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1. Introduction

Segre [1] made a pioneering attempt in the development of special algebra. He conceptualized
the commutative generalization of complex numbers, bicomplex numbers, tricomplex numbers, etc.
as elements of an infinite set of algebras. Subsequently, in the 1930s, researchers contributed in this
area [2–4]. The next fifty years failed to witness any advancement in this field. Later, Price [5]
developed the bicomplex algebra and function theory. Recent works in this subject [6, 7] find some
significant applications in different fields of mathematical sciences as well as other branches of science
and technology. An impressive body of work has been developed by a number of researchers. Among
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these works, an important work on elementary functions of bicomplex numbers has been done by
Luna-Elizaarrarás et al. [8]. Choi et al. [9] proved some common fixed point theorems in connection
with two weakly compatible mappings in bicomplex valued metric spaces. Jebril [10] proved some
common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued
metric spaces. In 2017, Dhivya and Marudai [11] introduced the concept of a complex partial metric
space, suggested a plan to expand the results and proved some common fixed point theorems under a
rational expression contraction condition. In 2019, Mani and Mishra [12] proved coupled fixed point
theorems on a complex partial metric space using different types of contractive conditions. In 2021,
Gunaseelan et al. [13] proved common fixed point theorems on a complex partial metric space. In 2021,
Beg et al. [14] proved fixed point theorems on a bicomplex valued metric space. In 2021, Zhaohui et
al. [15] proved common fixed theorems on a bicomplex partial metric space. In this paper, we prove
coupled fixed point theorems on a bicomplex partial metric space. An example is provided to verify the
effectiveness and applicability of our main results. An application of these results to Fredholm integral
equations and nonlinear integral equations is given.

2. Preliminaries

Throughout this paper, we denote the set of real, complex and bicomplex numbers, respectively, as
C0, C1 and C2. Segre [1] defined the complex number as follows:

z = ϑ1 + ϑ2i1,

where ϑ1, ϑ2 ∈ C0, i2
1 = −1. We denote the set of complex numbers C1 as:

C1 = {z : z = ϑ1 + ϑ2i1, ϑ1, ϑ2 ∈ C0}.

Let z ∈ C1; then, |z| = (ϑ2
1 + ϑ2

2)
1
2 . The norm ||.|| of an element in C1 is the positive real valued function

||.|| : C1 → C +
0 defined by

||z|| = (ϑ2
1 + ϑ2

2)
1
2 .

Segre [1] defined the bicomplex number as follows:

ς = ϑ1 + ϑ2i1 + ϑ3i2 + ϑ4i1i2,

where ϑ1, ϑ2, ϑ3, ϑ4 ∈ C0, and independent units i1, i2 are such that i2
1 = i2

2 = −1 and i1i2 = i2i1. We
denote the set of bicomplex numbers C2 as:

C2 = {ς : ς = ϑ1 + ϑ2i1 + ϑ3i2 + ϑ4i1i2, ϑ1, ϑ2, ϑ3, ϑ4 ∈ C0},

i.e.,
C2 = {ς : ς = z1 + i2z2, z1, z2 ∈ C1},

where z1 = ϑ1 + ϑ2i1 ∈ C1 and z2 = ϑ3 + ϑ4i1 ∈ C1. If ς = z1 + i2z2 and η = ω1 + i2ω2 are any two
bicomplex numbers, then the sum is ς ± η = (z1 + i2z2) ± (ω1 + i2ω2) = z1 ± ω1 + i2(z2 ± ω2), and the
product is ς.η = (z1 + i2z2)(ω1 + i2ω2) = (z1ω1 − z2ω2) + i2(z1ω2 + z2ω1).
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There are four idempotent elements in C2: They are 0, 1, e1 = 1+i1i2
2 , e2 = 1−i1i2

2 of which e1 and e2 are
nontrivial, such that e1 + e2 = 1 and e1e2 = 0. Every bicomplex number z1 + i2z2 can be uniquely
expressed as the combination of e1 and e2, namely

ς = z1 + i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2.

This representation of ς is known as the idempotent representation of a bicomplex number, and the
complex coefficients ς1 = (z1 − i1z2) and ς2 = (z1 + i1z2) are known as the idempotent components of
the bicomplex number ς.
An element ς = z1 + i2z2 ∈ C2 is said to be invertible if there exists another element η in C2 such
that ςη = 1, and η is said to be inverse (multiplicative) of ς. Consequently, ς is said to be the
inverse(multiplicative) of η. An element which has an inverse in C2 is said to be a non-singular element
of C2, and an element which does not have an inverse in C2 is said to be a singular element of C2.
An element ς = z1 + i2z2 ∈ C2 is non-singular if and only if ||z21 + z22|| , 0 and singular if and only if
||z21 + z22|| = 0. When it exists, the inverse of ς is as follows.

ς−1 = η =
z1 − i2z2

z21 + z22
.

Zero is the only element in C0 which does not have a multiplicative inverse, and in C1, 0 = 0 + i10 is
the only element which does not have a multiplicative inverse. We denote the set of singular elements
of C0 and C1 by O0 and O1, respectively. However, there is more than one element in C2 which
does not have a multiplicative inverse: for example, e1 and e2. We denote this set by O2, and clearly
O0 = {0} = O1 ⊂ O2.
A bicomplex number ς = ϑ1 + ϑ2i1 + ϑ3i2 + ϑ4i1i2 ∈ C2 is said to be degenerated (or singular) if the
matrix (

ϑ1 ϑ2

ϑ3 ϑ4

)
is degenerated (or singular). The norm ||.|| of an element in C2 is the positive real valued function
||.|| : C2 → C +

0 defined by

||ς|| = ||z1 + i2z2|| = {||z
2
1|| + ||z

2
2||}

1
2

=

[
|z1 − i1z2|

2 + |z1 + i1z2|
2

2

] 1
2

= (ϑ2
1 + ϑ2

2 + ϑ2
3 + ϑ2

4)
1
2 ,

where ς = ϑ1 + ϑ2i1 + ϑ3i2 + ϑ4i1i2 = z1 + i2z2 ∈ C2.
The linear space C2 with respect to a defined norm is a normed linear space, and C2 is complete.
Therefore, C2 is a Banach space. If ς, η ∈ C2, then ||ςη|| ≤

√
2||ς||||η|| holds instead of ||ςη|| ≤ ||ς||||η||,

and therefore C2 is not a Banach algebra. For any two bicomplex numbers ς, η ∈ C2, we can verify the
following:

1. ς �i2 η ⇐⇒ ||ς|| ≤ ||η||,

2. ||ς + η|| ≤ ||ς|| + ||η||,
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3. ||ϑς|| = |ϑ|||ς||, where ϑ is a real number,

4. ||ςη|| ≤
√

2||ς||||η||, and the equality holds only when at least one of ς and η is degenerated,

5. ||ς−1|| = ||ς||−1 if ς is a degenerated bicomplex number with 0 ≺ ς,

6. || ς
η
|| =

||ς||
||η||

, if η is a degenerated bicomplex number.

The partial order relation �i2 on C2 is defined as follows. Let C2 be the set of bicomplex numbers and
ς = z1 + i2z2, η = ω1 + i2ω2 ∈ C2. Then, ς �i2 η if and only if z1 � ω1 and z2 � ω2, i.e., ς �i2 η if one
of the following conditions is satisfied:

1. z1 = ω1, z2 = ω2,

2. z1 ≺ ω1, z2 = ω2,

3. z1 = ω1, z2 ≺ ω2,

4. z1 ≺ ω1, z2 ≺ ω2.

In particular, we can write ς �i2 η if ς �i2 η and ς , η, i.e., one of 2, 3 and 4 is satisfied, and we
will write ς ≺i2 η if only 4 is satisfied.
Now, let us recall some basic concepts and notations, which will be used in the sequel.

Definition 2.1. [15] A bicomplex partial metric on a non-void setU is a function ρbcpms : U ×U →
C +

2 , where C +
2 = {ς : ς = ϑ1 + ϑ2i1 + ϑ3i2 + ϑ4i1i2, ϑ1, ϑ2, ϑ3, ϑ4 ∈ C +

0 } and C +
0 = {ϑ1 ∈ C0|ϑ1 ≥ 0}

such that for all ϕ, ζ, z ∈ U:

1. 0 �i2 ρbcpms(ϕ, ϕ) �i2 ρbcpms(ϕ, ζ) (small self-distances),

2. ρbcpms(ϕ, ζ) = ρbcpms(ζ, ϕ) (symmetry),

3. ρbcpms(ϕ, ϕ) = ρbcpms(ϕ, ζ) = ρbcpms(ζ, ζ) if and only if ϕ = ζ (equality),

4. ρbcpms(ϕ, ζ) �i2 ρbcpms(ϕ, z) + ρbcpms(z, ζ) − ρbcpms(z, z) (triangularity).

A bicomplex partial metric space is a pair (U, ρbcpms) such that U is a non-void set and ρbcpms is a
bicomplex partial metric onU.

Example 2.2. LetU = [0,∞) be endowed with bicomplex partial metric space ρbcpms : U ×U → C +
2

with ρbcpms(ϕ, ζ) = max{ϕ, ζ}ei2θ, where ei2θ = cos θ+i2 sin θ, for all ϕ, ζ ∈ U and 0 ≤ θ ≤ π
2 . Obviously,

(U, ρbcpms) is a bicomplex partial metric space.

Definition 2.3. [15] A bicomplex partial metric space U is said to be a T0 space if for any pair of
distinct points ofU, there exists at least one open set which contains one of them but not the other.

Theorem 2.4. [15] Let (U, ρbcpms) be a bicomplex partial metric space; then, (U, ρbcpms) is T0.

Definition 2.5. [15] Let (U, ρbcpms) be a bicomplex partial metric space. A sequence {ϕτ} in U is
said to be convergent and converges to ϕ ∈ U if for every 0 ≺i2 ε ∈ C +

2 there exists N ∈ N such
that ϕτ ∈ Bρbcpms(ϕ, ε) = {ω ∈ U : ρbcpms(ϕ, ω) < ε + ρbcpms(ϕ, ϕ)} for all τ ≥ N , and it is denoted by
lim
τ→∞

ϕτ = ϕ.
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Lemma 2.6. [15] Let (U, ρbcpms) be a bicomplex partial metric space. A sequence {ϕτ} ∈ U is
converges to ϕ ∈ U iff ρbcpms(ϕ, ϕ) = lim

τ→∞
ρbcpms(ϕ, ϕτ).

Definition 2.7. [15] Let (U, ρbcpms) be a bicomplex partial metric space. A sequence {ϕτ} in U is
said to be a Cauchy sequence in (U, ρbcpms) if for any ε > 0 there exist ϑ ∈ C +

2 and N ∈ N such that
||ρbcpms(ϕτ, ϕυ) − ϑ|| < ε for all τ, υ ≥ N .

Definition 2.8. [15] Let (U, ρbcpms) be a bicomplex partial metric space. Let {ϕτ} be any sequence in
U. Then,

1. If every Cauchy sequence in U is convergent in U, then (U, ρbcpms) is said to be a complete
bicomplex partial metric space.

2. A mapping S : U → U is said to be continuous at ϕ0 ∈ U if for every ε > 0, there exists δ > 0
such that S(Bρbcpms(ϕ0, δ)) ⊂ Bρbcpms(S(ϕ0, ε)).

Lemma 2.9. [15] Let (U, ρbcpms) be a bicomplex partial metric space and {ϕτ} be a sequence in U.
Then, {ϕτ} is a Cauchy sequence inU iff lim

τ,υ→∞
ρbcpms(ϕτ, ϕυ) = ρbcpms(ϕ, ϕ).

Definition 2.10. Let (U, ρbcpms) be a bicomplex partial metric space. Then, an element (ϕ, ζ) ∈ U×U
is said to be a coupled fixed point of the mapping S : U ×U → U if S(ϕ, ζ) = ϕ and S(ζ, ϕ) = ζ.

Theorem 2.11. [15] Let (U, ρbcpms) be a complete bicomplex partial metric space and S,T : U → U
be two continuous mappings such that

ρbcpms(Sϕ,T ζ) �i2 lmax{ρbcpms(ϕ, ζ), ρbcpms(ϕ,Sϕ), ρbcpms(ζ,T ζ),
1
2

(ρbcpms(ϕ,T ζ) + ρbcpms(ζ,Sϕ))},

for all ϕ, ζ ∈ U, where 0 ≤ l < 1. Then, the pair (S,T ) has a unique common fixed point, and
ρbcpms(ϕ∗, ϕ∗) = 0.

Inspired by Theorem 2.11, here we prove coupled fixed point theorems on a bicomplex partial
metric space with an application.

3. Main results

Theorem 3.1. Let (U, ρbcpms) be a complete bicomplex partial metric space. Suppose that the mapping
S : U ×U → U satisfies the following contractive condition:

ρbcpms(S(ϕ, ζ),S(ν, µ)) �i2 λρbcpms(S(ϕ, ζ), ϕ) + lρbcpms(S(ν, µ), ν),

for all ϕ, ζ, ν, µ ∈ U, where λ, l are nonnegative constants with λ+ l < 1. Then, S has a unique coupled
fixed point.

Proof. Choose ν0, µ0 ∈ U and set ν1 = S(ν0, µ0) and µ1 = S(µ0, ν0). Continuing this process, set
ντ+1 = S(ντ, µτ) and µτ+1 = S(µτ, ντ). Then,

ρbcpms(ντ, ντ+1) = ρbcpms(S(ντ−1, µτ−1),S(ντ, µτ))
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�i2 λρbcpms(S(ντ−1, µτ−1), ντ−1) + lρbcpms(S(ντ, µτ), ντ)
= λρbcpms(ντ, ντ−1) + lρbcpms(ντ+1, ντ)

ρbcpms(ντ, ντ+1) �i2
λ

1 − l
ρbcpms(ντ, ντ−1),

which implies that

||ρbcpms(ντ, ντ+1)|| ≤ z||ρbcpms(ντ−1, ντ)|| (3.1)

where z = λ
1−l < 1. Similarly, one can prove that

||ρbcpms(µτ, µτ+1)|| ≤ z||ρbcpms(µτ−1, µτ)||. (3.2)

From (3.1) and (3.2), we get

||ρbcpms(ντ, ντ+1)|| + ||ρbcpms(µτ, µτ+1)|| ≤ z(||ρbcpms(ντ−1, ντ)||
+ ||ρbcpms(µτ−1, µτ)||),

where z < 1.
Also,

||ρbcpms(ντ+1, ντ+2)|| ≤ z||ρbcpms(ντ, ντ+1)|| (3.3)
||ρbcpms(µτ+1, µτ+2)|| ≤ z||ρbcpms(µτ, µτ+1)||. (3.4)

From (3.3) and (3.4), we get

||ρbcpms(ντ+1, ντ+2)|| + ||ρbcpms(µτ+1, µτ+2)|| ≤ z(||ρbcpms(ντ, ντ+1)||
+ ||ρbcpms(µτ, µτ+1)||).

Repeating this way, we get

||ρbcpms(ντ, ντ+1)|| + ||ρbcpms(µτ, µτ+1)|| ≤ z(||ρbcpms(µτ−1, µτ)|| + ||ρbcpms(ντ−1, ντ)||)
≤ z2(||ρbcpms(µτ−2, µτ−1)||
+ ||ρbcpms(ντ−2, ντ−1)||)
≤ · · · ≤ zτ(||ρbcpms(µ0, µ1)||
+ ||ρbcpms(ν0, ν1)||).

Now, if ||ρbcpms(ντ, ντ+1)|| + ||ρbcpms(µτ, µτ+1)|| = γτ, then

γτ ≤ zγτ−1 ≤ · · · ≤ z
τγ0. (3.5)

If γ0 = 0, then ||ρbcpms(ν0, ν1)|| + ||ρbcpms(µ0, µ1)|| = 0. Hence, ν0 = ν1 = S(ν0, µ0) and µ0 = µ1 =

S(µ0, µ0), which implies that (ν0, µ0) is a coupled fixed point of S. Let γ0 > 0. For each τ ≥ υ, we have

ρbcpms(ντ, νυ) �i2 ρbcpms(ντ, ντ−1) + ρbcpms(ντ−1, ντ−2) − ρbcpms(ντ−1, ντ−1)
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+ ρbcpms(ντ−2, ντ−3) + ρbcpms(ντ−3, ντ−4) − ρbcpms(ντ−3, ντ−3)
+ · · · + ρbcpms(νυ+2, νυ+1) + ρbcpms(νυ+1, νυ) − ρbcpms(νυ+1, νυ+1)
�i2 ρbcpms(ντ, ντ−1) + ρbcpms(ντ−1, ντ−2) + · · · + ρbcpms(νυ+1, νυ),

which implies that

||ρbcpms(ντ, νυ)|| ≤ ||ρbcpms(ντ, ντ−1)|| + ||ρbcpms(ντ−1, ντ−2)||
+ · · · + ||ρbcpms(νυ+1, νυ)||.

Similarly, one can prove that

||ρbcpms(µτ, µυ)|| ≤ ||ρbcpms(µτ, µτ−1)|| + ||ρbcpms(µτ−1, µτ−2)||
+ · · · + ||ρbcpms(µυ+1, µυ)||.

Thus,

||ρbcpms(ντ, νυ)|| + ||ρbcpms(µτ, µυ)|| ≤ γτ−1 + γτ−2 + γτ−3 + · · · + γυ

≤ (zτ−1 + zτ−2 + · · · + zυ)γ0

≤
zυ

1 − z
γ0 → 0 as υ→ ∞,

which implies that {ντ} and {µτ} are Cauchy sequences in (U, ρbcpms). Since the bicomplex partial
metric space (U, ρbcpms) is complete, there exist ν, µ ∈ U such that {ντ} → ν and {µτ} → µ as τ → ∞,
and

ρbcpms(ν, ν) = lim
τ→∞

ρbcpms(ν, ντ) = lim
τ,υ→∞

ρbcpms(ντ, νυ) = 0,

ρbcpms(µ, µ) = lim
τ→∞

ρbcpms(µ, µτ) = lim
τ,υ→∞

ρbcpms(µτ, µυ) = 0.

We now show that ν = S(ν, µ). We suppose on the contrary that ν , S(ν, µ) and µ , S(µ, ν), so that
0 ≺i2 ρbcpms(ν,S(ν, µ)) = l1 and 0 ≺i2 ρbcpms(µ,S(µ, ν)) = l2. Then,

l1 = ρbcpms(ν,S(ν, µ)) �i2 ρbcpms(ν, ντ+1) + ρbcpms(ντ+1,S(ν, µ))
= ρbcpms(ν, ντ+1) + ρbcpms(S(ντ, µτ),S(ν, µ))
�i2 ρbcpms(ν, ντ+1) + λρbcpms(ντ−1, ντ) + lρbcpms(S(ν, µ), ν)

�i2
1

1 − l
ρbcpms(ν, ντ+1) +

λ

1 − l
ρbcpms(ντ−1, ντ),

which implies that

||l1|| ≤
1

1 − l
||ρbcpms(ν, ντ+1)|| +

λ

1 − l
||ρbcpms(ντ−1, ντ)||.

As τ → ∞, ||l1|| ≤ 0. This is a contradiction, and therefore ||ρbcpms(ν,S(ν, µ))|| = 0 implies ν = S(ν, µ).
Similarly, we can prove that µ = S(µ, ν). Thus (ν, µ) is a coupled fixed point of S. Now, if (g, h) is
another coupled fixed point of S, then

ρbcpms(ν, g) = ρbcpms(S(ν, µ),S(g, h)) �i2 λρbcpms(S(ν, µ), ν) + lρbcpms(S(g, h), g)
= λρbcpms(ν, ν) + lρbcpms(g, g) = 0.

Thus, we have g = ν. Similarly, we get h = µ. Therefore S has a unique coupled fixed point. �
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Corollary 3.2. Let (U, ρbcpms) be a complete bicomplex partial metric space. Suppose that the mapping
S : U ×U → U satisfies the following contractive condition:

ρbcpms(S(ϕ, ζ),S(ν, µ)) �i2 λ(ρbcpms(S(ϕ, ζ), ϕ) + ρbcpms(S(ν, µ), ν)), (3.6)

for all ϕ, ζ, ν, µ ∈ U, where 0 ≤ λ < 1
2 . Then, S has a unique coupled fixed point.

Theorem 3.3. Let (U, ρbcpms) be a complete complex partial metric space. Suppose that the mapping
S : U ×U → U satisfies the following contractive condition:

ρbcpms(S(ϕ, ζ),S(ν, µ)) �i2 λρbcpms(ϕ, ν) + lρbcpms(ζ, µ),

for all ϕ, ζ, ν, µ ∈ U, where λ, l are nonnegative constants with λ+ l < 1. Then, S has a unique coupled
fixed point.

Proof. Choose ν0, µ0 ∈ U and set ν1 = S(ν0, µ0) and µ1 = S(µ0, ν0). Continuing this process, set
ντ+1 = S(ντ, µτ) and µτ+1 = S(µτ, ντ). Then,

ρbcpms(ντ, ντ+1) = ρbcpms(S(ντ−1, µτ−1),S(ντ, µτ))
�i2 λρbcpms(ντ−1, ντ) + lρbcpms(µτ−1, µτ),

which implies that

||ρbcpms(ντ, ντ+1)|| ≤ λ||ρbcpms(ντ−1, ντ)|| + l||ρbcpms(µτ−1, µτ)||. (3.7)

Similarly, one can prove that

||ρbcpms(µτ, µτ+1)|| ≤ λ||ρbcpms(µτ−1, µτ)|| + l||ρbcpms(ντ−1, ντ)||. (3.8)

From (3.7) and (3.8), we get

||ρbcpms(ντ, ντ+1)|| + ||ρbcpms(µτ, µτ+1)|| ≤ (λ + l)(||ρbcpms(µτ−1, µτ)||
+ ||ρbcpms(ντ−1, ντ)||)
= α(||ρbcpms(µτ−1, µτ)||
+ ||ρbcpms(ντ−1, ντ)||),

where α = λ + l < 1. Also,

||ρbcpms(ντ+1, ντ+2)|| ≤ λ||ρbcpms(ντ, ντ+1)|| + l||ρbcpms(µτ, µτ+1)|| (3.9)
||ρbcpms(µτ+1, µτ+2)|| ≤ λ||ρbcpms(µτ, µτ+1)|| + l||ρbcpms(ντ, ντ+1)||. (3.10)

From (3.9) and (3.10), we get

||ρbcpms(ντ+1, ντ+2)|| + ||ρbcpms(µτ+1, µτ+2)|| ≤ (λ + l)(||ρbcpms(µτ, µτ+1)||
+ ||ρbcpms(ντ, ντ+1)||)
= α(||ρbcpms(µτ, µτ+1)||
+ ||ρbcpms(ντ, ντ+1)||).
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Repeating this way, we get

||ρbcpms(ντ, νn+1)|| + ||ρbcpms(µτ, µτ+1)|| ≤ α(||ρbcpms(µτ−1, µτ)||
+ ||ρbcpms(ντ−1, ντ)||)
≤ α2(||ρbcpms(µτ−2, µτ−1)||
+ ||ρbcpms(ντ−2, ντ−1)||)
≤ · · · ≤ ατ(||ρbcpms(µ0, µ1)||
+ ||ρbcpms(ν0, ν1)||).

Now, if ||ρbcpms(ντ, ντ+1)|| + ||ρbcpms(µτ, µτ+1)|| = γτ, then

γτ ≤ αγτ−1 ≤ · · · ≤ α
τγ0. (3.11)

If γ0 = 0, then ||ρbcpms(ν0, ν1)|| + ||ρbcpms(µ0, µ1)|| = 0. Hence, ν0 = ν1 = S(ν0, µ0) and µ0 = µ1 =

S(µ0, ν0), which implies that (ν0, µ0) is a coupled fixed point of S. Let γ0 > 0. For each τ ≥ υ, we have

ρbcpms(ντ, νυ) �i2 ρbcpms(ντ, ντ−1) + ρbcpms(ντ−1, ντ−2) − ρbcpms(ντ−1, ντ−1)
+ ρbcpms(ντ−2, ντ−3) + ρbcpms(ντ−3, ντ−4) − ρbcpms(ντ−3, ντ−3)
+ · · · + ρbcpms(νυ+2, νυ+1) + ρbcpms(νυ+1, νυ) − ρbcpms(νυ+1, νυ+1)
�i2 ρbcpms(ντ, ντ−1) + ρbcpms(ντ−1, ντ−2) + · · · + ρbcpms(νυ+1, νυ),

which implies that

||ρbcpms(ντ, νυ)|| ≤ ||ρbcpms(ντ, ντ−1)|| + ||ρbcpms(ντ−1, ντ−2)||
+ · · · + ||ρbcpms(νυ+1, νυ)||.

Similarly, one can prove that

||ρbcpms(µτ, µυ)|| ≤ ||ρbcpms(µτ, µτ−1)|| + ||ρbcpms(µτ−1, µτ−2)||
+ · · · + ||ρbcpms(µυ+1, µυ)||.

Thus,

||ρbcpms(ντ, νυ)|| + ||ρbcpms(µτ, µυ)|| ≤ γτ−1 + γτ−2 + γτ−3 + · · · + γυ

≤ (ατ−1 + ατ−2 + · · · + αυ)γ0

≤
αυ

1 − α
γ0 as τ→ ∞,

which implies that {ντ} and {µτ} are Cauchy sequences in (U, ρbcpms). Since the bicomplex partial
metric space (U, ρbcpms) is complete, there exist ν, µ ∈ U such that {ντ} → ν and {µτ} → µ as τ → ∞,
and

ρbcpms(ν, ν) = lim
τ→∞

ρbcpms(ν, ντ) = lim
τ,υ→∞

ρbcpms(ντ, νυ) = 0,

ρbcpms(µ, µ) = lim
τ→∞

ρbcpms(µ, µτ) = lim
τ,υ→∞

ρbcpms(µτ, µυ) = 0.
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Therefore ,

ρbcpms(S(ν, µ), ν) ≤ ρbcpms(S(ν, µ), ντ+1) + ρbcpms(ντ+1, ν) − ρbcpms(ντ+1, ντ+1),
≤ ρbcpms(S(ν, µ)),S(ντ, µτ) + ρbcpms(ντ+1, ν)
≤ λρbcpms(ντ, ν) + lρbcpms(µτ, µ) + ρbcpms(ντ+1, ν).

As τ→ ∞, from (3.6) and (3.12) we obtain ρbcpms(S(ν, µ), ν) = 0. Therefore S(ν, µ) = ν. Similarly, we
can prove S(µ, ν) = µ, which implies that (ν, µ) is a coupled fixed point of S. Now, if (g1, h1) is another
coupled fixed point of S, then

ρbcpms(g1, ν) = ρbcpms(S(g1, h1),S(ν, µ)) �i2 λρbcpms(g1, ν) + lρbcpms(h1, µ),
ρbcpms(h1, µ) = ρbcpms(S(h1, g1),S(µ, ν)) �i2 λρbcpms(h1, µ) + lρbcpms(g1, ν),

which implies that

||ρbcpms(g1, ν)|| ≤ λ||ρbcpms(g1, ν)|| + l||ρbcpms(h1, µ)||, (3.12)
||ρbcpms(h1, µ)|| ≤ λ||ρbcpms(h1, µ)|| + l||ρbcpms(g1, ν)||. (3.13)

From (3.12) and (3.13), we get

||ρbcpms(g1, ν)|| + ||ρbcpms(h1, µ)|| ≤ (λ + l)[||ρbcpms(g1, ν)|| + ||ρbcpms(h1, µ)||].

Since λ + l < 1, this implies that ||ρbcpms(g1, ν)|| + ||ρbcpms(h1, µ)|| = 0. Therefore, ν = g1 and µ = h1.
Thus, S has a unique coupled fixed point. �

Corollary 3.4. Let (U, ρbcpms) be a complete bicomplex partial metric space. Suppose that the mapping
S : U ×U → U satisfies the following contractive condition:

ρbcpms(S(ϕ, ζ),S(ν, µ)) �i2 λ(ρbcpms(ϕ, ν) + ρbcpms(ζ, µ)), (3.14)

for all ϕ, ζ, ν, µ ∈ U, where 0 ≤ λ < 1
2 . Then, S has a unique coupled fixed point.

Example 3.5. LetU = [0,∞) and define the bicomplex partial metric ρbcpms : U ×U → C +
2 defined

by

ρbcpms(ϕ, ζ) = max{ϕ, ζ}ei2θ, 0 ≤ θ ≤
π

2
.

We define a partial order � in C +
2 as ϕ � ζ iff ϕ ≤ ζ. Clearly, (U, ρbcpms) is a complete bicomplex

partial metric space.
Consider the mapping S : U ×U → U defined by

S(ϕ, ζ) =
ϕ + ζ

4
∀ϕ, ζ ∈ U.

Now,

ρbcpms(S(ϕ, ζ),S(ν, µ)) = ρbcpms

(
ϕ + ζ

4
,
ν + µ

4

)
AIMS Mathematics Volume 7, Issue 8, 15402–15416.
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=
1
4

max{ϕ + ζ, ν + µ}ei2θ

�i2
1
4

[
max{ϕ, ν} + max{ζ, µ}

]
ei2θ

=
1
4

[
ρbcpms(ϕ, ν) + ρbcpms(ζ, µ)

]
= λ

(
ρbcpms(ϕ, ν) + ρbcpms(ζ, µ)

)
,

for all ϕ, ζ, ν, µ ∈ U, where 0 ≤ λ = 1
4 <

1
2 . Therefore, all the conditions of Corollary 3.4 are satisfied,

then the mapping S has a unique coupled fixed point (0, 0) inU.

4. Applications to integral equations

As an application of Theorem 3.3, we find an existence and uniqueness result for a type of the
following system of nonlinear integral equations:

ϕ(µ) =

∫ M

0
κ(µ, p)[G1(p, ϕ(p)) + G2(p, ζ(p))]dp + δ(µ),

ζ(µ) =

∫ M

0
κ(µ, p)[G1(p, ζ(p)) + G2(p, ϕ(p))]dp + δ(µ), µ, ∈ [0,M],M ≥ 1. (4.1)

Let U = C([0,M],R) be the class of all real valued continuous functions on [0,M]. We define a
partial order � in C +

2 as x � y iff x ≤ y. Define S : U ×U → U by

S(ϕ, ζ)(µ) =

∫ M

0
κ(µ, p)[G1(p, ϕ(p)) + G2(p, ζ(p))]dp + δ(µ).

Obviously, (ϕ(µ), ζ(µ)) is a solution of system of nonlinear integral equations (4.1) iff (ϕ(µ), ζ(µ)) is a
coupled fixed point of S. Define ρbcpms : U ×U → C2 by

ρbcpms(ϕ, ζ) = (|ϕ − ζ | + 1)ei2θ,

for all ϕ, ζ ∈ U, where 0 ≤ θ ≤ π
2 . Now, we state and prove our result as follows.

Theorem 4.1. Suppose the following:

1. The mappings G1 : [0,M]×R→ R, G2 : [0,M]×R→ R, δ : [0,M]→ R and κ : [0,M]×R→
[0,∞) are continuous.

2. There exists η > 0, and λ, l are nonnegative constants with λ + l < 1, such that

|G1(p, ϕ(p)) − G1(p, ζ(p))| �i2 ηλ(|ϕ − ζ | + 1) −
1
2
,

|G2(p, ζ(p)) − G2(p, ϕ(p))| �i2 ηl(|ζ − ϕ| + 1) −
1
2
.

3.
∫ M

0
η|κ(µ, p)|dp �i2 1.

AIMS Mathematics Volume 7, Issue 8, 15402–15416.
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Then, the integral equation (4.1) has a unique solution inU.

Proof. Consider

ρbcpms(S(ϕ, ζ),S(ν,Φ)) = (|S(ϕ, ζ) − S(ν,Φ)| + 1)ei2θ

=

(
|

∫ M

0
κ(µ, p)[G1(p, ϕ(p)) + G2(p, ζ(p))]dp + δ(µ)

−

( ∫ M

0
κ(µ, p)[G1(p, ν(p)) + G2(p, Φ(p))]dp + δ(µ)

)
| + 1

)
ei2θ

=

(
|

∫ M

0
κ(µ, p)[G1(p, ϕ(p)) − G1(p, ν(p))

+ G2(p, ζ(p)) − G2(p, Φ(p))]dp| + 1
)
ei2θ

�i2

( ∫ M

0
|κ(µ, p)|[|G1(p, ϕ(p)) − G1(p, ν(p))|

+ |G2(p, ζ(p)) − G2(p, Φ(p))|]dp + 1
)
ei2θ

�i2

( ∫ M

0
|κ(µ, p)|dp(ηλ(|ϕ − ν| + 1) −

1
2

+ ηl(|ζ −Φ| + 1) −
1
2

) + 1
)
ei2θ

=

( ∫ M

0
η|κ(µ, p)|dp(λ(|ϕ − ν| + 1)

+ l(|ζ −Φ| + 1))
)
ei2θ

�i2

(
λ(|ϕ − ν| + 1) + l(|ζ −Φ| + 1)

)
ei2θ

= λρbcpms(ϕ, ν) + lρbcpms(ζ, Φ)

for all ϕ, ζ, ν, Φ ∈ U. Hence, all the hypotheses of Theorem 3.3 are verified, and consequently, the
integral equation (4.1) has a unique solution. �

Example 4.2. LetU = C([0, 1],R). Now, consider the integral equation inU as

ϕ(µ) =

∫ 1

0

µp

23(µ + 5)

[ 1
1 + ϕ(p)

+
1

2 + ζ(p)

]
dp +

6µ2

5

ζ(µ) =

∫ 1

0

µp

23(µ + 5)

[ 1
1 + ζ(p)

+
1

2 + ϕ(p)

]
dp +

6µ2

5
. (4.2)

Then, clearly the above equation is in the form of the following equation:

ϕ(µ) =

∫ M

0
κ(µ, p)[G1(p, ϕ(p)) + G2(p, ζ(p))]dp + δ(µ),

ζ(µ) =

∫ M

0
κ(µ, p)[G1(p, ζ(p)) + G2(p, ϕ(p))]dp + δ(µ), µ, ∈ [0,M], (4.3)
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where δ(µ) =
6µ2

5 , κ(µ, p) =
µp

23(µ+5) , G1(p, µ) = 1
1+µ

, G2(p, µ) = 1
2+µ

andM = 1. That is, (4.2) is a special
case of (4.1) in Theorem 4.1. Here, it is easy to verify that the functions δ(µ), κ(µ, p), G1(p, µ) and
G2(p, µ) are continuous. Moreover, there exist η = 10, λ = 1

3 and l = 1
4 with λ + l < 1 such that

|G1(p, ϕ) − G1(p, ζ)| ≤ ηλ(|ϕ − ζ | + 1) −
1
2
,

|G2(p, ζ) − G2(p, ϕ)| ≤ ηl(|ζ − ϕ| + 1) −
1
2

and
∫ M

0
η|κ(µ, p)|dp =

∫ 1

0
ηµp

23(µ+5)dp =
µη

23(µ+5) < 1. Therefore, all the conditions of Theorem 3.3 are
satisfied. Hence, system (4.2) has a unique solution (ϕ∗, ζ∗) inU ×U.

As an application of Corollary 3.4, we find an existence and uniqueness result for a type of the
following system of Fredholm integral equations:

ϕ(µ) =

∫
E

G(µ, p, ϕ(p), ζ(p))dp + δ(µ), µ, p ∈ E,

ζ(µ) =

∫
E

G(µ, p, ζ(p), ϕ(p))dp + δ(µ), µ, p ∈ E, (4.4)

where E is a measurable, G : E×E×R×R→ R, and δ ∈ L∞(E). LetU = L∞(E). We define a partial
order � in C +

2 as x � y iff x ≤ y. Define S : U ×U → U by

S(ϕ, ζ)(µ) =

∫
E

G(µ, p, ϕ(p), ζ(p))dp + δ(µ).

Obviously, (ϕ(µ), ζ(µ)) is a solution of the system of Fredholm integral equations (4.4) iff (ϕ(µ), ζ(µ))
is a coupled fixed point of S. Define ρbcpms : U ×U → C2 by

ρbcpms(ϕ, ζ) = (|ϕ − ζ | + 1)ei2θ,

for all ϕ, ζ ∈ U, where 0 ≤ θ ≤ π
2 . Now, we state and prove our result as follows.

Theorem 4.3. Suppose the following:

1. There exists a continuous function κ : E × E → R such that

|G(µ, p, ϕ(p), ζ(p)) − G(µ, p, ν(p), Φ(p))| �i2 |κ(µ, p)|(|ϕ(p) − ν(p)|
+ |ζ(p) −Φ(p)| − 2),

for all ϕ, ζ, ν, Φ ∈ U, µ, p ∈ E .

2.
∫
E
|κ(µ, p)|dp �i2

1
4 �i2 1.

Then, the integral equation (4.4) has a unique solution inU.

Proof. Consider

ρbcpms(S(ϕ, ζ),S(ν,Φ)) = (|S(ϕ, ζ) − S(ν,Φ)| + 1)ei2θ
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=

(
|

∫
E

G(µ, p, ϕ(p), ζ(p))dp + δ(µ)

−

( ∫
E

G(µ, p, ν(p), Φ(p))dp + δ(µ)
)
| + 1

)
ei2θ

=

(
|

∫
E

(
G(µ, p, ϕ(p), ζ(p))

− G(µ, p, ν(p), Φ(p))
)
dp| + 1

)
ei2θ

�i2

( ∫
E

|G(µ, p, ϕ(p), ζ(p)) − G(µ, p, ν(p), Φ(p))|dp + 1
)
ei2θ

�i2

( ∫
E

|κ(µ, p)|(|ϕ(p) − ν(p)| + |ζ(p) −Φ(p)| − 2)dp + 1
)
ei2θ

�i2

( ∫
E

|κ(µ, p)|dp(|ϕ(p) − ν(p)| + |ζ(p) −Φ(p)| − 2) + 1
)
ei2θ

�i2
1
4

(
|ϕ(p) − ν(p)| + |ζ(p) −Φ(p)| − 2 + 4

)
ei2θ

�i2
1
4

(ρbcpms(ϕ, ν) + ρbcpms(ζ, Φ))

= λ(ρbcpms(ϕ, ν) + ρbcpms(ζ, Φ)),

for all ϕ, ζ, ν, Φ ∈ U, where 0 ≤ λ = 1
4 <

1
2 . Hence, all the hypotheses of Corollary 3.4 are verified,

and consequently, the integral equation (4.4) has a unique solution. �

5. Conclusions

In this paper, we proved coupled fixed point theorems on a bicomplex partial metric space. An
illustrative example and an application on a bicomplex partial metric space were given.
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