator is not defined. Further,
we have B o

A7 =Bt and v =" (2.4)

Definition 2.1 (see [30-32]). Let g € Z,,(g). Then (Ag)(z) := g(z + 1) — g(z), for z € S, is the A
difference operator and (V g) (z) := g(z)—g(z—1), for z € S, ,1, is the V difference operator. In addition,
the A fractional difference of order 8 (X — 1 < 8 < N) of the Riemann-Liouville type is defined by

z+B—-N

AR B .
HN——,B) Z (z—s-— 1)N i 1g(s), for z in S;+x-p, (2.5)
S=to

(h0%) (@) =

and the V fractional difference of order 8 (X — 1 < 8 < N) of the Riemann-Liouville type is defined by

N

(z) = F(N——ﬁ) Z (z—s+ l)mg(s), for z in S, ,x. (2.6)

s=to+1

(5¥)

The following theorem is an alternative representation of the V fractional difference (2.6).

Theorem 2.1 (see [21, Lemma 2.1]). For g € Z,(g) and N — 1 <3 < N, the V fractional difference of
order (B of the Riemann-Liouville type can be expressed as follows:

(R;Vﬁg) (z) = I“(+ﬁ) Z (z—s+ l)ﬁg(s), for z in S, 4x. 2.7)

s=to+1
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Furthermore, the following theorem is an alternative representation of the A fractional
difference (2.5), which is also the generalization of the result established for 0 < 8 < 1 in [18].

Theorem 2.2. For g € ,,.5(g) with 8 — 1 < B < N, the A fractional difference of order 3 of the
Riemann-Liouville type can be expressed as follows:

z+p
(RgAﬁg)(Z r(lﬁ) Z(Z—s 1Zlg(s), for zin Sy ixp. (2.8)

s=fy

Proof. The result was proved by Mohammed et al. in [18, Theorem 1] for N = 1 (thatis, for0 < 8 < 1),
and their result is given below:

z+B
(ReAg) (2) = 1“(1,8) D z=s—1DFg(s), forzin Sy (2.9)

S=1p

For 8 = 2 (that is, for 1 < 8 < 2), by Definition (2.5) we find for each z € S, ,,_4 that

z+3-2

A _
(h2e) (Z):A[—F(—,B+2) ;(z—s—l)lﬂg(s)]
b 1 z+-1
2Al—— _s— 1)~
(ﬁ)A{r(_ﬁﬂ) :Z,O(Z s—1) g(s))

z+p3 z+5-1
T - Y s a0

S=1p

Z+B z+f3
TR 0 - Y- e |

S=1gp

1 7+ I
= mZ;A(Z— s — 1)=g(s)

z+p
F(_ﬁ)Z( -5 = DPg(s),

S=ty

where we have first used (see [18, Lemma 1])

(-B-1)*=
and then used
A (Zf) =0 71
The same procedure can be repeated (N — 1) times to obtain the required result asserted by Theorem 2.2.

O
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Definition 2.2 (see [30-32]). For g € Z,,.5(g), the A fractional difference of order 8 (X — 1 < 8 < N)
of Liouville-Caputo type is defined by

z+B—-N
Z (z—s - DXEL(ANg)(s), for z in Sty+N-p> (2.10)

S=tp

(580 = ;x5

and, for g € Z,,(g), the V fractional difference of order 8 (N — 1 < 8 < N) of the Liouville-Caputo type
is defined by

("oVPe) (2) =

Z (z—s+ 1) P (Ve)s), forzin Sy 2.11)

s=to+1

F(N B)

The following proposition provides relationships between the A and V fractional differences of the
Riemann-Liouville and Liouville-Caputo types of the higher order £.

Proposition 2.1. Let g € (X — 1,8). Then, for g € P, .5(g),

(z — tg) £
(“oA’g) (@) = (\pA4g) (2) - Z T +° A8, (2.12)
for zin S, .x_g. Moreover, for g € 9,,(g), it is asserted that
(2 1) 7"
(£v°e) @ = (}:7e) () - Z NI} 2.13)

forzin S, .x.

Proof. We only prove the first part and we omit the second part, because they have the same proof
technique. Considering (2.10), for 8 = 1 we have

z+pB-1

> @ =s-1)E(Ag)s)

S=1y

z+p-1 z+5-1
r(-ﬁ+1>{2<z—s-1> Fes+ D= ) 2=s-1F g<8>}

S=ty

z+p
F(ﬁl { (2= 10)glt) + ) A(z—s—1)% g(s)}

(X8 = g

S=1p

z+f ( t())f
(z- Plg(s) - ————g(ty), (2.14)
T(—ﬁ) I'(-g+1)

S=tp

where we have first used (=8 — 1) = 0 and then used A (zf) = -8z as above.
Now, for 8 = 2, we have
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z+(3-2

1 )
("cAg) (2) = T5+2) ;; (z—s - 1)E(A%g)(s)

S (2~ 1)~

by 1 VB _e—t)—
2 (e s= P800 - g

14 [(-B + 1) (Ag)(to)

(2.14)
S=fy

agai:nby iﬁ‘:(z l)ﬂg() ( ) ( )_( - O)Iﬁ
F(ﬁ) rg+ 02" e

We can repeat the same procedure (8—1) times to get the required (2.12). Hence the proof is completed.

3. Convexity results

O

We start with two lemmas concerning the A? and V? fractional differences which will be useful in

3.1

the sequel.
Lemma 3.1. Let g € 7,,(g). € (2.3) and (\;A’g) (z) 2 0 for z. € Syu3-5. Then, for z =ty +—B+3+7
withn € Sy,

(Mgt +n+1)2 —Mg(t ) — (B+3+ n)ﬂ(Ag)(I )

’ - F( B+ =V T(-B+2) ’
1-BrA2
TR ﬁ+2) Z( B+ n+2 - )N + ),

where

(B+n+2-0 (B+2(+3) - (B+n+2-01

B <0,
F=6+2) (m—1+1)!
(f+3+ 07" (B+3+m)2
“Tprn 0 ad fgry <
Proof. By considering Theorem 2.2 and (2.4), we have
RL Af 1 &
( A )(Z) F( 5 Z;‘(Z —s— )P g(s)
1 z+f
TT(B+ 1) ZA(Z‘S— DZg(s)
_(z- 1) 1 ar L
=T DS T R 20T A0,
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where we have used (-8 — 1) = 0. By the same technique as in above, we can deduce

(z
(RL ﬂ)()_F(,B+1)

) 1 z+f s
2(0) + 7= ﬁ+2)ZA(z - DA g)(s)

_ z-1)? (z — 1p) 1 & e VB A2
"B (5 GO0 ;‘(z s— DA’ g)s),  (3.2)
where we have used (-8 — D =0.Since (z—s— D =0ats=z +8,z+ 5 —1,(3.2) becomes
z+B-2

-8 1 1
(f¢e) 0 = [ e + gl (B + gy D s = D)

(A2 _ (z—10)F (z — 1)
=(Agz+B-2)+ TB+1) 1)g(l‘o) " TCB+2) (A g)(10)
1 z+B-3 )
vy ; (z—s — DIE(A%)(s).

Considering the assumption that (RtLOAﬁg) (z) 2 0, it follows that

z+5-3

— B — )-8 1
T~ T 00~ rgrg ) s D)

I'(-g+1D I'(-B8+2)
Forz =t + -8+ 3 +nforne S, it becomes

2 (B+3+m~ (p+3+m=F
(Ag)to+n+1)2 —Wg(lo) T TTB+2) (A g)(t)

Z( —B+n- DN )t + ),

(A’g)z+B-2) 2 -

F( ﬁ +2)
which is the required (3.1). Now, it is clear for 2 < 8 < 3 that

(—,8+77+2—1)ﬁ_ I'(-B+3+n-1

[(-B8+2) T T(-B+2T2+n—-1)
(BB +3) - (P+n+2-1) <0
B -1+ 1)

(B+3+n)?  T(-B+4+n
T(-B+1) ~ T@+nI(-B+1)
_ (B DB+ +3) -+ 1 =P(B+n+ (S +1+3)
(7 +3)!

> 0,

and
(B34 T(Prdtn (BB +3) (Prn+)(prn+3)
[(-+2)  T@+npl(-f+2) (n+3)!

fort=0,1,..., n and n € Sy. Thus, our proof is complete. O
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Lemma 3.2. Let g € Z,,+1(2), B € (2,3) and (R:;Vﬂg) (z) 2 0forz€ S, .. Then, forz .=ty + 1,

(n -2~ S S P
(V2e)(to + 1) 2 Wg(fo +1) - 512 ;(77 —1) A(VPQ)(ty + 1+ 1), (3.3)
where
(n=0"" _(B+2(B+I-(Ban-(B+n-1-1 _
I(-8+2) n—-1-1)!
and
1 -2m*
mg(fo +1)=0
forn € S,.

Proof. By making use of Theorem 2.1 and (2.4), we find for z € S, .4 that

(R}(—)Vﬁg) (z) = F(—ﬁ) S;rl(z -s+1) —B-1 lg(s)
1 Z+B ?
= —F(—,B D s;l V(iz—-s+1)"g(s)
_@-w)? =
= mg(lo +1)+ B+ 1) ﬁ D HZ;Z(Z —s+ D7 (Ve)s),

where we used (0)® = 0. We can continue by the same technique to get

RLw3 _ (Z_IO)i 1-8
(5¥'e) @ = { e+ ﬁ )g%w s+ DV g)s)
_(z-1)? (z—to— 1P
= Wg(to +1)+ W(V g2)(to +2)
_ T-B/2
F(_ﬁ+ 5 ;g(z s+ DV )(s)
= (Vzg)(z) + Mg([ + ]) + M(V g)(t + 2)
NN [(-B +2) 0
1
v s,Zg(Z — s+ D! F(V2 g)(s),

where this time we used (0)!# = 0. By using the assumption that (RtLoVﬂ g) (z) =2 0, it follows that

AIMS Mathematics Volume 7, Issue 10, 18127-18141.
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(V’g)(2) 2 —ﬁf__ﬁ’ff) gt +1)
- (Z;(i()ﬁ—_+12);_ﬁ(v g)to +2) — m ;Z;l(z —s+ D'V g)(s)
—(-10-2 +,8)1E?__ﬁtj_)_2ﬁ)g(to F1)- (Zr_(f’ﬂ—_Jrlz);_ﬁg(to +2)
- TETE ;z;;(z — s+ DAV g)s) (34)
where we have used
(le(i(’)g;lz);_ﬁ B g__ﬁt(jr)_f) =(z—-1t—2+p) 1{?_};23_;)

Now, by using the assumption (R:;Vﬂ g) (z)y20atz =1+ 1 and f) + 2 in Theorem 2.1, we have

to+1 L
(*:vg) (ro + 1) = Ha D t+2-5PTg(s) = gltg + 1) 2 0, (3.5)
s=to+1
and
to+2 L
((LvPg) (1o +2) = Xa Dty +3-9)7"als) = glto +2) — ety + 1) 2 0. (3.6)
s=to+1
By using (3.6) in (3.4), we get
) (z—to)P (z—ty— D'
Ve)@z(z-1-2 +’8)F(—,B " 2)g(lo +D-p Wg(fo +1)
1 z—1 @ )
YTy 52,20;3(2 —s+ 1) P(V7g)(s)
_ Tz~ 1)~ f) S T2
===V et DRy @S DT Re. 67

s=to+3
where we used

_(z—to—l)@__(—/3+2)(—B+3)--~(—ﬁ+z—to—2)(—ﬂ+z—to—1) >0
r(-8+2) (z—1ty— 1! ’

for2 < B < 3.

Setz =ty + nforn e S, in (3.7), we can deduce

I'(n-p)
[(-B+ DI'(n)

(V2e)(to+m) = (—2) g(to+1) -

n-2
_ B2
I'(-8+2) ;(’7 D) P(Ve)ty + 1+ 1),

AIMS Mathematics Volume 7, Issue 10, 18127-18141.
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which rearranges to the desired (3.3). Now, it is clear that

-0 Th-1+1-p)
T(—B+2) T(-B+20(-1)
_ (BB (Brn-Dprn-1=D

(n—1-1)! ’
and from (3.5), we see that
— NP
%g(m +1)
_ - 2)(—,3 + D(B+2)(-B+3)---(=B+n-=3)(-L+n—-2)(-B+n—- 1)g(t0 i
(n—-D!

Z Oa

for2 < <3,1=2,3,...,n—2and 5 € S4. Thus, the proof is done. m]

Based on the above lemmas, we can now present our A and V convexity results.

Theorem 3.1. If B € (2,3) and g € 9,,(g) satisfies (R,%Aﬂg) (z) 20, forall z € S35, g(t)) £ 0
(Ag)(to) = 0 and (A*g)(ty) = 0, then (A*g)(z) = 0 forz € S,,.

Proof. By using strong induction we will done this proof. From the assumption, we know that
(A%g)(t)) = 0. We assume that (A%g)(ty +1) = O forz = 0,1,...,n7. Then Lemma 3.1 gives that
(A%g)(to + 7 + 1) = 0. Thus, the proof is done. i

Corollary 3.1. If € (2,3) and g € 2,,(g) satisfies

2
(z -t ) =B+
(LgAﬁ (z) = - JZ F(Zﬁ +0] - 1)( ‘g)(ty), forallze S,sp,

g(to) £ 0, (Ag)(to) 2 0 and (A’g)(19) 2 O, then, (A’g)(z) 2 0, for z € Sy,
Proof. The result follows immediately from (2.12) with 8 = 3 and Theorem 3.1. O

Theorem 3.2. IfB € (2,3) and g € D,,+1(g) satisfies (R,];Vﬁg) (z) 20, forallz € S, .1, then (V*g)(z) 2 0
forz € S, 3.

Proof. The proof can be accomplished by using the principle of mathematical induction. Indeed, by
using Theorem 2.1 with z = #, + 3, we see that

t0+3

1
(RtLOVﬂ )(t +3) = e Szl(ro+4—s) FTg(s)
:ﬁ(ﬁz_ D atto + 1) = Bty +2) + gto +3)
= (Ve)(to +3) — (B—2)g(to +2) — g(to + 1)+ﬁ(’82_ 1)g(to+ 1)z 0.

AIMS Mathematics Volume 7, Issue 10, 18127-18141.
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Thus, upon solving for (V2g)(ty + 3), we have

-2 1
(V)i +3) 2 6~ gl +2) - L2 D gy

b -2 1
> pp- gt + 1)~ L2 D gy 1)
(3.6)

:—(ﬁ‘z)z(ﬁ_l)g(;oﬂ)go.

Now, we assume that (V2g)(fo+1) = 0 forz = 3,4, ...,7—1. Then Lemma 3.2 leads to (A%g)(ty+1) = 0.
Hence, the proof is done. O

Corollary 3.2. If B € (2,3) and g € Z,,(g) satisfies

2
(z - t9) P
(“oVPe) (2) = - ,Z F e 1)( Ig)(ty), forallz € Sy,

then, (V?g)(z) 2 0, for z € S;,.3.
Proof. The result follows immediately from (2.13) with N = 3 and Theorem 3.2. |

4. Applications

We try to apply our main results on the function g(z) = z> with 8 = % and ¢y = 0. Firstly, from the
definition of delta fractional difference (2.8), we have

(*5a°g) 3-p) = Z(z B - 92g(s)

F(—,B)

e ﬁ)[a -2 1g(0) + (1 - (1) + (-B)2Leg(2) + (-8 - DEg(3)

7
:—>0’
g =

similarly, we can have

SNg)(d-p) = —— > (3-B-9)Tg(s)
(52 F(—ﬁ) Z i

11

> 0.

167

We can continue by the same technique as above to get
(*5a%g) (- B) 2 0,

for each n € S;. In addition, we have that

g0)=0<0, (Ag)0)=1>0, (A’2)0)=2>0.

AIMS Mathematics Volume 7, Issue 10, 18127-18141.
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Hence, g(z) = z? is convex on S according to Theorem 3.1.
On the other hand, from the definition of nabla fractional difference (2.7), we have

1
(%W%yn:77%52;@—9**g9

I
= ——()* g1
F(—ﬁ)( )7 g()

=g =120,

and

2
("ov’e) @ = 1“(+,8) ;(3 — )2 g(s)

= — @ el + ()P g2
r(—ﬁ)[() g+ (M7 g

3
==-2>0.
52
Proceeding by the same technique as above to get
(*5vg) o) 2 0,

for all € S;. Therefore, g(z) = z? is convex on S; by Theorem 3.2.
5. Conclusions and future directions

The outcomes of this article are briefly as follows:

(1) Alternative definitions have been presented to the basic definitions of the discrete delta and nabla
fractional differences in Theorems 2.2 and 2.1, respectively.

(2) A relationship between the delta and nabla fractional differences of the Riemann-Liouville and
Liouville-Caputo types of higher orders has been established in Proposition 2.1.

(3) The formulas for (A%g) and (Vg) have been represented in Lemmas 3.1 and 3.2, respectively.

(4) Based on Lemmas 3.1 and 3.2, some convexity results have been analyzed for the delta and nabla
fractional differences of the Riemann-Liouville type in Theorems 3.1 and 3.2, respectively.

(5) Similar results have been obtained for the delta and nabla fractional differences of the Liouville-
Caputo type by using the proposed relationships in Corollaries 3.1 and 3.2, respectively.

For the future direction of this work, we notice that the use of discrete fractional operators of the
Caputo-Fabrizio and Atangana-Baleanu types to establish similar relationships and convexity results
has the potential to lead to future investigations by the interested researchers (see [19, 32] for
information about these discrete fractional operators).
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