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ABSTRACT

In this article, we investigate a mathematical malaria-filariasis co-infection model with the
assistance of the non-integer order operator. Using the fractal-fractional operator in the
Caputo-Fabrizio (CF) sense, it has been possible to understand the dynamical behaviour and
complicatedness of the malaria-filariasis model. An investigation of the existence and
uniqueness of the solution employs fixed-point theory. Ulam-Hyers stability helps examine
the stability analysis of the proposed co-infection model. The malaria-filariasis model has
been investigated using the Toufik-Atanagana (TA), a sophisticated numerical method for
these biological co-infection models. With the help of numerical procedures, we provide the
approximate solutions for the proposed model. A variety of fractal dimension and fractional
order options are utilized for the presentation of the results. When we adjust sensitive
parameters like 7 and y, the graphical representation illustrates the system'’s behaviour and
identifies suitable parameter ranges for solutions. In addition, we evaluate the model along
with the regarded operators and various f; values using an exceptional graphical
representation.
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population. This illness is a medical challenge at this
time for researchers and doctors. We see a high
effect of this disease in Africa and Asia; These conti-
nents, in this illness, have an enormous death rate.
The World Health Organization says that in 2018
approximately 438,000 people died from the sickness
of malaria; 90 per cent of deaths occurred only in
Africa (World Health Organization, n.d.). Malaria is a
disease spread by a mosquito’s bite; when infected
mosquitoes bite a human, the virus of this disease
enters the human body (Nzeako, Okunnuga, Nduka,
& Ezenwaka, 2016). The female anopheles mosquito
plays a central role in the dispersion of malaria

1. Introduction

Fractional calculus is an effective tool used to solve
mathematical problems in the real world. Fractional-
order derivatives find numerous applications in vari-
ous fields such as numerical analysis, physics, and
biomathematics. This field is gaining popularity
among researchers due to its potential to provide
plausible results. Fractional-order derivatives are
essential in evaluating biological models (Miller &
Ross, 1993; Sabatier, Agrawal, & Machado, 2007).
Some fractional derivatives have singular kernels,
while others have non-singular kernels. The fractal-
fractional operator is a more accurate and efficient

operator commonly used in biological models. The
Caputo, Caputo-Fabrizio (CF), and Atangana-Baleanu
(AB) types of fractal fractional derivatives are power-
ful tools for analyzing biological systems and other
models. Memory effects are often observed in bio-
logical systems, making the usefulness of fractional-
order operators even more essential in these cases.
Today, Malaria - filariasis coinfection is becoming
a hazardous disease for the world. This disease is an
old parasitic disease for human beings. This disease
is arising as a critical situation created for the world

(Amoah-Mensah, Dontwi, & Bonyah, 2018; Mutua,
Wang, & Vaidya, 2015; Okosun & Makinde, 2014).
When we are infected with malaria, the symptoms of
this illness like high fever, pain in the head, feeling
the cold, and muscle aches. In some cases, patients
have also suffered from vomiting and diarrhoea.
Some of the patients infected with malaria have also
been infected with anaemia and jaundice because of
this disease’s effect on the red blood cells of the
human body. Every year, approximately 290 million
people suffer from malaria. The death rate is more
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than we think, and about 400,000 people die from
this disease each year.

Filariasis is a disease that can spread through
mosquito bites. It is caused by three types of filaria
parasites, which are known as Wuchereria bancrofti,
Brugia timori, and Brugia malayi. According to a
2018 report by the World Health Organization,
around 856 million people in 52 countries are at risk
of contracting filariasis. To prevent the spread of this
parasitic disease, it is important to take precautions
and use preventive chemotherapy (Abdullahi, Alaku,
& Hudu, 2015; Adegnika et al, 2010; Chandrakala &
Zulfeen, 2016). When a mosquito bites a person who
has lymphatic filariasis, the mosquito can also
become infected. This is because the person’s blood
contains microscopic worms that enter the mos-
quito’s body. When the infected mosquito bites
another person, the microscopic worms can enter
their skin and blood, causing the infection to spread.
The worms can live in the lymphatic vessels for up
to 8years and produce many microfilariae (Bhunu &
Mushayabasa, 2012). Symptoms of lymphatic filariasis
include swelling in the legs, arms, breasts, and
genitals.

Fractional calculus has become a widely studied
branch of mathematics in recent years, and its appli-
cations have greatly enhanced the field of mathem-
atical analysis (Mainardi, 2012). In particular,
fractional calculus has proven to be a valuable tool
for modelling biological processes that involve mem-
ory effects. For example, when developing a math-
ematical model of an infectious disease in the
natural sciences, the use of fractional-order deriva-
tives is crucial for finding numerical solutions
(Kumar, Kumar, Samet, & Dutta, 2021; Kumar, Kumar,
Samet, Goémez-Aguilar, & Osman, 2020; Kumar &
Kumar, 2022). These derivatives are more efficient
and effective than integer-order derivatives when
dealing with biological systems (Caputo, 1969). A sig-
nificant concept in the study of derivatives in frac-
tional calculus is the Caputo derivative, which has a
singular kernel, but there are also other operators
like the CF operator and AB operator that have non-
singular kernels (Caputo & Fabrizio, 2015; Kiryakova,
1993). In the past few years, several biological mod-
els have been solved with the help of fractional
derivatives (Losada & Nieto, 2015; Ucgar, Ugar,
(")zdemir, & Hammouch, 2019). However, dealing
with fractional-order biological systems can be chal-
lenging due to non-linearity. The SVIR epidemic
model is thoroughly examined by the authors, who
utilize Lyapunov functions to provide methods for
preventing the spread of disease (Alkhazzan, Wang,
Nie, Khan, & Alzabut, 2023). This paper (Kumar,
Kumar, & Jleli, 2022), provides insights on how to
investigate the dynamics and complexity of food
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chain models. Some of the notable derivatives
include the AB derivative, which has become a pillar
of fractional calculus in recent decades (Alkahtani &
Atangana, 2016). The authors utilize a fractional dif-
ferential operator to conduct a thorough examin-
ation of the tumour growth model that incorporates
nonlinearity (Alzabut, Dhineshbabu, Selvam, Gémez-
Aguilar, & Khan, 2023). Fractal-fractional operators
have three different types of kernel, including power
law, exponential decay, and Mittag-Leffler. These
operators are considered reliable for biological mod-
els and are significant from a researcher’s perspec-
tive. It has been noted that the analytical and
numerical computations for various fractional-order
and fractal dimensions support the dynamics con-
verging effects more strongly than they do for an
integer order. The authors analyze the impact of
waterborne diseases and COVID-19 using the fractal-
fractional operator on human health (Khan, Alzabut,
Shah, et al., 2023; Khan, Alzabut, Tung, et al., 2023).
In this paper, we analyze a nonlinear model and pro-
pose a practical and efficient solution plan.

1.1. A Summary of the paper

The following parts provide an organized breakdown
of the entire work: Section 2 provides fundamental
definitions for fractional calculus. The fractal-frac-
tional model of malaria and filariasis is discussed in
section 3 of this article. In section 4, we discuss the
uniqueness, and existence of the model solution,
non-negativity, and as well as its stability. Section 4
is further broken into sections 4, 4.1 and 4.2. In
Section 5, numerical techniques for a model of frac-
tional order malaria and filariasis are described. In
Section 6, there is a numerical simulation and com-
ments. Section 7 provides the conclusion.

2. Preliminaries

In this section, we look at a few fractional operator
definitions and theorems in detail.

Definition 2.1 (Atangana & Qureshi, 2019; Li, Liu, &
Khan, 2020). Let Z (t) should be a continuous function
in an open interval (a, b) and along with fractional
order 0 < f, <1 and fractal dimension 0 < 8, <1, in
the Riemann-Liouville (RL) derivative with power law
kernel is defined as follows:

1 d [ g
PRl (7 (1)) = || =0 )

T(k—fy)dth ),
(M

with k —1 < 3,8, < k € N and a7 (u) _ 1im F(O)-F(u)

duf2 oy tPa-dP

Definition 2.2 (Atangana & Qureshi, 2019; Li et al,,
2020). Let Z (t) should be a continuous function in an
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open interval (a, b) and along with fractional order
0 < B, <1 and fractal dimension 0 < f3, <1, in the
Riemann-Liouville (RL) derivative with exponentially
decaying kernel is defined as follows:

b (g () — BB 4 B\
DG (7 (1) = T 1/))1 s L exp(1 = ;31 (t u))/ (u)du,
(2)

the normalized constant is defined as follows:

B(0) =1, B(1) =1.

Definition 2.3 (Atangana & Qureshi, 2019; Li et al.,
2020). Let F (t) should be a continuous function in an
open interval (a, b) and along with fractional order
0< By, <1 and fractal dimension 0 < 3, <1, with
power law kernel is defined as follows:

R (7 (1) =

ﬁZ ‘ _ pr—=1 P11 o
r(ﬁ1)Jo(t u)" U 7 (u)du.

3)

Definition 2.4 (Atangana & Qureshi, 2019, Li et al.,
2020). Let Z (t) should be a continuous function in an
open interval (a, b) and along with fractional order
0< B, <1 and fractal dimension 0 < f, <1, with
exponential decay kernel is defined as follows:

B,(1 = )t 7 (1)
B(B)

BiBy (* g1
+B(ﬂ1)Lu Z (u)du. (4)

FEl (7 (1)) =

Theorem 2.1 (Ali, Shah, Zada, & Kumam, 2020;
Granas & Dugundji, 2003). Let © : ® — ® be an oper-
ator and completely continuous. Let

6(@) = {Sh ced:S, = ”@(Sh),g € [0,1]}.

The operator ® has at least one fixed point or the
set S(®) is not bounded.

Lemma 2.1 (Xu, Saifullah, Ali, & Adnan, 2022). This
problem has a solution

FF%ngéﬁZ%(t) =F(A(t),t) + o(t)
H(0) = Ho,

if the following condition is true,

’%(r) - {%<o> +FOF(0,0 - gol) 2P o

Tyl r “BHF(%(“)'“)dU}

B([))'I) 0
By(1 = B)TH"" BT
: ( * B(@))NF'

B(p)

3. The mathematical formulation of the
malaria-filariasis model

In this part, we convey fractional malaria-filariasis
behavior and depict the proposed model. We have
nine equations in our malaria-filariasis system. In this
model, the complete population of pregnant women
at the time “t” is divided into separate subpopulations.
Sn represents the individual pregnant women who
adhered to a medical prenatal program. Individually
susceptible women who do not follow the antenatal
medical regimen are classified as S,. I, represents
those pregnant women only infected with malaria; /¢
represents those pregnant women only infected with
filariasis. /s represents those pregnant women infected
with both malaria and filariasis. T represents those
pregnant women treated for malaria-filariasis. That's
why Np =T+ Ips+ I+l +S2 + Sp.  Because the
same vector that spreads malaria also spreads filariasis
(Anopheles mosquito), this vector population is repre-
sented by N,. The S, stands for the susceptible mos-
quito; the E, for the exposed mosquito, and the |/, for
the infected mosquito, therefore N, = I, + E, + S,. The
host population is recruited from the population of
susceptible pregnant women who adhere to the med-
ical prenatal program at a steady per capita rate of Ay.
The fraction of pregnant women who are complying
with antenatal medical programs is represented by the
7, and 7 is represented by the rate of loss of immunity
to both malaria and filariasis. The natural death rate
was represented by uy, while the rate of progression
from S, to S, was represented by J. K,qSp and K¢Sy
have been chosen to depict the force of infection.

That's why Kyg = %, and Kr = ﬁ“’"+mhf+k") Up is the
rate at which pregnant women die naturally, and the
disease-induced death rate is denoted by the letter .
oy is the percentage of susceptible pregnant women
who do not comply with the antenatal medical pro-
gram that develops malaria symptoms. ¢, stands for
the rate at which malaria is treated, and s stands for
the pace at which malaria progresses to the point
when filariasis symptoms appear. The treatment rate
for filariasis is denoted by ¢,, whereas the treatment
rate for malaria-filariasis is denoted by ¢5. The recruit-
ment of mosquitoes has determined the rate A, of
change in the susceptible mosquito population. The
force of infection that created a rate of change in the
exposed mosquito population has been denoted as
the K,.. u, represents the natural mortality rate of mos-
quitoes, and o, denotes a decrease in the pace of
mosquito progression. o represents the rate of mos-
quito bites. The chance of malaria transmission in
pregnant women per bite was represented by g,
whereas the transmission rate between infectious and
susceptible mosquitoes was represented by K,. b is the
likelihood that any pregnant woman with the infection



will cause mosquitoes to transmit the disease. 5 repre-
sents the actual contact rate of infection between
infectious groups. Other modification parameters, such
as ¢, 0, p, and v, are also present, as we know.

The following assumptions are included in the
model’s construction:

e In the tropics, we solely consider the population
of pregnant women who are considered lonely.

e Birth and death rates exist.

e The mother and the kids have no vertical
transmission.

e Malaria and filariasis disease-contaminated preg-
nant ladies have treatment also available.

e When pregnant women are infected with this dis-
ease, then after the treatment affects immunity;
therefore, the possibility of again being infected
with this disease.

This paper presents a realistic and well-posed domain
for an epidemic model. However, due to state variables
and parameter variations, medical intervention strategies
such as treatment are required to control the spread of
co-infectious diseases. Therefore the proposed co-infec-
tion model (Ogunmiloro, 2019) is written as:

ds

d—th = 1tAp — pSh — 8Sh — KiSp — KmaSh + T,
ds
=2 — (1 = )Ap + KSh + KmaSh + 0Sh — €052 — 753 — 1152,

= €0nS2 = Wl — P1lm — tplm — OKelm,

=l — &,lf — wpls — pKialf,

T OKtlm + pKialf — $3lme — 0@lme — 0yl — tplme,

dT
— = O1lm + Dolr + 0Ple + b3lms — wy T — 7T,

dSU
e A K,)S ;Sm
C;jt Hy

E,

- Kl)sn - l)EU - .)Eu:

g
I
i l)EU - .)lur

a7 s

(6)
with the initial conditions S,(0) = Sp0, S2(0) = Sy,0,
Im(o) = lm 0r If(o) = If,O: Imf(o) = lmf,Or T(O) =To,
S ( ) = SU 0r U( ) = EI),OI IU(O) = Iv,O-

We operate the fractal fractional-order derivative
in system (6), then we get

FRED: S = AR — 1ySh — 9Sh — KiSh — KmaSh + 1T,

D28, = (1 = )Ap + K¢Sh + KinaSh + 0Sh — €01S3 — 752 — 14,52,
D1y = €01S2 = Yl — P1lm — iyl — Ol

FEDL 1 = Wl — 1l = bl — tyly — pKimalr,

D Pt = OK¢ly + pKnaly = h3lt = Vs = N7l — tpht,
DT = Gulm + ol + blont + Bl — 14T = 7T,

FEDY S, = A, — K,S, — 1,5,

FREDYE, = K,S, —
ol

O-V)EU - ,quur

v = a'uEn - ,Ll,]IU,
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with the initial conditions S,(0) = Sp0, S2(0) = Sy0,
lm(o) = lm,O: lf(o) = /f,o, lmf(o) = Imf,Or T(O) = TO:
Sv(o) = SU,O! Eu(o) = EU,OI IU(O) = lv,0~

4. Existence and uniqueness of the solution

In this part, we build the existence theory for the
proposed model. Now, we rewrite the system (7)
with this structure as follows:

BDRSh(t) = BytPa™) (Fy (Sh(t), 1)),
CFD/j1 Sy(t) = Byth 1 (Fa(Sa(2), 1)),
BDL () = Both (F3 (I (1), 1)),
BB (1) = ot (Eal1(0), 1),
DY et (£) = BotP2™ (Fs (I (1), 1)), (8)
BDIT(t) = Byth" (Fs(T (1), 1)),
CFDﬁ1 ](t) — l[fztsz 1 (F7(S,}(t), t)),
BDYLE(t) = Byth (Fe(E,(1), 1)),
Dﬂ1 IU(t) tﬁ2_1 (Fg(lv(t), t),
where
F, (Sh(t)/ t) = wAp — UpSh — 0Sh — KeSh — KmaSh + 7T,
F2(S2(t), t) = (1 — w)An + KeSh + KmaSh + 0Sh — €30S — 752 — 1, Sa,
F3(Im(t),t) = €opSy — Wm b1l = bt — OKlim,
Fa(le(t),t) = Wlm = ylr = b2l — pple = pKinalr,
Fs(lme (1), 1) = 9Kf/m PKmaIf D3lme = vlint = 1lme = Hplr,
Fe(T(£),t) = dylm + dyle + 0Plons + Pslons — 15 T — 7T,
]F7 (Sn(t), t) = An - KUSV) - M:)SW
]Fg(El (f), t) =K,S, — 0,y — luUEU’
(

System (8) can be expressed as follows:

DBDg A (1) = ot TF (A (1), 1), o
H(0) = Hy.
We operate the fractional integral, we have
. Bt (B = 1)
H(t) = #(0) + ZBT]F(%(U, t)
“ain ] R ), 0
where
Su(t) Fq(Sh(t), t)
SH(t) F,(S,(t), )
Im(t) F3(Im(t), 1)
I¢(t) Fa(le(t), t)
H(W) = huet), FA,) = { Fs(lmr(0), 1)
T(t) Fo(T(1), 1)
So(t) F7(S(t), 1)
E, (1) Fg(E,(t), t)
1,(¢) Fo(ly(t), t)

We operate the fractal-fractional integral in the CF
sense in the system (8), then we get
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B0 = B1) e

A Banach space is established as

Sh(t) = Sn(0) + (A (t)1)
B(B1) D = (O x ; x D3 x Dy x Ds x Dg x By x Dg x Do, || U]).
ﬂ1ﬁ2 -1
+3(ﬁ1) L WP (A (), w)du, Let the operator ® : ® — @ is defined in system
B ( —B)) (10), then we have
() = $:0) + ST TR 0. o, (U)(1
0,(U
ﬂ(1 512) J uPs= "Ry (A (u), u)du, @3&[};8
©4(U)(1)
1) = n(0) + P2 ) s 0,0 o)1) = | esm)(®) )
‘ Os(U)(1)
BB, =1 0,(U
+a mj WP ( (), u)d, GSEU%
I¢(t) = I¢(0) +52;(ﬁ1)ﬁ1) th Ty (A (1), 1) ©y(U)(t)
here
ﬂ1ﬁ2 ‘ /32—1F4 w , d : W
+B(ﬁ1)Jou (# (W) uydu O (#)(t) :Sh(o)+ﬁ2g([;f1)tﬁ2_1F1(5h(t) t)
Imf(t) = /mf(0> + ﬁZ(B(ﬁ1 )ﬁ1) th 1F (%( ) t) + P15, Jt uPb TR (Sh(u) u)du
Bp))o T

L BB J uP " Fs (A (u), u)du,

BB 0:()(0) = 52(0) + P2 B (5,0,
— ﬁz( ﬁ'l) pr— 1F #(t t !
MO =TO+"5p) BB oA 00 +%J U’ (S,(u), u)du,
Biba [ e Y-
g |, B 040 = ) + P25 P B0,
Ba1 = B1) g, o
S0 =300+ gy (0 + [f(ﬁz) L Ul 3 (I (u), u)du,
BB - _
+ B(1ﬁ12) JO uﬁ 1F7(f#(u),u)dU, @4(%)(0 — If(o) + ﬁZ(;(ﬁ )ﬁT) t/}2—1F4(If(t)’t)
1
_ By(1 = B1) 1 t
E,(6) = E,(0) + =2t E (o (1)1 +% j WP R Iy (u), u)du,
BB, B,—1 d Bs(1=B4) 5 _
+B([31)J u" " Fg (A (u), u)du, Os(A)(t) :/mf(o)+Wtﬂz s (It (1), t)
I,(t) = 1,(0) + AL 505, )ﬁ 1) he- "Fo(A (1), 1) +% L U Fs (Ime (u), u)du,
+ Lf (1 22) L ub "Ry (A (u), u)du. O (A)(t) = T(0) + %tﬁr%(r(m t)
10 + b j uP "R (T (u), u)du
In this part, we analyze the existence and unique- B(B1) Jo
ness of the solution in our proposed model with the _ Ba(1 = B1) B,—1
help of the fixed point theory. A Banach space can O7(A) ) = 5,(0) + B(B,) HrEGD.Y
be defined as follows to demonstrate the existence BBy [t -
and unique solution for the proposed model. We JrB(1ﬁ12) L w7 (S, (), u)du
defined as ®, = G[0,T] is space of all functions By(1 = B1) 4,
Shi S2, ..., 1, respectively to n =1,2,...,9. ®, generates Og(A)(t) = £,(0) + B(f,) t" g (E,(1), 1)
a Banach space when provided with the norm BBy [t
IShll = maxecio nlShl, [1S2]] = maxecio lSal, - ]| = g ] o), v
maxqc(o,1||ly| respectively to n=1,2,..,9. Therefore 1 Bo(1 = B,)
the norm is established in the product space as Oq(A)(t) = 1,(0) + 28([31) =P o (1,(t), 1)
||U|| = H(ShISZIImrlfrlmf: T,S,),E,),/,))” = H(Shlszl"'lll))”l _|_Bﬁ(1/§12) Jo Uﬁ2_1F9(IU(U),U)dU.

= [ISall + 112l + - + [l ]]- (12)



Theorem 4.1. Let F,: . x %#° — R are continuous
functions and these constants are L1y, L2k, -

and %o, >0, such that ¥V S, §, Sy, §2 Im,I,A,,,
Ifl i;l Imfr l/n;: Tr 721 SUI §UI EUI EUI IUI I:)
4 =100,T], n=1,2,..,9, then we get

IEa(U, ) - Fo(T,

€ ®, where

Bl <Z1,5,1I5 = Sl + L2, |
52_52H+ +g9Fn||IU_ I)H
In addition, suppose that if the condition Eg VT, +

EoVE, + ...+ EeVy, < 1 are fulfilled, then system (7)
has a unique solution, where

= _ B (1= By) B,—1 ﬁﬂrﬁz
“‘""{ BB (ﬂﬂ}'

Vr, = Lir + Lor, + L3, + Loy, + Lsr,
+ Zer, + L1, + Lo, + Lo,

Vr, = Lir, + Lo, + L3F, + Loy, + Ls,F,
+ Zeor, + L78, + Lsr, + Lo,

VE, = %ir+ Lor, + Lar + Law, + Lsh,
+ Zew, + L7, + L r, + Lo,

Vr, = Lir, + Lor, + L35, + Loy, + L5,
+Zerw, + L1,¥, + L, + Lor,

Vi, = Lirs + Lops + Lar + Law, + Ls,p,
+ Lo w, + L77 + L rs + LoFs

Vs = Livs + Lors + L3,7s + Lo + Ls,Fs
+ Lew, + L77, + L Fs + Lo, Fer

Vr, = Lir, + Lo, + L3F, + Loy, + Ls,F,
+ Ze ¥, + L1,¥, + L, + Lor,

Vi, = Liws + Lory + L35, + Lo, + Ls,Fy
+ Lew, + L77 + L F + Lo, Fy

VE, = Livy + Lo, + L3,7, + Lar, + L5, Ry
+ Lew, + L77, + L8 F, + Lo,F,-

Proof. Let us define sup,,F(0,0,0,0,0,0,0,0,0,t) =
Yg, < 00, Sup.,F2(0,0,0,0,0,0,0,0,0,t) = YF, < oo,
v SUP;sF9(0,0,0,0,0,0,0,0,0,t) = Y, < oco. First,
we prove that ©(S,) C S, and let &, be closed
convex ball (e &,={UcO®:|U]|<x}). Let
Sy, Sy, .01, €5, we have

01 (V)] < P25 7S man( 5,0,

-T4(0,0,0,0,0,0,0,0,0,1)]
+17(0,0,0,0,0,0,0,0,0,t)|)

BB, 1
B2 ma [ (s (51 (0.0)

~T,(0,0,0,0,0,0,0,0,0,u)|
+ |F+(0,0,0,0,0,0,0,0,0,u)|)du,

+
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< B2V =B1) g,
=78
+ o+ Lo LIl + Yr,)

(L1m 1Shll + Z 2,5, 152l

+ P 50l + 2, 521
=0 13

+ e + 391]171 ||IUH + Y]F1)

_ %
< EoVF, (§+ Ym):

<

\OIX

Likewise, we get

X
le:W)) <2,
v
CRIIESS
%
@4V <2,
%
los)l <3,
% (14)
lOsW)] <3,
v
l&,W) <2,
x
|8s(U) <5,
v
185U <5,

with the use of the ® definition, with the help of equa-
tions (13) and (14), we get

1O(U)]| = |©(Sh, S2: -+

When IU,@ € ®, foreach t € ., we get

)| < = (15)

1©:(V) - & (D)
< Ba( ('31)&)’]1‘/;2 max (‘IF] (Sn(t), t) — Ty (571(1‘),1’)D
oy, (P - niEw ] Jae

< EoVr [U-T.
(16)

Likewise, we get

|©,(U) — ©,(U)|| < Eo Vg, ||U-T],
1©3(U) = ©3(U)|| < Ee Vg, [|U- T,
1©4(U) — O4(0)|| < Eo Ve, |U- T,
[©5(U) — Os( )IISEWFSHU—?III (17)
|©6(U) — O(V)|| < EoVr|[U-TJ,
1©7(U) - ©;(0)|| < Eo Vg, |U- T,
1©s(U) — ©(0)|| < Eo Vg, U -1,
1©5() — @9 (U)|| < Eo Ve, |U-T.

With the help of equations (16) and (17), then we get

o) - e()||

_ - _ _ (18)
< (.:.@V]F] +EeVE, + ...+ :4®V]F9)HU - UH

Since E¢Vr, + ZoVF, + ... + ZEoVE, < 1. So there-
fore, ®(U) is a contraction operator. With the use of the
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Banach contraction theorem and ©(U) has a unique
fixed point. Hence the proposed model (7) has a unique
solution. |

Theorem 4.2. let (475,055, (3F, Car,i (5, L6 F,
(v, Com, Comy Cror,, (N=1,2,..,9) 1 F — A7 such
thatV Sp, S, ..., 1, € ®, we have

[Fn(U(t), )] < &4, () + Com, (0)|Sh(8)] + G35, (1)]S2(1)]
+ .. + Gior, (O |1(D)],

with supe , (4,5, (t) = (1r, 0 SUPes (oF, () = Comyr oo

supyes o5, (t) = Cio,, and &y r,s Gy oo Goyy > 0.
Other assumptions are

E@(C’q,\lb‘/] +é;£z +(q,AI; *%JFC’JF:: JFCCLAJ;e
tiom +lon +Gom ) <1
where g = 2,3,...,10, and
Zo=min{1-Zo(Gor, + G ot lom, )1
N (R R S

-Zo (Cm,m +Gom, T+ Cw,mg) },

then the system (7) has at least one solution.

Proof. Let ® : ® — @ be an operator and completely
continuous. We can say that © operator is

101(U(t2)) — ©:1(U(0))]| < l

—F1(Sa(tr), ... h(tr), t1)}

—0 when

Likewise, we get

102(U(t2)) - O (U(t0))] < [

— ]Fz(Sh(ﬁ), ceer Il)(tl ): t1)}

—0 when

[09(U(t2)) — O (U(t))]| < l

— Fg(Sh(t1), ceey Il)(tl)lt1)}

—0 when

Thus, ®(U) = ©(Sp, Sa, ..., I,) is equicontinuous.

(1= 1)

p=1 _
56 @

(1= 1)

B(f1)

(1= 1)

B(f1)

continuous because F,, (n =1,2,...,9) is continuous.
Let BC ® be a bounded set and there 3 constants
kg, > 0, such that, max.c,|F,(U(t),t)| < kg,,V U € B.
We have

Bo(1 = 1)

©:1(U)] < WT/}24 r;;é;lE (Sn(t), 1)
+ Mmax Jt uP2=V Ry (Sp(u), u)|du,
B(By) 7 )o
< Zoks,.
(19)

Likewise, we get

[©2(U)|| < Eoke,,

[0 (V)| < Eoke,,

104(U)|| < Eoks,,

1©s(U)[| < Eoke, 20)

1©6(U)]| < Eok,,

[©7(U)| < Eoke,,

1©s(U)]| < Eokr,

We proved that © (S, Sy, ..., 1,) is uniformly bounded
with the use of equations (19) and (20).

Now, we show that ® is equicontinuous. Let 0 <
t; <t, <T, therefore

t 52 (I (Sp(t2), ... b (82), 1)

] (21)

Bike, Br—1 Br—1
- t 2 — t 2
g, @ 0

t — ty.

(P27 — P ) [y (Sh(t2), .o o (£2), 1)

ﬁ1kIF1 Pa=1 _ ¢ o
TR

h — by,

|

(22)

(6,571 =ty ) {Fo(Sh(ta), .. o (£2), 1)

Bk, Br=1 _ 1 Br=1
e )

tz —>t1.

|



So therefore, L) is  completely
continuous.

Now, we prove that & = {U € ®: (54,55, ... ly) =

O(Sh, Sa ..

¢c®(U),c €1[0,1]} is a bounded. Let U e &, then
U=c¢O(U). When te ./, then Sh():f®1( )(t),
$2() =50, (U)(1), Im(t)=cO3(V)(t), I(t)=cO4(U

)
®( )(1), Su(8) =507 (U)(

Imf (£) =5@s(U)(t), T(t)=¢ t),
E,(t)=cOg(U)(t) and I,(t) =cOq(U)(t). Th
Ba(1 = B1) -1 [;111*132
00 < gy T by
(Gm () + G r, (OISh (0] + .+ Cio,r, () 1(E)]),

(23)
we simplifying equation (23), we have
I5(0)]1 < Zo (15, 0) + Loty OISO + o+ Crom (O]
(24)

We apply a similar process then we get

1520011 < Zo (1, (0) + i OISO+ + G0 (D10,

IO < Zo (2, (0) + G (01550 + o+ G0 (O]1(0)])
(25)

Now, we add the equations (24) and (25), then we get
[Sn(®)I =+ 1520 4 .. + (11 (B)]]
< u@(Q () + &, ]FZ( ) 4+ Gr (t ))

20 (L (1) + Gy (0) + 4 G (0)) IS0

20 (G0 (6 + o, (6 + o+ Cromy (0 (O]
(26)
Consequently, we obtain

[[Sh(t), S2(t), ... L (D)
- 5@(@1 F (8 + i F

50+t G (0)

0

~

[1]

Thus, using the Leray-Schauder fixed point theorem,
the proposed model (7) has at least one solution. O

4.1. Non-negativity condition

In this section, we prove that the system classes are
non-negative for all t. This implies that the co-infec-
tion model has non-negative solutions for non-nega-
tive initial values for all t > 0.

Lemma 4.1 (Xu et al., 2022). Let be suppose that ini-
tial condition W(t) > 0, where
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W(t) = (S, Sa i I ns T, Su Eni 1),

for every t> 0 the solution of the system (6) are non-
negative. Now, lim;_, Z(t) < %2 where u = p, + 1,
and Z(t) =Sp(t) + S2(t) +Im (t) + 1 (t) 4+ e (1) + T(t) +
Su(t) +E,(t)+ 1,(t).

Proof. Let t; =sup{t>0:W(t) >0 and W(t) €[0,1]}
and t; > 0. We take the first equation of the system
(6), then we get

ds
dt” = 1A, + 1T —

We solve the equation (27), and we get

(,Uh + 0+ Kf + K,m,)Sh. (27)

d
dt [Sh exp ((.”h +0+ K + Kma)t)]
= 52 €Xp ((:uh + 0+ Kr + Kma)t)- (28)

We simplified the equation (28), and we get

Sh(t1) = Sh(0)exp((y + 0 + Kr + Kma)t1) + B, > 0.
(29)

The previous similar process applies to other equa-
tions in system (6), then we get W(t) > 0 V t > 0.
Consider that 0 < Sp,S2,Im, l¢, I, T, So B, < Z(1).
The resulting value is obtained after summing up the
state variables in the system (6), we have

d
ZL(t) = B~ WL(t).
Hence,
. B,
rhjgc ZURS 7

Which indeed completes the proof of the lemma.

Lemma 4.2. We prove that system (6) is bounded in
the feasible region as:

R= {(sh,sz,.. l,) € A, : ogza)g%}.

Proof. We have added up all the compartments of
the system (6), and we get

20 = B, = uZ(0)
d (30)
—Z(t Z7(t) = B,.
20 + W) = B,
We solve the equation (30), we get
Z(t) < ce™™ +&. (31)
u

When t— oo then we get
B
Z(t) < #2
Here, we will explore the positivity of the system (7).
To do so, we will follow the previous steps.

FEDR () = By — HE(t),

in equation (31),
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With the help of the previous equation, we get

lim Z(t) < &

t—oo n

So,

= {<5h:52:-~-,/u) €A 0< L) < %}

Hence, the proof of the lemma is complete.

4.2. Ulam-Hyer stability condtion

In this section, we establish some terms and condi-
tions of stability for proposed model. Let ¢(t) is a
perturbed parameter.

(N o) <e for e>0,

(if) D2 () = F(A (1), 1) + (1)
Theorem 4.3 (Xu et al., 2022). If the following condi-

1-, Th2-1 T/ﬁ
(B + SN

and with use of systems (8), (9) and Lemma (2.1),
then Ulam-Hyers stability exists for the solution of the
proposed model.

tion hold o <1, where =

Proof. The proposed model has a unique solution, as
we have demonstrated, let /# € ® be solution and
A € @ be a unique solution of the system (7), we
have

| (t) = ()|
~ |61~ {57 + (00 - o) L2
| ), i,
)= {0+ (50 (0,0 - Ba(e) 2 P
ﬁ(1£2)J uﬂ*”IE‘(,}f(u),u)du}
+ {0+ 0,0 - Fof) P
+ 5(1 [ﬁ 2) J; uh TR (u), u)du}
- {70+ @0 0.0 - o) LU P g
+%J WTF(H (u), )du},
szm,m%w Jf\\ﬁz'fﬂfﬂw #l,

<2, 5, +ollH -]
Based on the result mentioned above, we have
o1/ j/fw Ba o1/
| = A SWH%—%W

We can conclude that the system’s solution is sta-
ble. So, the proof is finished. O

5. A Numerical technique for malaria -
filariasis model

It is not a simple task to deal with nonlinearity when
using fractional derivatives in a biological model.
Working with non-linearity while using a fractional
model is a complex task. We've used a few new
numerical algorithms to solve biological models in
recent years. These numerical techniques play a sig-
nificant role in determining our system’s approxi-
mate solution. We create a fractional system to find
an approximate solution in the first stage.

5.1. Numerical scheme with fractal fractional in
Caputo sense

We use the model to create a numerical scheme by
starting with a power-law scenario. We write the
proposed model in terms of Volterra representation
in the RL sense before the beginning of the scheme
(Khan, Atangana, Muhammad, & Alzahrani, 2021).

1 d t (t — U)_ﬁ‘
r( —[ﬂ)EL BthT F(u)du,

FFPD/ﬂ /323( )

(32)

We are considering the fractional differential

equation, outcomes displayed below:

®DgSh(t) = Bot’ ki (S 1),
#0515 (t) = Botka(S2, 1),
#D5 I(t) = Bot" ™ ks (I, t),
REDR I (t) = ﬁ th2 Ky (I, 1),
g1r it (£) = Bat? ks (I, t), (33)
RS0y T(t) = /3 tﬁz-‘k6( 1),
BD0 S, (1) = Bot" ks (S, 1),
RLDﬁ1 () t/}2_1k8( . f),
RSDRI () = Bath ko (I, 1),

where

kq (Sh, t) = A — pSh — 0Sp — KeSh — KnaSh + 1T,

ky(S2,t) = (1 — m)Ap + KeSh + KinaSh + 05k
— €0pS2 — YS2 — UpS2
k3(Im, t) = €6nS2 — Yl — P1lm — ttplm — OKelm,
ka(lf,t) = Yl — ylr — bl — pple — pKinalr,

ks (Imf, t) = OKelm + pKmals = G3lme = 0@lmg — 017lme = tplme,
k(T t) = drlm + alr + 0Plns + P3lims — 1, T — 7T,
k7(S,,t) = Ay — KuSy — 14,50,
ks(E, t) = K,S, — a,E, — u,E,,
ko(l,, t) = ouEy — wyly.

(34)

To develop a numerical scheme for the fractal frac-
tional malaria-filariasis model, we apply the RL frac-
tional integral to the system (33), then we get



Sh(t) = Sp(0) = r(ﬂ/;) ;uﬁz—1(t—u)f‘1-‘/<1 (Sp, u)du,
Si(t) = S52(0) = r(ﬁﬁz]) ;uﬁz“(t—u)ﬂ‘_1k2(52,u)du,
Im(t) = I;m(0) = r(ﬁ;) ;u/’2‘1(t—u)ﬁ*_1k3(lm,u)du,
Ie(t) = 1:(0) = f[; J;uﬁz—’(t u)P 1= kq (I, u)du,
Imf (£) — = ﬁz ou/fz ks (s, u)du,
T(t) - /31 Ouﬁz u)?1 =" ke (T, u)du,
S,(t) = 5,(0) Ffﬁi) ;u/fz-1(t—u)/f1—1k7(sv, u)du,
E,(t) E,)(o)—rfﬁzl) ;uﬁz '(t — u)" kg (E,, u)du,
1,(t) = 1,(0) = Ff[;) i Pt (t — u) ko (1, u)du.

(35)

Initially, we merely resolve the system’s (35) first
equation. Other equations obtain solutions that are
analogous to those of the first equation.

t
B, J e

F=1g Sy, u)du,
) Jo 1(5ht)

Sh(t) - Sh(O) =

(tn+1 - U)
(36)

put t = t,4q, in equation (36) then we get

thi1
Pa J ul! (tn1

T8 Jo — )"k (Sp, u)du.

Sh(tnt1) = Sh(0) =
(37)
We simplify the equation (37), we have

Sh(tns1)

N (lat
= 5,(0) + L ZJ“ uP by — u)P Ky (Sp, u)du,
fy

F(ﬁl) q=0
(38)

with the help of the Lagrangian interpolation tech-
nique for finding the approximate function
uP=ky (Sp,u) in the interval [t,, t;1] into equation
(38), then we get

u—t,—
g; (u) = 7q1tf2“k1 (Sh,artq)

tg — tq 1
-t
4 t{:21 k1 (Sh,q—1:tq—1)~ (39)
ty —tq 1

We apply equation (39) to equation (38), then we
get

Sh(tas1) = Sn(0)
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Equation (40) can be solved further to produce
the following results,
hﬁ1ﬂ2 n

mz {tgz_”“ (Sha ta)en.q

_tﬁz k1(5hq 1 tg— 1)fnq]

Sh(tn+1) = Sh(o) +

(41)

where

tna = |(n—a+ DM (n—q+p+2)
— (=) (n—q+26 +2)],

fro = (1= + 1P = (0= q) (n =+ B, 1),

n=0,1,2,..,Nand q=1,23,...,n
The previous similar process applies to other
equations, then we get

h/"ﬁz n
—E: Ba—1
T(p+2) 5 [tq ka(S2,00ta)en.q

- tﬁz kz(szq 1’tq 1)fn q:|

= /m(O) + &zn: {tﬁz_1k3(/m qr tQ)en q
LBy +2) =" S

q=1

Sa(thi1) = S2(0) +

Im(tn+1>

tljz k3(lm q— 'Iltq T)fn q:|l

hhp, & B,—1
mZ[tq k4(lf'q,tq)enlq

q=1

l(tni1) = 1¢(0) +

-1
- t§i1 k4(lf,q—'| ’ tq—] )fn, q:| ’

hﬁw ﬁz n
< /fz—1k |
T+ 292 5 s e

_tI;Z k5(qu ],tq '|>fn qi|

hhp, & By—1
+ T, +2) Z: |:tq ke (Tq: t)en,q
]

— 0 ks (Tym, tgr)f

Imf (tns1) = Imr(0) +

T(th1) = T(0)

>

hﬁ1 n
Su(tn+1) = 50(0) Tﬁzz) Z [tﬁz 1k7 (Sl)'q, tq)en,q
q=1
- tﬁz k7(sl)q 'Iltq 1)fn q:|r
hﬁ1ﬁ n _
El)(tn+'|) = EU(O) + m [tgz 1kS(En,q: tq)en,q
q=1
tﬁz kS( v, q— 1rtq 1)fn q},
hm n
Iy(tn1) = 1,(0) + W[—%Z)Z {t§2_1k9(’v,q'tq)en.q
q=1
- té;i;1k9(lu,q—1:tq—1)fnlq:|r
(42)
where
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tna= (M= +1 (n-q+f +2)
—(n=a)"(n—q+2p +2)|,
o = [(0=a 1P = (=@ (n—a+ B, + 1),

n=0,12,.,Nand q=1,23,...,n

5.2. Numerical scheme with fractal fractional in
CF sense

We now converted the proposed model to the frac-
tal-fractional in the CF sense. Therefore we are devel-
oping the numerical approach in the CF sense, the
structure as follows:

CGngtSh(t) = thﬁ2_1k1( ’

G0y S2(t) = PotP ka(S2st),

B0 I () = Bot’ ™ k3 (m 1),
B0 () =

GO i (£) = ot ks (s, 1), (43)

0DpT (1) =

t)
)
)
BotP k4 (I, 1),
t)
Both k(T 1),
)
)

Dﬁ1 ( ) ﬁ t./i2 1k7( 1),
ODg1rE1)( ) ﬁ tﬁz k8( Ult ’
CFDg1rI|>( ) ﬁ tﬁz 1k9(lm t)

We apply the CF integral in equation (43), then
we get

53(11-510) =2 =P 5,0 0 [ i s,
Sa(t)=5,(0) = ﬁztﬂz(#kz (S21) ﬁ ﬁz)J;uﬂz 'ka(S2,u)du,
/m(t)_/m(o):%h (I t) + ﬁ‘ﬁz J;u/‘z k3 (I, u)du,
/,(r)—/,(o)zﬁzrﬁz(#k4 (I, 1) ﬁ1ﬂ2 J;u/’z ky(Ir,u)d

Inf (£) = Ime (0) :%ks(/ﬁ, t)+ / (1 5 2) L U2 ks (Iong, ) dlu,
1o =70 =L (P gy 0 [ bt
50510 =2 P o5,y [ i 5,0
E(t)-E, ):Wkg(Ev,t)ng&ﬁz)J;uﬁz ke (£, u)d
1, () = 1 ( ):%/«,(/D )+ Bﬁ( [ff)J;u/fz Tko (1, u)du

Initially, we merely resolve the system'’s (44) first
equation. Other equations obtain solutions that are
analogous to those of the first equation.

Byt (1 - .31),(1

Sh(t) = Sh(0) = BA,) (Shit)
BBy [ ,—1
+ B(j,) L ub Tk, (Sp, u)du, (45)

we put t = t,,1 in equation (45), then we get

Both’ ™' (1= By)

Sh(tn-H) Sh( ) (ﬂ1) k1( Z't")
% T f,-1
+ B(5) Jo uP2="kq (Sp, u)du.

(46)

Now, we simplified equation (46), and we get

Both ™ (1= By)

Sh(tn+1) = Sh(o) + B(ﬁ1) kl (SZItn)
Bt (=B on
Bpy  Ch )
BibBa [ g
+B(ﬂ1)L u kq (Sh,u)du.

The following outcome is obtained using the
Lagrange polynomial concept:

ﬁzt§2_1(1 -p)
B(f1)

_ ﬁzfgz__11 (1=5)
B(p)

h 3tﬂ2—1 tﬁz
B k(S t0) = Sk (57 ).
1

Sh(tn+1) = Sn(0) + ki (Sp. tn)

ki (52_1, tho1)

(47)

Further, we simplify the equation (47), then we
get

Su(tr) = 510) + Bt (G4 3 ) Sh )

Br—1 1-— ﬁ ﬁ h n—
-5 (i * a5 e
(48)

the previous similar process applies to other equa-
tions, then we get



Sa(ths1) = S2(0) + ﬁ2t52—1 (1 - + 3p,h

B(6,) 28(/31))“(53' t)

Br—1 1-— B] ﬂ1h o
- Pl (B(m) +28(ﬁ1))k2(52 )
In(tnt1) = Im(0) + ﬁ2t£2—1 (1 - + 3p,h

B(5,) 28(&))“('3” ")

a1 (VP B
Pata- (B(ﬁ1) 2B(,)

tain) = (0 + Btk (G + s ot
b

/32 1— Bih e
~ (8(51) *28(1&))“(” o)

It (tn1) = I (0) + Byl <1 — By | 3ph

)k?: (Inm_1 ’ tn—] )r

_|_

- h
_ﬁz /32 (L(ﬁ]ﬁ; +%)k5(lrn’qf1,tn_1),
T(tys1) = T(0) + B,th~" (1 — b1, 3kh

B ) zB(ﬁo)""(T"' )

- - h
=15 () g oo

So(tns1) = S,(0) + Bothe (1 — b + 3p,h

Ba—1 ﬂ ﬁ h -
~fab ( B(B )1 +23(1ﬁ1))k7(su " tas),

1—pi 3pih
B(f1)

ﬁ1 ﬂh n—1
-5 (i * (o€ )

_ - B, 3pih n
lu(tn+1) - IU(O) + ﬁZtn ! <B(ﬂ1)1 + 23(231)>k9(lurtn)

_ g (1—[>’1+ pih )kg(lg’“,tn_1).

Eo(tair) = £,(0) + otl (

B(B1) ~ 2B(p1)
(49)
5.3. Error analysis with fractal fractional in
Caputo sense
We use the equation (38), and then we get
Sh(th)
O+ 23 [ b = k(5w
= 54(0) + J u?” (thr —u Shiu
TR ) e
(50)

with the help of the Lagrangian polynomial for find-
ing the approximate function ki (Sp, u) in the interval
[tq, t+1] into equation (50), then we get

ki(Sh ) = Py(u) +Eq (u),
ki (Sh, 0t 1 Sha- fo-
:1(27';3[1)(“_5—1)_1(#;‘]1)(“_%)
—t —tyq) 02
+WW[k1(5h'”)]u:ﬁ'
(51)

B06,) 28(/31)>k5( i)

B, 2B<ﬁ1>)k7(55' )

a0
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Therefore, the error can be evaluated as

B, n an B (u—t)(u—t_1) 9?2
Eﬁ1 = ﬂz 1 %_
1,u(€u) r'(p;) =), u 1 —
[kl (Sh’ u)}u:yq (tn+1 - U)m_]du.
(52)

Taking the absolute value on both sides, we have

= ()

|8 ¢
F(/ﬁ)quL

by <

(u—tqg)(u—ty1)
= r(ﬁn;iﬁf 2

to1

P _
ufa! o2 (Sn )], . (tny1 = u)P " dul,

X ﬁ [k1 (Sh' u)]u:yq

tg+1 By B
uP ™ (thyr —u)" du.

q

(53)
We have
tqH
J uP 2 (th g — u)Pdu
tq
(54)
< 26377 B(By, By,
<2((n+ 1)AYETB(B, ).
We use equation (54) in equation (53), then we

present the following error:

] <l 3 ==t
O o (5n 0]y 2000+ 1A (5 ),
26((n+ 1)AY"PTB(B, )
T
% Z—“M‘iﬁg 882 et (Sh,0)],

(55)

The previous similar process applies to other
equations, then we get

Brtpy—1
‘Eg}u(eu) < 25((n+1)A gﬂf) B(B1, B2)
& (u—tg)(u—t41) &
" qz:;%ogsuiﬁﬂ ou? ka2 U]y, |
(56)
Brtfo
] < 2ol DA B fe
" (u—tg)(u—te1) 2
. ;%0<§}i€ﬂ ou ou? [k3(lm )]u:yrd !
(57)
Br+Br—1
()| < 22l VA0 )
(U= tg)(u—tg—1) o?
L e [

(58)
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’ng (e)] < 26,((n+ 1A TB(B, By)
o (8,
(U —tg)(U—tgq) 9?2
8 ;#Oi‘iﬁﬂ w[ks(/mf, Wy, |s

(59)
2B,((n+1)A) BBy, By)

A0 <

T(py)
(U= tg) (U = ty_1) P
DT 3 [T 0l
(60)
Br+Br—1
B2, < 2p,((n + 1)Art()[;1) B(f1, o)
T (U —tg) (U= tg1) 92
Y oSl
(61)
PrtBy—1
B2, )| < 2B, ((n + 1)Al“t()[31) B(fy, )
- (u_tq)(u—tq_1) 82
" %;fo;igﬂ ﬁ[ks(E'J'u)]U% '
(62)

2B,((n + 1A P B(B, By)

6. Numerical simulation and result discussion

In this study, an investigation has been conducted
to determine the dynamic of antenatal compliant
susceptible pregnant women, antenatal non-compli-
ant susceptible pregnant women, malaria-infected
pregnant women, filariasis infected pregnant women,
malaria-filariasis infected pregnant women, treatment
of malaria-filariasis infected pregnant women, sus-
ceptible mosquitoes, exposed mosquito and infected
mosquito using various fractional orders. To show
the efficiency of the proposed strategy, simulations
have been carried out using MATLAB (The
MathWorks Inc, 2016). Through simulations, we have
been able to gain a better understanding of the
model’s dynamics and perform a more comprehen-
sive analysis by observing how changes in the
parameters and initial conditions affected the mod-
el's predictions. The results from the fractional order
analysis were found to be more informative and
generalizable than those obtained from other related
works. We have used the Toufik-Atanagana (TA)
numerical techniques to solve the proposed co-infec-

[ ()| < T tion model. Sy(0) =50, S$,(0) =30, In(0)= 10,
(it ; ) 5 If(0) =15, Ime(0) =20, T(0)=10, S,(0) =25,
X Z% sup ﬁ[kg(/v,u)]uzyq . E,(0) = 20,/,(0) = 10 are denoted as the initial con-
7-=0 o=t ditions of proposed co-infection model and the par-
(63) ameter values are presented in Table as follows.
Parameters Numerical values Description
U 0.00004 Per capita natural mortality rate of pregnant women
Iy 0.05 Per capita natural mortality rate of mosquito’s
01 0.12 Progression rate from compliant
T 0.0006 Rate of loss of immunity
oh 0.8331 Rate of malaria symptoms in pregnant women
€ 0.7 Modification parameter
o 0.2 Biting rate of mosquito’s
0 1.2 Modification parameter
a 0.8333 Transmission probability of malaria in humans
o 14 Modification parameter
b 0.09 Transmission probability of malaria in mosquito’s
0 0.00211 Modification parameter
Pl 0.0183 Rate of mosquito bite leading to malaria infection
k 0.011 Modification parameter
Pl 0.000036 Rate of mosquito bite leading to filariasis infection
n 0.003 Modification parameter
Plnt 0.000027 Rate of mosquito bite leading to co-disease infection
v 0.0036 Modification param ter
b 0.00231 Disease induced death rate of the co-disease
v 1.0 Progression rate of malaria leading to filariasis symptoms
b, 0.00341 Treatment rate of malaria
b, 0.00061 Treatment rate of filariasis
b3 0.00072 Treatment rate of malaria - filariasis
gy 0.0112 Progression rate of exposed to infected mosquito’s
K¢ 0.011 Transmission rate
1, 0.1429 Natural death rate of mosquito’s
K, 0.502 Transmission rate between susceptible and infected mosquitos
Ay 1000 Per capita birth rate of mosquito’s
Kma 0.011 Transmission rate
nA, 0.0000421 Recruitment rate of susceptible pregnant women
(1=m)An 0.00003 Proportion of non-compliant susceptible
o 0.0112 Progression rate of exposed to infected mosquito’s




Figures 1-9 show the dynamics of antenatal
compliant susceptible pregnant women, antenatal
non-compliant susceptible pregnant women, mal-
aria-infected pregnant women, filariasis infected
pregnant women, malaria-filariasis infected pregnant
women, treatment of malaria-filariasis infected preg-
nant women, susceptible mosquitos, exposed mos-
quitos and infected mosquitos respectively when
fractal dimension f, =1,0.95,0.90,0.85 and frac-
tional order f, =1,0.95,0.90,0.85. Further, when
fractional order ; = 1 is fixed and fractal dimension
is varied then Figures 10-18 show the dynamics of
antenatal compliant susceptible pregnant women,
antenatal non-compliant  susceptible pregnant
women, malaria-infected pregnant women, filariasis
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Figure 1. Plot for antenatal compliant susceptible pregnant
women.
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Figure 2. Plot for antenatal non-compliant susceptible preg-
nant women.
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Figure 4. Plot for filariasis infected pregnant women.
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Figure 6. Plot for treatment of malaria-filariasis infected
pregnant women.
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Figure 15. Plot for treatment of malaria-filariasis infected
pregnant women.
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Figure 19. Plot of antenatal compliant susceptible pregnant
women S(t) for different values of .

infected pregnant women, malaria-filariasis infected
pregnant women, treatment of malaria-filariasis
infected pregnant women, susceptible mosquitos,
exposed mosquitos and infected mosquitos respect-
ively. Figures 19-24 show the dynamics of antenatal
compliant susceptible pregnant women, antenatal
non-compliant susceptible pregnant women, mal-
aria-infected pregnant women, filariasis infected
pregnant women, malaria-filariasis infected pregnant
women andtreatment of malaria-filariasis infected
pregnant women respectively when values of natural
mortality rate (u,) of pregnant women is varied.
Figures 25-27 show the dynamics of susceptible
mosquitos, exposed mosquitos and infected mos-
quitos when values of natural mortality rate (u,) of
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Figure 20. Plot of antenatal non-compliant susceptible preg-
nant women S, (t) for different values of y.
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Figure 21. Plot of malaria infected pregnant women Iy (t)
for different values of .

mosquitos is varied. Figures 28 and 29 represent the
comparison of numerical schemes (Toufik-Atangana
schemes (33) and (43) with respect to Caputo and
Caputo-Fabrizio operators) for the state variables
antenatal compliant susceptible pregnant women,
antenatal non-compliant  susceptible pregnant
women, malaria-infected pregnant women, filariasis
infected pregnant women, malaria-filariasis infected
pregnant women, treatment of malaria-filariasis
infected pregnant women, susceptible mosquitos,
exposed mosquitos and infected mosquitos respect-
ively when fractal dimension 5, = 0.99 and fractional
order §; = 0.99. It has become clear that the fractal-
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Figure 28. Comparison of numerical schemes (33) and (43) for co-infection malaria-filariasis model.

fractional approach is the most reliable for
explaining the disease model, compared to the regu-

lar fractional and classical order cases.

7. Conclusion

In this paper, The fractal-fractional derivative/integral
has been used to examine the nonlinear dynamics
of the malaria-filariasis model. We have used the
Banach contraction theorem to analyze a malaria-fil-
ariasis model. The proposed model solution is exam-
ined using fixed-point theory to determine its
existence and uniqueness. Applying the Ulam-Hyers
stability technique, the stability analysis is con-
ducted. We employ the numerical Toufik-Atanagana
(TA) approach to offer an analytically estimated solu-
tion. We analyze the behaviour of the numerical
solution and how it responds to various transmission

parameters for a sort of arbitrary order with fractal
dimensions. Variations in the state variable and
model parameter values give information about the
nature of the proposed model. With the help of a
graphical representation, it has been demonstrated
how the system’s parameters and the order of deriv-
atives will have a significant impact. Climatic varia-
bles, ideal controls, and time strategies have affected
this disease. The study offers a distinctive perspec-
tive on the interactions between malaria and filaria-
sis that will provide valuable insights for readers and
public health authorities. Based on the numerical
results presented, it can be concluded that the frac-
tal-fractional principle yields higher efficiency than
the fractional principle. Therefore, the fractal-frac-
tional approach can be applied to a range of real-
world problems to achieve better results. Moving
forward, we plan to utilize this approach to analyze
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other real-world problems. In future, comparing the
proposed models’ numerical solution with additional
numerical approaches could have potential benefits.
To further improve and analyze the model, it can be
extended to consider the impact of optimal controls
and climatic factors.
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