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A B S T R A C T

In recent years, statisticians have grown increasingly engaged in research of mixture models, particularly in the
previous decade, without adequate consideration of challenge of estimating the parameters of mixture models
from a frequentist perspective. Except for maximum likelihood estimation, this study addresses this vacuum by
discussing the two other classical methods of estimation for mixture model. We commence by briefly describing
the three frequentist approaches, namely maximum likelihood, ordinary, and weighted least squares, and
then comparing them through extensive numerical simulations. The model’s applicability is illustrated by its
application to simulated and real-world data, which yields promising results in terms of enhanced estimation.
Introduction

The mixture model is noted in the published studies, and it is easy to
notice when a statistical population comprises two or more subgroups.
Using this concept, we can merge statistical probability models to
create a new model that maintains the attributes of its constituents.
The mixture representations have been rectified with extreme care in
several applicable places. Recent data in applied sciences (engineering,
finance, environmental sciences, and so forth) has raised issues of
classical models, whose adaptability prohibits them from revealing
some important elements. To explore deeper into these restrictions,
new mixture distributions have been created. Finite mixture lifetime
models have become increasingly popular in recent years in biological,
chemical, social science, physical, and other domains because of their
methodological improvement and feasible applicability.

A vast number of authors have looked into mixture models and
their characteristics. In [1] authors examined classical characteristics
of the mixture of Burr XII and Weibull distributions. In [2], the authors
combined two inverse Weibull models and studied the properties and
parameter estimates in depth. In [3] researcher proposed 2-Component
Mixture of Inverse Weibull models (2-CMIWDM) and used graphs of
PDF and HRF to analyse some of its characteristics. In [4] researchers
concentrated on the shapes of PDF and HRF functions, and also graphi-
cal techniques, to investigate the hybrid of two inverse Weibull models.
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∗∗ Corresponding author at: Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey.

E-mail addresses: sindhuqau@gmail.com (T.N. Sindhu), fahd@cankaya.edu.tr (F. Jarad).

Mohammadi et al. [5], Ateya [6], Mohamed et al. [7], Sindhu et al. [8],
Zhang and Huang [9], Sindhu et al. [10–14] are some of the researchers
who work with mixture modelling in many practical applications.
Some additional interesting research are [15–20]. In many instances,
existing data can be seen as a fusion of two or more models. We
can use this approach to combine statistical models to create a new
one.

The exponential model has a wide range of real-world implications
in estimating the lifespan of a device whose lifetime is independent of
its age due to its memory less nature. In numerous areas of physics, the
exponential model is widely employed to describe specific occurrences.
The exponential model is an excellent fit for modelling longevity since
the failure rate of several electronic gadgets is regardless of their
age.

In literature, there are various estimating methods for parametric
distributions, some of which have been widely investigated from a
theoretical perspective. It is noteworthy, however, that in situation
of small samples, the maximum likelihood estimator (MLE) frequently
fails to execute effectively. As a result, new estimation techniques
have recently been created. The attraction of estimating methods varies
depending on the user and the application area. The goal of this paper
is to give a framework for selecting optimum estimation technique
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Nomenclature

Symbols

𝑓 (𝑡|𝛥̆) PDF
𝑅(𝑡|𝛥̆) RF
𝐻(𝑡|𝛥̆) CHRF
𝛶
(

𝑡|𝛥̆
)

Mill’s Ratio
𝑀̃𝑡 (𝜐) MGF
𝑃𝑡 (𝜔) PGF
𝐹 (𝑡|𝛥̆) CDF, FF
ℎ(𝑡|𝛥̆) HRF
𝑄(𝑞; 𝛥̆) QF
𝑅
(

𝑡|𝛥̆
)

RF
𝑀⃜𝑡 (𝜐) CF
𝐹𝑡 (𝜔) FMGF

Abbreviations

QF Quantile Function
CDF Cumulative Distribution Function
PGF Probability Generating Function
MLE Maximum likelihood Estimator
FMGF Factorial Moment Generating Function
RF Reliability Function
MSE Mean Square Error
WLSE Weighted Least Square Estimator
CHRF Cumulative Hazard Rate Function
FF Failure Function
CF Characteristic Function
PDF Probability Density Function
MTTF Mean Time to Failure
HRF Hazard Rate Function
MGF Moment Generating Function
TTF Time-To-Failure
LSE Least Square Estimator
MRL Mean Residual Life
𝑟.𝑣. Random Variable

for 2-Component Mixture of Exponential Model (2-CMEM), which will
be useful to applied statisticians. In the literature, comparisons of
estimate techniques for other classical models have been examined, for
example, [21–25].

This study is driven by the ubiquitous use of mixture modelling,
and we intend to analyse the mixture of Exponential distributions
using three classical estimating methods. The main aim of this study
is to reveal how different frequentist estimators of the proposed model
execute for different sample sizes, as well as to demonstrate that the
distribution outperforms than one component distributions for two
real data sets. Besides from MLE, we apply two different strategies to
estimate the parameters of 2-CMEM in this study, including LSE and
WLSE.

The leftover portion of the article is formatted as shown. We present
one specific model in Section ‘‘The 2-CMEM’’ together with plots of
their PDFs and hrfs. We derive some of its generic reliability features
in Section ‘‘Reliability Metrics’’, like MTR, CHRF, Mills Ratio, and MTF.
In Section ‘‘Estimation inference via simulation’’, model parameters are
estimated using MLE, LSE and WLSE and presents simulation results to
evaluate execution of these estimators. To demonstrate the flexibility of
the mixture model, we present two applications in Section ‘‘Real Data
2

Applications’’.
The 2-CMEM

A r. v. 𝑇 has a 2-component finite mixed model if its PDF and CDF
can be expressed as:

𝑓 (𝑡|𝛥̆) = 𝜋𝑓1(𝑡|𝜗1) + 𝜋𝑓2(𝑡|𝜗2), 𝜋 = 1 − 𝜋, (1)
(𝑡|𝛥̆) = 𝜋𝜗1 exp

(

−𝜗1𝑡
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡
)

, (2)

nd

(𝑡|𝛥̆) = 𝜋𝐹1(𝑡|𝜗1) + 𝜋𝐹2(𝑡|𝜗2), (3)
(𝑡|𝛥̆) = 𝜋

{

1 − exp
(

−𝜗1𝑡
)}

+ 𝜋
{

1 − exp
(

−𝜗2𝑡
)}

, (4)

here 𝛥̆ =
(

𝜗1, 𝜗2, 𝜋
)

𝜗𝑘, 𝑘 = 1, 2 are positive scale parameters, while 𝜋
s mixing parameter.

Fig. 1 gives numerous images of 𝑓 (𝑡|𝛥̆) and ℎ(𝑡|𝛥̆) for different
haracteristics values. The above-mentioned PDF and HRF demonstrate
ow the parametric vector (𝛥̆) affect density of 2-CMEM. It is worth
oting that parameter values were picked at random till a broad range
f forms for parameters of interest could be captured. As demonstrated
n Fig. 1, 2-CMEM can be right skewed. Each exponential distribution’s
RF has a constant behaviour, however HRF of 2-CMEM may obviously
oncede failure rate with declining behaviour, as seen in Fig. 1.

uantile function

The PDF’s features, such as the moments, are likewise determined
y the QF. Furthermore, the QF describes the model and can be applied
o data evaluation [26]. Suppose that 𝐹 (𝑄𝑝; 𝛥̆) be CDF of 2-CMEM at
th quantiles. Then the 𝑝th quantile of 2-CMEM 𝑟.𝑣. is

(𝑝; 𝛥̆) = 𝜋 1
𝜗1

log (1 − 𝑝)−1 + 𝜋 1
𝜗2

log (1 − 𝑝)−1 . (5)

Median

The median of 2-CMEM can be found by solving the following
equation for 𝑡 and getting median 𝑡∗.

𝜋
{

1 − exp
(

−𝜗1𝑡
)}

+ 𝜋
{

1 − exp
(

−𝜗2𝑡
)}

= 0.5, (6)

𝜋 exp
(

−𝜗1𝑡
)

+ 𝜋 exp
(

−𝜗2𝑡
)

= 0.5. (7)

Computational procedures such as Newton–Raphson techniques can
be utilized to determine 𝑡∗ (median) from Eq. (7). The median of 2-
CMEM is plotted in Fig. 2. As 𝜗1 grows the median decreases, as shown
in this graph.

𝑟𝑡ℎ moments about origin

For the r. v. 𝑇 , 𝑟th moments about the origin are:

𝐸(𝑇 𝑟) = ∫

∞

0
𝑡𝑟𝑓 (𝑡|𝛥̆)𝑑𝑡 = ∫

∞

0
𝑡𝑟
{

𝜋𝜗1 exp
(

−𝜗1𝑡
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡
)}

𝑑𝑡,

(8)

𝐸(𝑇 𝑟) = 𝜋
𝛤 (𝑟 + 1)

𝜗𝑟1
+ 𝜋

𝛤 (𝑟 + 1)
𝜗𝑟2

. (9)

𝜏th-order negative moments

When −𝜏 is substituted for 𝑟 in Eq. (8), the result is 𝜏th order
egative moments, which are defined as follows:

(𝑇 −𝜏 ) = 𝜋
𝛤 (1 − 𝜏)

−𝜏 + 𝜋
𝛤 (1 − 𝜏)

−𝜏 . (10)

𝜗1 𝜗2
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Fig. 1. Variations of first component density (𝑓1(𝑡)), second component density (𝑓2(𝑡)) and variations of 𝑓 (𝑡|𝛥̆) and ℎ(𝑡|𝛥̆) of 2-CMEM
(

𝛥̆
)

.

Moment generating function

A 2-CMEM
(

𝛥̆
)

’s MGF is specified as:

𝑀̃𝑡 (𝜐) = 𝐸
(

𝑒𝑡𝜐
)

= ∫

∞

0
𝑒𝑡𝜐

{

𝜋𝜗1 exp
(

−𝜗1𝑡
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡
)}

𝑑𝑡, (11)

𝑀̃𝑡 (𝜐) = 𝜋
𝜗1

( ) + 𝜋
𝜗2

( ) . (12)
3

𝜗1 − 𝜐 𝜗2 − 𝜐
Characteristic function

By substituting 𝜐 with ‘𝑖𝜐’ in Eq. (11), the CF can be determined
as

𝑀⃜𝑡 (𝜐) = 𝜋
𝜗1

( ) + 𝜋
𝜗2

( ) . (13)

𝜗1 − 𝑖𝜐 𝜗2 − 𝑖𝜐
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Fig. 2. Variations of median of 2-CMEM
(

𝛥̆
)

.

Probability generating function

In Eq. (11), we can get the PGF by substituting 𝜐 with “ln(𝜔)” as
follows:

𝑃𝑡 (𝜔) = 𝐸
(

𝜔𝑇 ) = 𝐸
(

𝑒𝑇 ln𝜔) = 𝜋
𝜗1

(

𝜗1 − ln𝜔
) + 𝜋

𝜗2
(

𝜗2 − ln𝜔
) . (14)

Factorial moment generating function

By substituting 𝜐 with ‘ln (1 + 𝜙)’ in Eq. (11), the FMGF can be
determined as

𝐹𝑡 (𝜔) = 𝐸
(

(1 + 𝜙)𝑇
)

= 𝐸
(

𝑒𝑇 ln(1+𝜙)) = 𝜋
𝜗1

[

𝜗1 − ln (1 + 𝜙)
]

+ 𝜋
𝜗2

[

𝜗2 − ln (1 + 𝜙)
] . (15)

Reliability metrics

In this part, we will go through some of the most common reliability
metrics. In fact, the most important and excellent metrics for a certain
gadget must be chosen depending on the manufacturer’s originality and
function.

Reliability function

Reliability refers to an object’s capacity to execute a desired function
for a set period of time under specified operating conditions. If TTF is
the r.v., and 𝐹 (𝑡) denotes the FF, then the reliability function 𝑅(𝑡) is.

𝑅
(

𝑡|𝛥̆
)

= 𝜋 exp
(

−𝜗1𝑡
)

+ 𝜋 exp
(

−𝜗2𝑡
)

. (16)

Hazard function

The HRF is a parameter used in reliability theory to compare two
different systems. The hazard function is a measure of how the system’s
reliability is affected by age. It assesses the likelihood of failure as
system evolves. The ℎ(𝑡) of 2-CMEM reliability model is

ℎ(𝑡|𝛥̆) =
𝜋𝜗1 exp

(

−𝜗1𝑡
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡
)

𝜋 exp
(

−𝜗1𝑡
)

+ 𝜋 exp
(

−𝜗2𝑡
) . (17)

Mills ratio

Mills Ratio of 2-CMEM is.

𝛶
(

𝑡|𝛥̆
)

=
𝑅
(

𝑡|𝛥̆
)

𝑓
(

𝑡|𝛥̆
)
=

𝜋 exp
(

−𝜗1𝑡
)

+ 𝜋 exp
(

−𝜗2𝑡
)

𝜋𝜗1 exp
(

−𝜗1𝑡
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡
) . (18)

The Mills Ratio of 2-CMEM() is presented in Fig. 3. The Mills ratio
can be growing or increasing-constant. Individual component density
Mills ratio, on the other hand, has a consistent pattern.
4

Cumulative Hazard rate function

The integrated HRF is another name for the CHRF. The CHRF does
not represent a likelihood. However, it is also a risk indicator: the
higher 𝐻

(

𝑡|𝛥̆
)

value, the greater the risk of collapse by 𝑡-time.

𝐻 (𝑡) = ∫

𝑡

0
ℎ(𝑦|𝛥̆)𝑑𝑦 = − log [𝑆(𝑡)] . (19)

It is important to note that

𝑆(𝑡) = 𝑒−𝐻(𝑡)and 𝑓 (𝑡) = ℎ (𝑡) 𝑒−𝐻(𝑡). (20)

Hence,

𝐻(𝑡|𝛥̆) = − log
[

𝜋 exp
(

−𝜗1𝑡
)

+ 𝜋 exp
(

−𝜗2𝑡
)]

. (21)

Fig. 4 portrays the behaviour of 𝐻
(

𝑡|𝛥̆
)

. The CHRF is a function of
𝜗1, 𝜗2 and 𝜋 that is rising.

Reversed Hazard rate function

The RHRF has got a lot of interest in the published studies of reli-
ability and stochastic modelling. We refer to [27–29] for definitions,
characterizations, and further information.

ℎ̆(𝑡|𝛥̆) =
𝑓
(

𝑡|𝛥̆
)

𝐹
(

𝑡|𝛥̆
)
=

𝜋𝜗1 exp
(

−𝜗1𝑡
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡
)

1 − 𝜋 exp
(

−𝜗1𝑡
)

− 𝜋 exp
(

−𝜗2𝑡
) . (22)

At various levels of 𝜋, RHRF is a declining function of 𝜗1 and 𝜗2. (see
Fig. 5 left). The larger the change in RHRF curve, the lower the inputs
of the component 𝜗1 along with 𝜗2. When 𝜗1 approaches 1, RHRF also
provides lower values. It is also worth noting that the RHRF curve is
a decreasing function of 𝑡 and 𝜗1 for fixed values of 𝜗2 and (see Fig. 5
right). For fixed values of 𝜗2 and 𝜋, the lower the 𝑡 along 𝜗1 inputs, the
higher the change in the RHRF curve.

Mean time to failure

MTTF is reliability term that refer to methodologies and procedures
for predicting a product’s longevity. When deciding which object to buy
for their implementation, users frequently need to consider reliability
data. MTTF is methods for calculating a numeric value depending on
a set of data in order to quantify a failure rate and time it takes
for expected execution to occur. Furthermore, predicting MTTF, is
required in addition to make and manufacture a sustainable system.
If 2-CMEM

(

𝛥̆
)

then reliability function is used to express MTTF, that
is:

𝑀⃛
(

𝑡|𝛥̆
)

=
+∞

𝑅 (𝑥) 𝑑𝑥, (23)
∫0



Results in Physics 37 (2022) 105496S.A. Lone et al.
Fig. 3. Variations of Mills Ratio of 2-CMEM
(

𝛥̆
)

along with 𝜗1 , 𝜗2 and 𝜋.
Fig. 4. Fluctuation of 𝐻
(

𝑡|𝛥̆
)

of 2-CMEM
(

𝛥̆
)

along with 𝜗1 , 𝜗2 and 𝜋.
where 𝑅 (𝑡) in Eq. (16). Hence

𝑀⃛
(

𝑡|𝛥̆
)

= 𝜋
𝜗1

+ 𝜋
𝜗2

. (24)
5

At different levels of 𝜋, MTTF is a decreasing function of 𝜗1 and
𝜗2. (see Fig. 6 left). As the smaller inputs of the parameter 𝜗1 along
𝜗 contribute the greater variation in MTTF curve. Also MTTF returns
2
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Fig. 5. Fluctuation of ℎ̆(𝑡|𝛥̆) of 2-CMEM
(

𝛥̆
)

along with 𝜗1 , 𝜗2 and 𝜋.
Fig. 6. Fluctuations of 𝑀̆𝑅
(

𝑡|𝛥̆
)

of 2-CMEM
(

𝛥̆
)

along with 𝜗1 , 𝜗2 and 𝜋.
lesser values when 𝜗2 tends to 1. Furthermore, it is mentioned that for
fixed values of 𝑡 and 𝜋, the curve of MTTF is a declining function of 𝜗1
and 𝜗2. The greater the shift in MTTF curve, the lesser inputs of the 𝜗2
along 𝑡.

Mean Residual Life (MRL)

The remaining lifetime after 𝑡 for a component of age 𝑡 is random.
The MRL or mean remaining life is expected value of this random
residual lifetime and is indicated by 𝑀̆𝑅

(

𝑡|𝛥̆
)

.

𝑀̆𝑅
(

𝑡|𝛥̆
)

= 1
𝑅 (𝑡) ∫

+∞

𝑡
𝑅(𝑥)𝑑𝑥, (25)

𝑀̆𝑅
(

𝑡|𝛥̆
)

=

{

𝜋 exp
(

−𝜗1𝑡
)

𝜗1
+

𝜋 exp
(

−𝜗2𝑡
)

𝜗2

}

× 1
𝜋 exp

(

−𝜗1𝑡
)

+ 𝜋 exp
(

−𝜗2𝑡
) . (26)

where 𝑅 (𝑡) in Eq. (16).
𝑀̆𝑅

(

𝑡|𝛥̆
)

is a increasing function of 𝜋 and 𝑡 at various levels of 𝜗1
and 𝜗2 (See Fig. 7 on the left). Whereas the curve of MRL is a declining
function of 𝜗1 and 𝑡.

Estimation inference via simulation

The assessment of parametric vector 𝛥̆ is carried out by the three
familiar estimation procedures such as MLE, LSE and WLSE. From now,
𝑡1, 𝑡2,… , 𝑡𝑛 symbolize 𝑛 observed values from 𝑇 and their ascending
ordering values 𝑡 ≤ 𝑡 ≤ ... ≤ 𝑡 .
6

(1) (2) (𝑛)
Maximum likelihood estimation

The widely known approach of parameter estimate is the maximum
likelihood method. The method’s popularity is due to its numerous
desired qualities, such as consistency, normality and asymptotic effi-
ciency. Let 𝑡1, 𝑡2,… , 𝑡𝑛 be 𝑛 observed values from the Eq. (2) and 𝛥̆ be
the vector of unknown parameters. The assessments of MLEs of 𝛥̆ can
be provided by optimizing likelihood function with respect to 𝜗1, 𝜗2,
and 𝜋 given by 𝐿

(

𝐭|𝛥̆
)

=
∏𝑛

𝑖=1 𝑓 (𝑡𝑖; 𝛥̆) or likewise the log(𝐿
(

𝐭|𝛥̆
)

) for
𝛥̆

𝑙
(

𝐭|𝛥̆
)

= ln
𝑛
∏

𝑖=1
𝑓 (𝑡𝑖; 𝛥̆), (27)

𝑙
(

𝐭|𝛥̆
)

=
𝑛
∑

𝑖=1
ln
{

𝜋𝜗1 exp
(

−𝜗1𝑡𝑖
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡𝑖
)}

. (28)

So, by partially differentiating 𝑙
(

𝐭|𝛥̆
)

with regard to each of the param-
eters (𝜗1, 𝜗2, 𝜋) and setting the findings to zero, maximum likelihood
estimates of respective parameters are provided, likelihood equations
are
𝜕𝑙

(

𝐭|𝛥̆
)

𝜕𝜗1
=

𝑛
∑

𝑖=1

𝜋 exp
(

−𝜗1𝑡𝑖
)

− 𝜋𝜗1𝑡𝑖 exp
(

−𝜗1𝑡𝑖
)

{

𝜋𝜗1 exp
(

−𝜗1𝑡𝑖
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡𝑖
)} , (29)

𝜕𝑙
(

𝐭|𝛥̆
)

𝜕𝜗2
=

𝑛
∑

𝑖=1

𝜋 exp
(

−𝜗2𝑡𝑖
)

− 𝜋𝜗2𝑡𝑖 exp
(

−𝜗2𝑡𝑖
)

{

𝜋𝜗1 exp
(

−𝜗1𝑡𝑖
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡𝑖
)} , (30)

𝜕𝑙
(

𝐭|𝛥̆
)

𝜕𝜋
=

𝑛
∑

𝑖=1

𝜗1 exp
(

−𝜗1𝑡𝑖
)

− 𝜗2 exp
(

−𝜗2𝑡𝑖
)

{

𝜋𝜗1 exp
(

−𝜗1𝑡𝑖
)

+ 𝜋𝜗2 exp
(

−𝜗2𝑡𝑖
)} . (31)

As a result, solving this nonlinear system of equations gives the MLE.
Although these equations cannot be analytically solved, we use statis-
tical software through iterative approach like Newton method or fixed
point iteration methods can be used to solve them.
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Fig. 7. Fluctuations of 𝑀̆𝑅
(

𝑡|𝛥̆
)

of 2-CMEM
(

𝛥̆
)

.

Least square estimators

For estimating unknown parameters, the ordinary least square ap-
proach is well-known [30]. The least square estimators of 𝜗1, 𝜗2 and 𝜋,
denoted by 𝜗̆1𝐿𝑆𝐸 , 𝜗̆2𝐿𝑆𝐸 and 𝜋̆𝐿𝑆𝐸 , can be obtained by minimizing the
function

𝐿𝑆(𝛥̆) =
𝑛
∑

𝑖=1

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]2
, (32)

with regard to 𝜗1, 𝜗2 and 𝜋, where F(·) is given by Eq. (4). They can be
derived in the same way by solving the following equations:

𝜕𝐿𝑆(𝛥̆)
𝜕𝜗1

=
𝑛
∑

𝑖=1

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]

𝛹1(𝑡(𝑖)|𝜗1) = 0, (33)

𝜕𝐿𝑆(𝛥̆)
𝜕𝜗2

=
𝑛
∑

𝑖=1

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]

𝛹2(𝑡(𝑖)|𝜗2) = 0, (34)

and
𝜕𝐿𝑆(𝛥̆)

𝜕𝜋
=

𝑛
∑

𝑖=1

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]

𝛹3(𝑡(𝑖)|𝜋) = 0, (35)

where

𝛹1(𝑡(𝑖)|𝜗1) = 𝜋𝑡(𝑖) exp
(

−𝜗1𝑡(𝑖)
)

, (36)

𝛹2(𝑡(𝑖)|𝜗2) = 𝜋𝑡(𝑖) exp
(

−𝜗2𝑡(𝑖)
)

, (37)

𝛹3(𝑡(𝑖)|𝜋) = exp
(

−𝜗2𝑡(𝑖)
)

− exp
(

−𝜗1𝑡(𝑖)
)

. (38)

Weighted least squares estimators

Consider the weighted function below (see [31])

𝜅𝑖 =
(𝑛 + 1)2 (𝑛 + 2)
𝑖 (𝑛 − 𝑖 + 1)

. (39)

The WLSEs 𝜗̆1𝑊𝐿𝑆𝐸
, 𝜗̆2𝑊𝐿𝑆𝐸

and 𝜋̆𝑊𝐿𝑆𝐸 , can be obtained by minimizing
the function

𝑊𝐿𝑆(𝛥̆) =
𝑛
∑

𝑖=1

(𝑛 + 1)2 (𝑛 + 2)
𝑖 (𝑛 − 𝑖 + 1)

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]2
, (40)

One can also get these estimators by solving:

𝜕𝑊 𝐿𝑆(𝛥̆)
𝜕𝜗1

=
𝑛
∑

𝑖=1

(𝑛 + 1)2 (𝑛 + 2)
𝑖 (𝑛 − 𝑖 + 1)

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]

𝛹1(𝑡(𝑖)|𝜗1) = 0, (41)

𝜕𝑊 𝐿𝑆(𝛥̆)
𝜕𝜗2

=
𝑛
∑

𝑖=1

(𝑛 + 1)2 (𝑛 + 2)
𝑖 (𝑛 − 𝑖 + 1)

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]

𝛹2(𝑡(𝑖)|𝜗2) = 0, (42)

and
𝜕𝑊 𝐿𝑆(𝛥̆)

𝜕𝜋
=

𝑛
∑

𝑖=1

(𝑛 + 1)2 (𝑛 + 2)
𝑖 (𝑛 − 𝑖 + 1)

[

𝐹 (𝑡(𝑖)|𝛥̆) −
𝑖

𝑛 + 1

]

𝛹3(𝑡(𝑖)|𝜋) = 0, (43)

where 𝛹 (𝑡 |𝜗 ), 𝛹 (𝑡 |𝜗 ) and 𝛹 (𝑡 |𝜋) are given in Eqs. (36)–(38).
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1 (𝑖) 1 2 (𝑖) 2 3 (𝑖)
Simulation study

A brief simulation is run to evaluate the execution of MLE, LSE and
WLSE methods for estimating parameters. The estimators of parameters
of current model have been evaluated by simulating:

(

𝜗1, 𝜗2, 𝜋
)

=
{(2, 1.5, 0.4) and (2.3, 2.5, 0.6)}. With respect to various sample sizes, we
evaluated the MLE, LSE and WLSE approaches’ performance. The bi-
ases, or MSEs, of parameter estimates are evaluated. The validity of the
estimators has been assessed using bias and the MSE of estimators. The
efficiency of each parameter estimation approach for the 2-CMEM

(

𝛥̆
)

model in terms of 𝑛 is examined. Simulation study is executed for this
purpose on the basis of given steps:

1. Using the 2-CMEM
(

𝛥̆
)

, generate 1000 samples of size 𝑛 =
10, 20,… , 900 at various parameter values. We generate we 𝜋𝑛 and
𝑛(1 − 𝜋) observations from exp

(

𝜗1
)

and exp
(

𝜗2
)

, respectively.
2. Calculate MLEs, LSEs and WLSEs for 1000 samples, say 𝜃̆𝑗 for

𝑗 = 1, 2,… , 1000.
3. Calculate biases and MSEs. The accompanying formulas are used

to achieve these objectives:

𝐵𝑖𝑎𝑠𝜃 (𝑛) = 1
1000

1000
∑

𝑗=1

(

𝜃̆𝑗 − 𝜃
)

,

𝑀𝑆𝐸𝜃 (𝑛) = 1
1000

1000
∑

𝑗=1

(

𝜃̆𝑗 − 𝜃
)2 ,

where 𝜃 =
(

𝜗1, 𝜗2, 𝜋
)

.
The results of simulations of this subsection is indicated in Figs. 8–

11 These empirical findings show that the proposed estimate methods
do a fantastic effort of estimating the 2-CMEM parameters. Because the
bias approaches to zero as n grows larger, one can conclude that the
estimators have asymptotic unbiasedness. The MSE behaviour, on the
other hand, indicates consistency because the errors tend to zero as n
increases. From Figs. 8–11, the following observations can be extracted.

• The bias of 𝜗̆1, 𝜗̆2, 𝜋̆, declines as 𝑛 grows for all estimation ap-
proaches.

• For all estimation approaches, the biases are generally positive
except bias of 𝜗̆1 under MLE approach, and bias of 𝜋̆ under WLSE
and LSE approaches.

• Under the MLE, the bias of parameters is least than other two
approaches (Figs. 8 and 10).

• Under WLSE and LSE approaches, the higher MSE of 𝜗̆1, 𝜗̆2, 𝜋̆ are
observed (Figs. 9 and 11).

• In terms of bias, generally the performances of the MLE, is the
good (Figs. 8–10).

• The estimates under LSE approach are mostly overestimated
(Figs. 7 and 11).
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Fig. 8. Fluctuations of bias of estimations under different methods for parametric set I.
• It is noted that difference of estimates from assumed parame-
ters reduce to zero with an increase in 𝑛 under all estimation
approaches.

• When compared to alternative estimation technique, generally
the MLE estimation is stronger in terms of bias and MSE for all
specified parameter values, when sample size approaches infinity
(Figs. 8–11).

The general judgment from previous figures is that as 𝑛 rises, all
bias and MSE graphs for all parameters will approach zero. This con-
firms the authenticity of these estimating methodologies as well as the
numerical computations for the 2-CMEM

(

𝛥̆
)

distribution parameters.

Real data applications

This section shows how the proposed model can be implemented
to real-world data to demonstrate how 2-CMEM works. These data are
used to evaluate 2-CMEM’s fits to other competing models, including
the Exponentiated Exponential Family (EExF) [32], and Exponential
(Ex). The goodness-of- fit statistics for this distribution and other con-
tending distributions are studied, and the MLEs of their parameter.
To compare the fitted distributions, we use goodness-of-fit metrics
like Anderson–Darling (𝐴∗), Cramer–von Mises (𝑊 ∗), the AIC and BIC
criteria, which are used to assess the quality of fitted models, are
computed. In general, the lower these statistics are, the better the fit.

Data set I: The application of anxiety data for a sample of 166
‘‘normal’’ women, i.e., women who do not have a disordered, outside of
8

a pathological clinical picture (Towns-ville, Queensland, Australia), is
used to demonstrate the use of these distributions in this section, which
were firstly reported in [33].

Data set II: The true data set refers to exceeding flood peaks (in m3

/s) of the Wheaton River near Carcross, Yukon Territory, Canada. The
data was examined by Akinsete et al. [34].

Additional data applications can be found in [35–44]. Tables 1–
2 provide the MLEs for each data set, together with their standard
errors (in parenthesis) and goodness-of-fit (GOF) measures. Tables 1–
2 clearly show that the 2-CMEM

(

𝛥̆
)

is the best of all the models
examined. Though the EExF and Ex models have a little edge in specific
GOF measures such as BIC, this small advantage is not substantial
when the majority of GOF metrics favour the performance of the 2-
CMEM

(

𝛥̆
)

. Therefore, we recommend analysing these data sets using
the 2-CMEM

(

𝛥̆
)

model. Using the R function denscomp(), Figs. 12
and 13 show the plots of the pdfs of the fitted models superimposed
over the histogram of the real data sets. In comparison to other one
component models, the 2-CMEM

(

𝛥̆
)

provides a very good fit for these
data, as seen in the Figures. Using the R function cdfcomp(), the plots
of the theoretical cdfs of the fitted distributions are compared to the
empirical cdf of the data in Figs. 12–13. The cdf of the 2-CMEM

(

𝛥̆
)

,
yet again, is clearly closer to the empirical distribution than any other
model. Figs. 12–13 also depict probability–probability (P–P) plots for
data sets I and II, respectively, which support the findings of Tables 1–2.
Furthermore, the data sets could have come from the 2-CMEM model,
according to the study. The log-likelihood function intersects the 𝑥-axis
at one point in Figs. 14–15, confirming the existence of MLEs. The



Results in Physics 37 (2022) 105496S.A. Lone et al.
Fig. 9. Fluctuations of MSE of estimators under different methods for parametric set I.
Table 1
MLEs (SEs are given in [ ]), and GOF statistics for the Data set I.

Distributions MLEs/Standard errors 𝑊 ∗ 𝐴∗ 𝐴𝐼𝐶 𝐵𝐼𝐶

2-CMEM
(

𝜗1 , 𝜗2 , 𝜋
)

6.55295, 78.15756, 0.56084 2.0591 12.5220 −523.344 −514.009
[0.78959, 15.22897, 0.05665]

EExF
(

𝜗1 , 𝜗2
)

0.64265, 8.02044 2.0896 12.6267 −482.178 −475.954
[0.06168, 0.93788]

Ex(𝜗) 0.09121 2.0920 12.6438 −461.02 −457.911
[0.00708]
fact that the derivative graph is decreasing indicates that the scoring
functions of 𝜗1, 𝜗2, 𝜋 are changing from increasing to decreasing, and so
is at their maximum. Figs. 16–17 show the profiles of the log-likelihood
function (PLLF) based on data sets I, and II. Moreover, the MLEs are
unique, as the log-likelihood function has a global maximum, as seen
in Figs. 16–17.

Conclusion

In survival analysis, the exponential distribution is one of the most
popular lifespan distributions. However, in terms of lifespan analysis,
9

the constant behaviour of the hrf of this distribution is a hurdle. In
real-world applications, empirical hazard rate curves frequently have
non-monotonic shapes. As a result, there is a good reason to look
into mixtures or modifications of the exponential distribution that can
provide lifespan modelling more flexibility. A mixture of one parameter
extreme distributions is presented in this study using three estimate
techniques: MLE, LSE, and WLSE. To compare the performance of
various estimation methods, a simulation analysis was done by using
the R package. A simulation has been executed with various sample
sizes, and it was revealed that MLE methodology worked well for
estimating parameters for the data sets under consideration. Figs. 14,
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Fig. 10. Fluctuations of bias of estimators under different methods for parametric set II.
Table 2
MLEs (SEs are given in [ ]), and GOF statistics for the Data set II.

Distributions MLEs/Standard errors 𝑊 ∗ 𝐴∗ 𝐴𝐼𝐶 𝐵𝐼𝐶

2-CMEM
(

𝜗1 , 𝜗2 , 𝜋
)

0.06956, 0.67001, 0.83144 0.09135 0.52131 505.6434 512.4734
[0.01052, 0.30152, 0.08801]

EExF
(

𝜗1 , 𝜗2
)

0.82839, 0.07243 0.12862 0.74205 506.5871 511.1404
[0.12309, 0.01170]

Ex(𝜗) 12.20416 0.13055 0.75231 506.2559 508.5326
[1.43827]
15 shows the existence of MLEs as the log-likelihood function cross
the 𝑥-axis at one point. As it is clear that the log-likelihood function is
a decreasing function and intersects 𝑥-axis at one point. Furthermore,
Figs. 16, 17 shows that the log-likelihood function has global maximum
roots. Ultimately, two data implementations have been studied to
demonstrate the versatility and superiority of the mixture over single
component models. For the future work, we can use these estimation
techniques for extend mixture model to modelling different real data
sets in numbers of area such reliability engineering, survival analysis
and so on.
10
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Fig. 11. Fluctuations of MSE of estimators under different methods for parametric set II.
Fig. 12. The ECDF “left panel”, PP “middle panel”, FPDF “right panel” plots for data set I.
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Fig. 13. The ECDF “left panel”, PP “middle panel”, FPDF “right panel” plots for data set II.

Fig. 14. The graphs of Score functions cross the horizontal axis at 𝜗̂1 , 𝜗̂2, and 𝜋̂ of data set I.

Fig. 15. The graphs of Score functions cross the horizontal axis at 𝜗̂1 , 𝜗̂2, and 𝜋̂ of data set II.

Fig. 16. Curves of profile-likelihood function of three estimated parameters of 2-CMEM model for first real data set.
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Fig. 17. Curves of profile-likelihood function of three estimated parameters of 2-CMEM model for second real data set.
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