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A B S T R A C T   

Assessment of concrete strength in existing structures is a common engineering problem. Several attempts in the 
literature showed the potential of ML methods for predicting concrete strength using concrete properties and 
NDT values as inputs. However, almost all such ML efforts based on NDT data trained models to predict concrete 
strength for a specific concrete mix design. We trained a global ML-based model that can predict concrete 
strength for a wide range of concrete types. This study uses data with high variability for training a 
metaheuristic-guided ANN model that can cover most concrete mixes used in practice. We put together a dataset 
that has large variations of mix design components. Training an ANN model using this dataset introduced sig
nificant test errors as expected. We optimized hyperparameters, architecture of the ANN model and performed 
feature selection using genetic algorithm. The proposed model reduces test errors from 9.3 MPa to 4.8 MPa.   

1. Introduction 

Reliable concrete strength evaluation is critical for accurately 
assessing the conditions of existing structures. The compressive strength 
of concrete can vary considerably depending on concrete age and 
exposure to environmental conditions. Non-destructive testing (NDT) 
methods are available to assess in-situ concrete strength. However, using 
these NDT methods with little contextualized adjustments can be un
reliable because collected data depends significantly on environmental 
conditions and is prone to human errors. Often NDT methods are used in 
collaboration with a destructive testing method for concrete strength 
evaluation because most standalone NDT results can be affected by 
ambient conditions and testing procedures (Breysse, 2012). It is, there
fore, necessary to use a combination of destructive and NDT methods for 
improved accuracy when assessing in situ concrete strengths. However, 
the procedures for using destructive testing methods are usually costly, 
time-consuming, and rely on heavy equipment use. These destructive 
testing techniques also depend on the data interpretation by experienced 
staff and require repairs since they damage concrete. 

Many non-destructive methods are available to evaluate in-situ 
strength, such as rebound hammer, Windsor probe, infrared thermog
raphy, and radiographic testing. Among these methods, the Ultrasonic 

Pulse Velocity (UPV) test is reliable, truly non-destructive, and easy to 
apply in multiple field conditions with relatively better repeatability. 
UPV is commonly used to evaluate concrete properties with a destruc
tive testing method (Sbartaï et al., 2012). In the literature, there has 
been a search for evaluation procedures that could eliminate or reduce 
the use of destructive testing. Using more than one NDT method to 
evaluate material strength is also recommended so that each technique 
complements the others (Breysse, 2012) (Sbartaï et al., 2012). 

Machine Learning (ML) methods, such as Artificial Neural Networks 
(ANN), have shown potential for improving concrete strength prediction 
based on NDT data, especially in the last decade (Sbartaï et al., 2012) 
(Yeh, 2009). ANN models have the advantage of detecting nonlinear 
relationships between inputs and outputs without having the need to 
assume any behavioral connections. Whereas their main disadvantage is 
finding optimum hyperparameters for the best accuracy without 
knowing the exact inner workings of the model. Some studies used ANN 
and NDT results to predict concrete strength. Few of these studies focus 
on using UPV as the NDT data source. The critical aspects of prediction 
models are their accuracy, systematic bias, and applicability to various 
concrete types and mix designs. Although high accuracies were reported 
in the literature, most studies lacked applicability for a wide range of the 
mix design parameters. Usually, models were trained on a single 

* Corresponding author. 
E-mail addresses: sselcuk@cankaya.edu.tr (S. Selcuk), ptang@andrew.cmu.edu (P. Tang).  

Contents lists available at ScienceDirect 

Developments in the Built Environment 

journal homepage: www.sciencedirect.com/journal/developments-in-the-built-environment 

https://doi.org/10.1016/j.dibe.2023.100220 
Received 9 May 2023; Received in revised form 23 August 2023; Accepted 24 August 2023   

mailto:sselcuk@cankaya.edu.tr
mailto:ptang@andrew.cmu.edu
www.sciencedirect.com/science/journal/26661659
https://www.sciencedirect.com/journal/developments-in-the-built-environment
https://doi.org/10.1016/j.dibe.2023.100220
https://doi.org/10.1016/j.dibe.2023.100220
https://doi.org/10.1016/j.dibe.2023.100220
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dibe.2023.100220&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Developments in the Built Environment 15 (2023) 100220

2

concrete type using low variance data resulting in a high bias when 
applied to a different mix design. The accuracy would suffer when such a 
model is tested on data with high variance in the mix design (Paixão 
et al., 2022). 

The proposed model has the potential to be used as part of an 
alternative structural evaluation scheme for existing buildings. Such a 
global model can be used in applications where the tradeoff between 
speed of evaluation and accuracy is in favor of speed rather than top- 
notch accuracy. For regions that are known to be prone to disasters 
such as an earthquake, it is essential to evaluate the building stock for 
disaster preparedness; concrete strength evaluation is an integral part of 
this evaluation. Likewise, after a disaster, one of the most urgent and 
costly needs is to evaluate standing buildings for safety. An alternative 
procedure that integrates the current model can eliminate the use of 
destructive testing for concrete strength evaluation and reduce the cost 
and duration of the operations to a great extent. A striking example 
demonstrating the importance of utilizing machine learning to improve 
structural evaluation procedures would be the post-disaster evaluation 
of structures. After a disaster such as an earthquake, one of the most 
urgent and costly needs is to provide shelter for the survivors. Logistics 
and costs for short-term shelters can be hard to organize, while it can be 
a very high priority, especially in harsh climates. There are various re
ported instances where survivors took shelter in buildings that did not 
collapse, only to perish when they collapsed during the aftershocks. 
Suppose an evaluation procedure that utilizes either of the proposed 
models to evaluate concrete structures in the disaster region can be 
standardized. In that case, it can be a fast and economical solution that 
would reduce the need for short-term shelters and prevent loss of life 
during aftershocks. 

We wanted to see if we could train an ML model with acceptable 
accuracy and could be applied directly to any field data during concrete 
strength assessment of buildings in a large region. Concrete used in 
buildings in any urban setting would have a wide range of mix designs 
and different ages. A strength prediction model needs further adjust
ments for handling such concrete mix diversity. It is common to use 
additional optimization methods to augment ANN algorithms to in
crease model accuracy on different mix design parameter ranges. Meta- 
heuristics is among the most successful optimization methods integrated 
with ANN (Ojha et al., 2017), lacking such an application on concrete 
strength prediction. Using ANN and metaheuristic algorithms, the au
thors trained a global model that can predict concrete strength based on 
UPV data and concrete properties for a wide range of concrete types. The 
model can be utilized for applications where fast evaluation is necessary, 
and top-level accuracy is not critical, such as post-disaster response 
operations. 

The work presented in this paper systematically investigates the 
augmentation of a machine learning algorithm (an ANN algorithm) with 
a metaheuristic component to assess concrete strength for various con
crete types and mix designs. The authors found no studies in the liter
ature on concrete strength prediction using ML for a wide range of 
concrete types and mix design parameter ranges. We compiled a diverse 
UPV concrete tests database through extensive searching and organi
zation of UPV testing results. The database contains a wide range of mix 
design parameter ranges. This comprehensive UPV tests database pro
vides a basis for training and testing a new machine learning model that 
can reliably predict the strengths of a wide range of the mix design 
parameter ranges. 

The contributions of the work presented in this paper include 1) a 
cleaned and organized concrete mix design dataset with corresponding UPV 
and compressive strength data for the research community to test various 
concrete strength prediction methods based on UPV data; 2) a new approach 
that uses metaheuristic algorithms to augment an ANN algorithm for pro
ducing a machine learning model that can reliably predict the strengths of a 
wide range of mix designs. The following sections present a review of 
relevant studies (section 2), the methodology of compiling an extensive 
UPV tests database and training a new metaheuristic-guided ANN model 

(section 3), and the data compilation and the new algorithm’s testing 
results (sections 4 and 5). The last two sections present the discussions 
and conclusions (sections 6 and 7). 

2. Literature review on concrete strength prediction using ANN 
and UPV 

This section reviews existing studies using various ANN approaches 
predicting concrete strength. As different studies could use varying error 
metrics to report the performance of the ML models, an objective review 
of these existing ML studies needs to summarize the metrics shared in 
previous studies. Coefficient of determination (R2), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percent 
Error (MAPE) are the most commonly used metrics in the literature, as 
detailed in the “methodology” section below. There are many studies 
that predict concrete strength using ANN spreading through more than 
two decades. (Yeh, 1998; Duan and Poon, 2014; Naderpour et al., 2018). 
These studies mostly reported relatively high accuracies and low RMSE 
values for their testing datasets. A portion of the mentioned literature 
have small datasets that allow high accuracy predictions. Another large 
part of these literature focuses on particular concrete types such as 
foamed concrete, roller compacted concrete, recycled aggregate con
crete, etc. Focusing on a specific concrete type allows low variations in 
mix design, thus, comparably high accuracies. A recent study addressed 
this situation where authors tested an ANN model that was trained and 
cross validated using a portion of Yeh’s dataset (Yeh, 1998). The model’s 
RMSE output increased from 3.4 MPa to 4.09 MPa when they used a test 
dataset gathered from the literature. They concluded regionalization 
and lack of heterogeneity of some datasets can lead to overly optimistic 
results when models are intended to be used universally for strength 
prediction or mix design (Paixão et al., 2022). 

As mentioned in the previous section, we aim for a global ML-based 
model trained to predict concrete strength for a wide range of concrete 
types. High accuracy results reported in the current state of literature 
would be obsolete for high variability mix design data because the 
models were trained with low variability data. In order to obtain 
acceptable accuracy for such a large variability, we focused on three 
approaches that are known to improve accuracy for ML models in gen
eral, i.e., increasing training data size, including an input variable 
closely related to the target parameter, and hyper parameter optimiza
tion. The materials and methods section discusses the first of these three 
approaches. As for the second approach, we proposed using NDT data, 
which is known to improve strength prediction. As discussed previously, 
we decided to use UPV data as an input when training ANNs to improve 
the accuracy of concrete strength prediction. When the limited literature 
on ANN studies for concrete strength prediction using UPV data is 
investigated, we observed similar limitations in previous ANN studies. 
Atici (2011) predicted concrete strength using an ANN model with 
values of the mix design variables and UPV data as the inputs (Atici, 
2011). However, their model had high R2 values primarily due to the 
mix design parameters’ relatively small value ranges. 

Consequently, the trained ANN model could not reliably predict the 
strength of different concrete types or concretes with vastly different 
mix designs. In a similar study by Kewalramani and Gupta (2016), the 
authors used concrete specimens with different shapes and dimensions 
in their ANN model (Kewalramani and Gupta, 2006). The percent error 
measured was reported as 25%. They trained an individual ANN model 
for each specific shape and dimension. Specimens were tested at 
different ages and under various curing conditions. Still, the ages and 
curing conditions were not included as input features in the ANN 
models, which led to high test errors. As a result, the models had low 
accuracy and limited applicability for wide input parameter ranges. 

Tang et al. (2007) used the mix design parameters and UPV values as 
inputs for an ANN model that predicts concrete strength (Tang et al., 
2007). Additionally, they performed a sensitivity analysis for dimension 
reduction. They determined model topology and hyperparameters and 
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performed a sensitivity analysis using validation data. Similar to the 
previous studies, the listed data set had limited variability, which 
restricted the models’ prediction ability to a specific type of concrete 
and a small parameter value range. Sadowski et al. (2019) used quartz 
and feldspar replacement rates and UPV measurement to predict 
compressive strength of concrete screeds with high volume of waste 
quartz mineral dust. They reported an R2 of 0.91 with very limited mix 
design variability and small dataset size (Sadowski et al., 2019). Ten
za-Abril et al. (2018) used inputs for lightweight concrete (Tenza-Abril 
et al., 2018). The coefficient of determination was 0.82. Trtnik et. 
et al.09) reported a high coefficient of determination; however, it is 
essential to note that parameter value ranges tested in that study were 
limited (Trtnik et al., 2009). The entire data set consisted of data from a 
single batch of concrete. Bilgehan and Turgut (2010) conducted a study 
using data from core specimens and trained an ANN model with the only 
input being UPV values (Bilgehan, 2011). They reported a high coeffi
cient of determination. However, the dataset they created also had low 
variability. Such low variability has been the case for most literature on 
this topic. Biswas et al. (2019) used silica fume efficiency factor and 
silica fume content and UPV measurements to predict concrete strength 
with emotional neural networks. They reported an R2 of 0.949 and 
RMSE of 1.52 MPa. They provided limited information on network ar
chitecture and the training dataset. (Biswas et al., 2019). The most 
recent literature on this topic is a paper by Albuthbahak et al. (Albu
thbahak and Hiswa, 2019), where ANN yielded the highest coefficient of 
determination among various prediction techniques while still not 
handling high variability. 

As seen from the literature review, the strength prediction capability 
of ANN models developed are mostly limited to a specific concrete type 
or mix design. This results in high accuracy in test datasets. The last of 
the three approaches known to improve accuracy is hyperparameter 
optimization. Structural parameters of an ANN, such as learning rate, 
architecture, etc., that are not trained during the model training are 
called hyperparameters. Setting or optimizing hyperparameters can 
change the training outcome to a great extent. 

Model topology and hyperparameters were selected using validation 
data or a simple grid search for all these references. It has been more 
common to do a simple grid search for determining hyperparameters or 
using values from previously published literature. However, as trends in 
neural networks shifted to hybrid algorithms to increase accuracy, some 
researchers also applied this approach to concrete strength prediction. 
As mentioned earlier, we used Metaheuristics for hyperparameter opti
mization in this study. There are few recent studies that used meta
heuristics for the optimization of ANN for concrete strength prediction. 
Zhang and Aslani (2021) used Genetic Algorithm optimization on a 
neural network to predict compressive strength of lightweight concrete 
using mix design properties and UPV values. They reported an 11% 
improvement for training RMSE. Test RMSE was 4.51 MPa for the 
GA-NN model (Zhang and Aslani, 2021). Ly et al. (2021) (Ly et al., 2021) 
reported a 0.12 MPa test RMSE that was improved to 0.093 MPa with 
metaheuristic optimization. Although the paper was limited to foam 
concrete, the improvement was significant with the PSO algorithm 
optimization. Another noticeable study by Ranjbar et al. (2020) (Ranj
bar et al., 2020) reported 65.41 MPa test RMSE with ANN and 49.11 
MPa RMSE with metaheuristic optimization of ANN. However, this 
paper also limited its prediction capabilities to roller compacted con
crete. Hybrid ANN studies are also either trained and tested on small 
datasets and/or focused on a specific type of concrete, which limits their 
practical implications. 

In order to obtain acceptable accuracies from an ML model for 
various concrete types, we focused on three strategies: a large dataset 
with high variability, using UPV data as an input known to be highly 
correlated to the strength of concrete, and hyperparameter optimiza
tion. We discussed the compilation of the dataset in Chapter 4. We 
examined different optimization approaches to the model topology and 
hyperparameters, as detailed in section 5. 

3. Research methodology 

The overall research approach has two components: 1) compilation 
of an extensive UPV tests database that capture the UPV data collected 
and the contextual information of those tests (e.g., dimensions of the 
tested concrete components, Age); 2) development and tests of a series 
of metaheuristics-guided ANN models using the extensive UPV tests 
database. We studied the second component in three stages: a) hyper
parameter optimization, b) dimensionality reduction, and c) simulta
neous optimization d) hyperparameter optimization with field 
applicable feaures. Fig. 1 shows the general scheme for the workflow of 
the study. The following paragraphs introduce these two components at 
the conceptual level. The sections following this section present how the 
research team carried out these research activities with technical details 
and the obtained results (sections 4 and 5). 

In population-based metaheuristic algorithms, a predefined number 
of population members are created, and each population member is 
assigned various input parameters called “coordinates.” They are also 
assigned a fitness value calculated based on their coordinates using a 
fitness function. In our case, this fitness value is the validation error of 
the ANN model trained with coordinates assigned to the population 
member. At each iteration, population members will explore the solu
tion space and update their coordinates to get closer to the members 
with the smallest fitness values. The main parameters of a metaheuristic 
algorithm are population size and the number of generations. Popula
tion size refers to the number of population members in each generation. 
Setting the number of generations decides how many iterations a pop
ulation will carry out. 

The proposed metaheuristics-guided ANN models use contextual 
data such as dimensions, Age, and so on, together with raw ultrasonic 
pulse velocity (UPV) data as input features, each constructing a different 
machine learning (ML) model. The models aim to extract the complex 
relationship between these input features and the compressive strength 
of concrete as output. With the need for training and testing such ML 
models, we created a large dataset using literature data found through 
an extensive search for literature starting from 1993. The focus of 
literature search and data compilation are those published studies that 
detail the UPV data and contexts of the tests. Papers that introduced 
noise and variability from different sources of raw materials, raw ma
terial properties, mixing and placing techniques, mix designs, environ
mental exposures, etc., are included during database compilation. The 
total number of articles searched is 912. We demonstrated the vari
ability of this dataset in chapter 4. We initially collected all papers that 
report UPV test data and compressive strength values through the 
database compilation. We only performed this initial compilation 
among peer-reviewed SCI and SCIE papers to ensure good data quality. 

Data preprocessing overview. We prepared a total of 11,096 rows of 
data points from the literature to be used in the training, validation, and 
testing of the ANN model. This number was reduced to 5205 after the 
data preprocessing. The data processing includes 1) contextual core 
parameter identification through random forest-based feature impor
tance analysis, 2) data size reduction by removing all data points that 
did not contain core parameter values, and 3) initial model training. 
Datapoints missing core parameter values were especially prevalent in 
the studies published before 1995. Most studies published before 1995 
report limited information about the specimens. 

To plan model training and testing, we explored error metrics used in 
past ML studies for concrete strength prediction using UPV data. As 
mentioned in the literature review chapter, Coefficient of determination 
(R2), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
Mean Absolute Percent Error (MAPE) are the most common error met
rics in this domain. Mean Squared Error (MSE) is the averaged squared 
error, and as the name implies, the Root Mean Squared Error (RMSE) is 
calculated by taking the root of the mean squared error. Because both 
MSE and RMSE values depend on the target parameter’s value range, 
prediction accuracy can be better perceived when the target parameter’s 
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(compressive strength) value range is provided. Consequently, 
comparing different ML models with the Coefficient of Determination 
(R2) and Mean Absolute Percent Error (MAPE) is more straightforward. 
MAPE is calculated by calculating the percent deviation of error from 
the actual value of the target parameter. The coefficient of determina
tion (R2) is the square of the correlation between actual and predicted 
values, commonly used in machine learning studies. Accordingly, R2 

values close to 1 indicate better predictions. 
Model training and testing overview: The development and testing of 

the metaheuristics-guided ML models have the following elements: 1) 
hyperparameter optimization, 2) dimensionality reduction, and 3) 
simultaneous optimization. Hyperparameter optimization aims to select 
hyperparameters that minimize the prediction error (RMSE). The pur
pose of dimensionality reduction is to reduce the number of input fea
tures of the model without decreasing accuracy to increase overall 
computational efficiency. Simultaneous optimization aims to select 
optimal hyperparameters while minimizing the number of input fea
tures to reduce the prediction error (RMSE) more efficiently. 

In the hyperparameter optimization part, we performed hyper
parameter tuning using metaheuristic algorithms with the initial ANN 
model, as seen in Fig. 2. We used different meta-heuristic algorithms 
designed to work together with ANN. We created an initial population 
for the metaheuristic algorithms using several hyperparameter values as 
the coordinates of the individuals in the population. The fitness value of 
each individual in the population was the RMSE of each ANN run for 
corresponding hyperparameter values. We performed a comprehensive 
search for the optimization of a set of hyper-parameters to minimize 
model errors. 

In the dimensionality reduction part, we used meta-heuristic ap
proaches again to decrease the number of features. Fig. 3 shows the 
process of dimensionality reduction. We utilized meta-heuristic algo
rithms with top-down and bottom-up procedures to achieve a more 
efficient model with fewer features. We included an entire set of features 

in the top-down approach in the initial model. As the optimization al
gorithm proceeds, a random number of features are removed from the 
features list. In the bottom-up approach, we started with a few features 
identified in the data preprocessing as contextual core features. As the 
optimization algorithm proceeds, a random number of features are 
added to the features list. 

Consequently, we created an initial population by assigning each 
member a random number of features smaller than the total number of 
features. The population members have different features and also a 
different number of features at each meta-heuristic step for both ap
proaches. The fitness value of the populations is the validation RMSE of 
the model with this smaller set of features. 

In the simultaneous optimization part of the study, we implemented a 
genetic algorithm to optimize the ANN model for hyperparameters and 
dimension reduction simultaneously, as seen in Fig. 4. We only imple
mented the best working meta-heuristic method identified in previous 
steps to work with ANN. This time we used hyperparameters plus the 
name and number of features to be added to the model as coordinates of 
the individuals in the population. The fitness value of the population is 
the validation RMSE of the model run with the corresponding hyper
parameters and features. We finally performed hyperparameter optimi
zation with field applicable features where we eliminated features in the 
final model trained in simultaneous optimization that might be harder to 
access in a field operation. We performed the hyper-parameter optimi
zation using GA on the final model with only selected features. 

4. Compilation of an extensive UPV tests database 

As shown in Fig. 1 earlier, the dataset compilation has three major 
steps. The first step is contextual core parameter identification using 
random forest feature importance. Next, we eliminated data that did not 
contain information on contextual core features. Finally, we ran an 
initial model using the most common values of hyperparameters 

Fig. 1. Overview of the UPV tests data compilation and machine learning research based on the compiled data.  
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deduced from the literature. This section details these data preprocess
ing and cleaning steps. 

We identified critical features using mean decrease impurity (MDI) 
as a part of dimension reduction. Random forest is a supervised learning 
method that combines bagging and decision tree methods. It is 
commonly used for feature selection because the random forest algo
rithm can produce MDI values for features. Mean decrease impurity is 
calculated based on how much each parameter decreases the weighted 
impurity of a tree in a random forest. Features can be ranked according 
to their importance using the average impurity decrease from each 
feature. This MDI is defined as “Feature Importance” in a random forest. 
We used the random forest method to list all the features according to 
their feature importance for strength prediction. We selected features 
with feature importance higher than 0.01 as core features in the initial 
data cleaning phase. Some data rows have missing values of these fea
tures that are known to be relatively more critical for strength predic
tion. We chose to eliminate those rows because high importance features 
are more relevant for predicting the target, and if highly relevant in
formation is missing, that will compromise the model’s accuracy. As a 

result, we eliminated all literature references that did not report any of 
the core features, which reduced the dataset size to 4062 rows and the 
number of references to 53. (Ly et al., 2021; Ranjbar et al., 2020; 
Güneyisi et al., 2009; Shishegaran et al., 2021; Fan et al., 2016; Farahani 
et al., 2017; Yusuf et al., 2016; Yaman, 2000; Yew et al., 2014; Yap et al., 
2016; Yaqub and Bailey, 2016; Thirumurugan and Sivakumar, 2013; 
Willard, 2001; Uysal et al., 2012; Türkmen et al., 2003; Türkmen, 2003; 
Zhong and Yao, 2008; Sua-Iam and Makul, 2013; Al-Akhras, 1995; Aqel, 
2016; Tanyidizi and Coskun, 2008; Goutham Sai and Singh, 2019; 
Şahmaran et al., 2006; Selcuk et al., 2012; Oeswein, 2000; Nacer, 2005; 
S Marikunte et al., 2010; Dolatabadi, 2013; Dervisoglu, 2002; Becker, 
2000; Koh, 2014; Langevin, 1993; Latif, 1995; Hamood, 2014; Lai et al., 
2001; Chao-Lung et al., 2011a; Lin et al., 2016; Jain et al., 2013; Irri
garay et al., 2016; Khan et al., 2007; Ikpong, 1993; Karagol et al., 2015; 
Panesar and Shindman, 2011; Pal, 2019; Chu, 2012; Ozbay et al., 2011; 
Owaid et al., 2017; Popovics, 1993; Sadeghi Nik and Lotfi Omran, 2013; 
Chao-Lung et al., 2011b; Asteris and Kolovos, 2017; Atahan et al., 2011; 
Asteris et al., 2017; Demirboǧa et al., 2004). Dataset contains data from 
1993 to 2021, based on more than 15 locations. Most of the data was 

Fig. 2. Flow chart for hyperparameter optimization.  
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obtained in the form of kg/m3 of concrete in terms of units, a few of the 
data was converted from percent to kg/m3 using information in the 
paper. 

It is important to note that concrete mix designs commonly include 
more than one chemical and/or mineral admixture. We listed three 
different chemical admixtures and two different mineral admixture 
features for admixture content and type. When a mix design has more 
than one chemical and/or mineral admixture type, we listed the 
admixture with the most significant amount as admixture 1. The other 
admixtures are listed as admixture 2 and 3, respectively, following the 
order of decreasing contents. After data cleaning, the remaining dataset 
contained both numerical and categorical data. Numerical and Cate
gorical features and their ranges are listed in Table 1 and Table 2, 
respectively. We used one hot encoding to implement categorical fea
tures in ANN model training. 

We trained an initial ANN model using hyperparameters and 
network topology common for concrete strength prediction in the 
literature (Atici, 2011; Kewalramani and Gupta, 2006; Tang et al., 2007; 

Sadowski et al., 2019; Tenza-Abril et al., 2018; Trtnik et al., 2009; Bil
gehan, 2011; Biswas et al., 2019; Albuthbahak and Hiswa, 2019). The 
model’s initial performance was not satisfactory as expected from a 
dataset containing various data resources. The coefficient of de
terminations observed from different run trials was around 0.70-0.76. 
We decided to use root mean squared error (RMSE) as the evaluation 
metric along with R2 for the study because it is one of the most common 
metrics reported in the literature. We used a simple grid search to tune 
various hyperparameters using the validation data. The selected features 
after initial hyperparameter tuning are listed in Table 3. When these 
hyperparameters are used to run the model, the model runs around 25 
microseconds for training with the current setup. Additional metrics are 
given in Table 4. As shown in Fig. 5, points that correlate the predicted 
and actual strength values lie roughly along the centerline, corre
sponding to the exact prediction of the actual strength. 

In the initial model, we analyzed the data points with high errors for 
each parameter, as shown in Table 5 through 7. We identified two 
thresholds for the margin of prediction error, i.e., 5% and 20%. In the 

Fig. 3. Flow chart for dimensionality reduction.  
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analysis, we identified and isolated data points where prediction errors 
were larger than either 5% or 20% in the two groups. Data points where 
the predicted strength is larger (or smaller) than 20% of the actual 
strength are the “extreme outliers” where the initial model failed with an 
unacceptable margin. Data points where the predicted strength is larger 
(or smaller) than 5% of the actual strength are “practical outliers” where 
the model’s prediction performance is below standards used in practical 
applications. We divided features into three groups, i.e., categorical, 
discrete, and continuous. We identified the average values of each 
parameter for the entire dataset for the “extreme outliers’ group” (20% 

Fig. 4. Flow chart for simultaneous optimization.  

Table 1 
Data distribution for numerical features.  

Parameter Mean Standard 
deviation 

Min Max 

Age (Days) 58.96 105.03 0.83 570 
UPV Reading (Km/s) 4.38 0.83 0.75 6.96 
Compressive Strength (MPa) 47.56 23.92 0.88 134.03 
Specimen Dimension 1 (mm) 118.99 71.48 50 914.4 
Specimen Dimension 2 (mm) 164.54 58.66 50 304.8 
Maximum Aggregate Size (mm) 17.58 9.72 0.01 38 
Coarse/Fine Aggregate 1.29 0.66 0 4.75 
Cement/Total Aggregate 0.32 0.36 0.06 5.47 
Water/Binder 0.42 0.19 0.03 2 
Chemical Admixture Count 0.94 0.72 0 3 
Mineral Admixture Count 0.62 0.68 0 2 
Chemical Admixture 1 Content 

(kg/m3) 
1.53 2.42 0 13.11 

Mineral Admixture 1 Content (kg/ 
m3) 

48.67 107.69 0 922 

Chemical Admixture 2 Content 
(kg/m3) 

0.36 1.45 0 9 

Chemical Admixture 3 Content 
(kg/m3) 

0.03 0.38 0 4.5 

Mineral Admixture 2 Content (kg/ 
m3) 

8.63 25.76 0 180 

Mineral Admixture 1Calcium 
Content (%) 

8.52 26.05 0 96 

Mineral Admixture 1 Silica 
Content (%) 

1.47 8.68 0 88 

Air Entrainment % 0.26 1.24 0 11.5 
Fiber Aspect 1.02 8.98 0 80 
Fiber Content (% Vol) 0.01 0.02 0 0.3 
Curing Temp (C) 36.52 63.31 -20 500 
Trajectory Distance (mm) 163.67 82.18 50 914 
Frequency (kHz) 62.95 44.06 50 340  

Table 2 
Categorical features.  

Parameter Number of Categories 

Coarse Aggregate Type 4 
Specimen Shape 3 
Concrete Type 5 
Cement Type 5 
Chemical Admixture 1 Type 6 
Mineral Admixture 1 Type 5 
Chemical Admixture 2 Type 6 
Chemical Admixture 3 Type 6 
Mineral Admixture 2 Type 5 
Fiber Type 3 
Curing Method (Exposure) 4 
UPV Configuration 3 
Transducer Contact Material 3  

Table 3 
Hyperparameters for the initial model.  

Optimization algorithm Adam 
Starting Learning Rate 0.06 
Learning Rate Type Adaptive 
Hidden Layers 2 
Nodes at Each Hidden Layer 20*20 
Activation Function for Each Hidden Layer tan h 
Weight Initialization Method Xavier 
Epoch 2500 
Early Stopping Yes  

Table 4 
Performance of the initial model.  

Run Time-Total 25 ms 
Training Error (RMSE-MPa) 8.9 
Validation Error (RMSE-MPa) 9.2 
Training Coefficient of Determination (R2) 0.76 
Validation Coefficient of Determination (R2) 0.72  

Fig. 5. Actual strength and predicted strength for the validation data in the 
initial model. 
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or more prediction error) and the ‘practical outliers’ group” (5% or more 
prediction error) for continuous features. For the continuous features, 
the average values of most features for both outlier datasets are close to 
that of the entire dataset, as shown in Table 5. The most significant 
difference between the dataset average and the average of outliers is for 
the mineral admixture content features. This fact implies that the model 
is prone to overestimate when the mineral admixture content of the 
concrete is high. 

The initial model will predict strength more poorly when at least one 
type of mineral admixture is present in the mix design. We identified the 
most common values of each parameter for the dataset and the two 
outlier groups for discrete and categorical features. We also listed the 
occurrence of the most common values in percent for both the dataset 
and the outlier groups. As can be seen from Table 6, the most common 
values in both outlier sets are the same as the most common value of the 
entire dataset for all discrete features except the Mineral Admixture 
Count parameter. 50% of the outlier data points have a Mineral 

Admixture count of 1, compared to 41% in the total dataset. The most 
common value (47%) for mineral admixture count is zero in the entire 
dataset. 

Analyzing the distributions of categorical features in the entire and 
outlier datasets reveals that the chemical admixture type and curing 
method (exposure) both are important sources of error in the initial 
model. Among the categorical features, the most common categories 
differ from the original dataset for three features: coarse aggregate type, 
chemical admixture type, and curing method (exposure). As can be seen 
from Table 7 for the coarse aggregate type parameter, the percent of the 
most common category in the total dataset, i.e., category 2, is %29 for 
the entire dataset. The most common category in the outlier dataset for 
the same parameter is category 4, which makes up 26% (denoted in 
parenthesis) of the whole dataset. Since both categories have almost 
equal samples in the dataset, coarse aggregate type is not a dominant 
parameter for overestimated data points. However, we cannot repeat the 
same statement for the curing method (exposure) and chemical admix
ture type features. Both features have dominant categories in the outlier 
data points different from the dominant categories of the entire dataset. 
43% of the chemical admixture type parameter is set to category 5 in the 
whole dataset, whereas only 21% is set to category 2. In both outlier 
datasets, category 2 is the majority for the same parameter. Likewise, the 
majority (50%) of the curing method (exposure) parameter is category 
12 in the total dataset. Whereas prediction errors larger than %20 had 
the most common category as category 2 (33% of the outlier dataset). 

5. Model training, concrete strength prediction results, and 
discussion 

5.1. Hyperparameter optimization 

We used three major meta-heuristic algorithms with the initial ANN 

Table 5 
Summary of outlier data points for the continuous features in the initial model 
compared to the entire dataset.  

Parameter Average value 
(Dataset) 

Average value 
(Outlier groups) 

20% 5% 

UPV Reading (Km/s) 4.38 4.53 4.54 
Compressive Strength (MPa) 47.56 41.47 35.45 
Coarse/Fine Aggregate 1.29 1.15 1.24 
Cement/Total Aggregate 0.32 0.27 0.29 
Water/Binder 0.42 0.35 0.36 
Chemical Admixture 1 Content (kg/ 

m3) 
1.53 1.2 1.42 

Mineral Admixture 1 Content (kg/m3) 48.68 111.61 97.17 
Chemical Admixture 2 Content (kg/ 

m3) 
0.36 0.13 0.31 

Mineral Admixture 2 Content (kg/m3) 8.63 12.5 19.26 
Mineral Admixture 1 Calcium Content 

(%) 
8.52 17.94 21.26 

Mineral Admixture 1 Silica Content 
(%) 

1.47 0 2.1 

Air Entrainment % 0.26 0.55 0.23 
Fiber Content (% Vol) 0.01 0 0  

Table 6 
Summary of outlier data points for the discrete features in the initial model 
compared to the entire dataset.  

Parameter The most 
common 
value 

% of the most 
common 
value 

The most 
common 
value 

% of the 
most 
common 
value 

(Dataset) (Outlier groups) 

20% 5% 20% 5% 

Age (Days) 28 40 28 28 39 38 
Specimen 

Dimension 1 
(mm) 

100 61 100 100 75 81 

Specimen 
Dimension 2 
(mm) 

200 39 200 200 50 75 

Maximum 
Aggregate 
Size (mm) 

13 18 13 13 28 38 

Chemical 
Admixture 
Count 

1 51 1 1 64 62 

Mineral 
Admixture 
Count 

0 47 (41) 1 1 50 50 

Fiber Aspect 0 99 0 0 100 100 
Curing Temp (C) 23 71 23 23 79 81  

Table 7 
Summary of outlier data points for the categorical features in the initial model 
compared to the entire dataset.  

Parameter Most 
common 
category 

% of the most 
common 
category 

Most 
common 
category 

% of the 
most 
common 
category 

(Dataset) (Outlier groups) 

20% 5% 20% 5% 

Coarse Aggregate 
Type 

2 29 (26) 4 4 44 39 

Specimen Shape 1 52 1 1 67 61 
Concrete Type 1 40 1 1 44 39 
Cement Type 19 37 19 19 44 46 
Chemical 

Admixture 1 
Type 

5 43 (21) 2 2 44 36 

Mineral 
Admixture 1 
Type 

7 48 7 7 33 36 

Chemical 
Admixture 2 
Type 

3 81 3 3 89 82 

Chemical 
Admixture 3 
Type 

2 99 2 2 100 100 

Mineral 
Admixture 2 
Type 

4 88 4 4 89 86 

Fiber Type 0 99 0 0 100 100 
Curing Method 

(Exposure) 
12 50 (15) 2 12 33 39 

UPV 
Configuration 

0 97 0 0 100 100 

Transducer 
Contact 
Material 

1 94 1 1 89 96  
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model to perform hyperparameter tuning. In this hybrid approach, we 
created an initial population using hyperparameter values as the co
ordinates of the individuals in the population. We assigned each in
dividual’s fitness value as RMSE resulting from ANN run with the 
hyperparameters assigned to that individual. We used a total of five 
different hyper-parameters in the optimization process. Hyper
parameters included in the solution space were the optimization algo
rithm, learning rate, number of hidden layers, nodes at each hidden 
layer, and activation function. 

We applied the most commonly used meta-heuristic algorithms to 
the ANN model that trains with training data. We ranked each individual 
at each step of the meta-heuristic algorithm using the RMSE values 
obtained from the validation data. As the number of steps increases for a 
given epoch number of ANN, we observed lower RMSE values, indi
cating that the combination of the current hyper-parameters out
performed the previous ones. The ranges used for hyper-parameters are 
listed in Table 8. 

We performed a series of initial trials with other meta-heuristic al
gorithms, both swarm-based and evolutionary. We observed that three 
of these algorithms have higher efficiency compared to the rest, namely, 
the genetic algorithm (GA), firefly algorithm (FA), and particle swarm 
optimization (PSO). Accordingly, we based the actual comparison of 
algorithms on these three algorithms for the current problem. Table 9 
shows the minimum validation RMSEs observed for each meta-heuristic 
algorithm and corresponding hyper-parameter values for all three 
selected algorithms. 

As seen from the tables, the best-performing optimization algorithms 
and activation functions were similar for all algorithms. However, the 
best-performing algorithm appeared to be the genetic algorithm, which 
performs the best in exploring the search space. As a result, we selected 
the ANN-GA hybrid for hyperparameter optimization. 

5.2. Dimensionality reduction 

Dimension reduction is commonly performed to eliminate the 
redundant features so the model’s computation efficiency will not be 
compromised. A reduced number of features with fewer information 
redundancies is also critical for future practical applications of the 
model. We used the same three meta-heuristic algorithms for hyper
parameter optimization to perform dimension reduction. The initial 
number of features was 37, but it is necessary to decrease this number as 
much as possible for the model’s computational efficiency. We utilized 
all three approaches with top-down and bottom-up procedures to ach
ieve a more efficient model with minimum features. In the top-down 
approach, we dropped several features from individuals in the popula
tion. In the bottom-up approach, we added several features to in
dividuals in the population. We rerun the model with the new features 
chosen for each individual. At the end of each run, we obtained RMSE 
values to be used as the fitness value of that individual in the population. 
We created a population of different models with different features at 
each meta-heuristic step. 

As mentioned above, we performed a random forest analysis to 
detect essential core features for model performance. We based our 
dimensionality reduction methods on core features that have higher 
than 0.05. Consequently, all models include UPV Reading, Age, and 

Water/Binder Ratio features. In the bottom-up approach, the initial 
model starts with only core features; however, we add a random number 
of features to the model and calculate losses. Similarly, we did not allow 
the core features to be dropped in the top-down approach. When both 
top-down and bottom-up approaches were coded and run, we observed 
that the bottom-up approach yielded higher errors for the same number 
of steps. 

After a trial run, we decided to use the top-down approach in the 
hybrid model because the top-down hybrid yielded smaller errors, and 
the efficiency of these two approaches was not significantly different. 
Tables 10 and 11 show the best performing models for each meta- 
heuristic hybrid; we ran the models using the hyperparameters deter
mined in the hyperparameter tuning section. We listed the features 
selected by the optimization process for each meta-heuristic method. 
These tables show that the common features exist for all three hybrid 
models. Consequently, we decided these features (denoted in italics) 
must be in the final model. The convergence of the optimization algo
rithm is similar to the one in the hyperparameter optimization step. 
RMSE values were reduced to a minimum after the 12th step and stayed 
constant afterward. Likewise, R2 values also reached a maximum at the 
same step. 

5.3. Simultaneous optimization 

We optimize the ANN model for the hyper-parameters and dimen
sion reduction simultaneously as the final part of the study. The best 
meta-heuristic method for the hybrid model was GA for both steps. 
Accordingly, we only implemented the ANN-GA hybrid algorithm in this 

Table 8 
Range for values of hyper-parameters in the search space.  

Optimization algorithms Adam, LFBGS, Stochastic Gradient 
Descent, 

Learning Rate 0.001-0.1 
Hidden Layers 2-6 
Nodes at Each Hidden Layer 5-100 (increments of 5) nodes at each 

row 
Activation Function for Each Hidden 

Layer 
Tan h, Relu, Sigmoid  

Table 9 
The best performing models for the optimization algorithms studied and the 
corresponding hyperparameter values.  

Best Model Performance Genetic 
Algorithm 

Firefly 
Algorithm 

Particle Swarm 
Optimization 

Run Time-Total (sec, Avg 
for one step) 

57 38 95 

Training Error (RMSE- 
MPa) 

5.1 5.9 4.9 

Validation Error (RMSE- 
MPa) 

5.3 6.1 5.2 

Training Coefficient of 
Determination (R2) 

0.94 0.90 0.92 

Validation Coefficient of 
Determination (R2) 

0.92 0.88 0.91 

Corresponding Hyperparameters 
Optimization algorithm Adam Adam Adam 
Learning Rate 0.007 0.005 0.007 
Hidden Layers 3 3 4 
Nodes at Each Hidden 

Layer 
85 90 80 

Activation Function for 
Each Hidden Layer 

Tan h Tan h Tan h  

Table 10 
The best performing model for metaheuristic algorithms.  

Best Model Performance Genetic 
Algorithm 

Firefly 
Algorithm 

Particle Swarm 
Optimization 
Algorithm 

Run Time (Avg for one 
step-sec) 

370 590 430 

Training Error (RMSE- 
MPa) 

3.2 4.6 4.2 

Validation Error (RMSE- 
MPa) 

3.84 5.1 4.5 

Training Coefficient of 
Determination (R2) 

0.95 0.92 0.91 

Validation Coefficient of 
Determination (R2) 

0.93 0.89 0.88  
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last step. We utilized a top-down approach and prevented the algorithm 
from removing critical features determined in the dimension reduction 
section, i.e., UPV, Age, water binder ratio, maximum aggregate size, and 
chemical admixture content. According to the hyperparameter optimi
zation part, the activation function and optimization algorithm were 
tanh and Adam for all best performing models, respectively. 

Additionally, we set the number of layers to 3 because best per
forming models predominantly had 3-layer architecture. Also, 3-layer 
architecture yields the highest accuracy with GA. In this section, we 
only identified the number of nodes at each layer and the learning rate as 
hyperparameters. Each individual in the population has a number of 
parameters to be added, the name of features included, and two 
hyperparameter values as coordinates. 

We also increased the range used for the number of nodes at each 
layer. The original range was 5-100 nodes per layer in the hyper
parameter optimization part of the study, which we increased to 100- 
1000 in the current step. 

The final model yielded both a reduced parameter list and optimized 

hyper-parameters. As shown in Table 12, the validation errors in the 
current model are smaller than those in hyper-parameter optimization 
and dimensionality reduction. As expected, the total run time for one 
step is higher than the previous models. 

Finally, after saving the best-performing model for the simultaneous 
optimization, we ran this model and output models from previous 
optimization steps using the test data. Table 13 shows the results from 
the test data. The simultaneous optimization model for training and 
validation data produced the highest coefficient of determination and 
lowest errors. The simultaneous optimization model had the smallest 
test errors (RMSE: 4.8 MPa). Run times averaged over multiple runs, and 
we observed that they are similar for all three models. 

We also analyzed the outliers of the final model from simultaneous 
optimization and compared these with the outliers of the initial model. 
Similar to Tables 5–7, we prepared Tables 14–16 by isolating data points 
where compressive strength was predicted to be 5% and 20% higher (or 
lower) than the actual values. The most common values of both outlier 
groups are the same as those of the entire database for all discrete fea
tures. The initial model without metaheuristic optimization had a min
eral admixture count parameter with a different most common value for 
the outliers. This fact indicates that the imbalance in the initial model 
specified at the end of chapter 4 is resolved in this final model. The final 
model successfully maps the relationship between the mineral admix
ture count and compressive strength. Likewise, the most common values 
are the same for both outlier datasets with the total dataset for all cat
egorical features. The initial model’s sensitivity to chemical admixture 
type and curing method (exposure) is also eliminated in the final model. 
When the continuous features are analyzed, most average parameter 
values in both outlier groups are closer to that of the entire dataset. 
Specifically for the mineral admixture content parameter, the average 
value for the extreme outlier group reduced from 111 kg/m3 to 42 kg/ 
m3. Considering the average of this parameter for the entire dataset is 
48 kg/m3, the sensitivity of the initial model to mineral admixture 
content was eliminated in the final model. 

The above analysis of the outlier data proves that the model loss was 
reduced successfully through metaheuristic algorithms that optimize the 
hyperparameters of the ANN. However, another critical point for the 
estimation is the overestimation/underestimation of the compressive 
strength. Underestimation of the strength does not pose a risk to the 
safety of any structure; it might only be a consideration of project cost. 
Especially considering post-disaster evaluation or disaster preparedness, 
the cost disadvantage can be ignored, given the underestimation range is 
no higher than 10-15%. However, overestimation can have serious 
safety consequences, so the model must be checked for biases that might 
result in many overestimated strength values. 

Table 11 
Corresponding features that generate the best performance of each meta
heuristic algorithm.  

Genetic Algorithm Specimen Age Chemical Admixture 
Count 

Water/Binder Ratio Mineral Admixture 
Count 

Chem. Admixture 
Content 

Mineral Admixture 
Content 

Max. Aggregate Size Air Entrainment 
Specimen 
Dimension 

Trajectory Distance 

CA/FA Ratio Frequency 
Cement/Aggregate 
Ratio 

Coarse Aggregate Type 

Water/Binder Ratio Specimen Shape  
Curing Method 
(Exposure) 

Firefly Algorithm Specimen Age Specimen Dimension 
Water/Binder Ratio Fiber Content by 

Volume 
Chem. Admixture 
Content 

CA/FA Ratio 

Max. Aggregate Size Trajectory Distance 

Particle Swarm Optimization 
Algorithm 

Specimen Age Mineral Adm. Si 
Content 

Water/Binder Ratio Air Entrainment 
Chem. Admixture 
Content 

Chemical Admixture 
Type 

Max. Aggregate Size Mineral Admixture 
Type  
Mineral Admixture 
Content  

Table 12 
The best performing model for simultaneous optimization.  

Run Time-Total (sec) 720 (Avg for one step) 
Training Error (RMSE-MPa) 2.3 
Validation Error (RMSE-MPa) 3.6 
Training Coefficient of Determination (R2) 0.98 
Validation Coefficient of Determination (R2) 0.96 
Learning Rate 0.03 
Nodes at Each Hidden Layer 400,200,60  

Corresponding Features: 

Specimen Age Mineral Admixture Type 
Water/Binder Ratio Trajectory Distance 
Mineral Admixture Silica Content Frequency 
Air Entrainment Max. Aggregate Size 
Mineral Admixture Content Specimen Shape 
Chemical Admixture Content Curing Method (Exposure)  

Table 13 
Test runs for all three final models.  

The best performing model from hyper-parameter optimization - test data 
performance 

Run Time-Total (Avg) 35 s (one step) 
Test Error (RMSE-MPa) 5.2 
Test Coefficient of Determination (R2) 0.92 
Mean Absolute Percentage Error (MAPE) 11.2% 

The best performing model from dimension reduction - test data performance 

Run Time-Total (Avg) 40 s (one step) 
Test Error (RMSE-MPa) 4.9 
Test Coefficient of Determination (R2) 0.93 
Mean Absolute Percentage Error (MAPE) 10.9% 

The best performing model from simultaneous optimization - test data 
performance 

Run Time-Total (Avg) 51 s (one step) 
Test Error (RMSE-MPa) 4.8 
Test Coefficient of Determination (R2) 0.93 
Mean Absolute Percentage Error (MAPE) 10.7%  
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Strength reduction factors in ACI 318-19 (Building Code Re
quirements for Structural Concrete) vary from 0.9 to 0.6 for different 
concrete members, accounting for uncertainties in materials, possible 
design, and construction errors. Accordingly, an overestimation of 
around 5% can be acceptable, considering there should still be room for 
construction and design errors. We created overestimated and under
estimated groups with strength values that are larger than 105% and 
115% of the actual strength. When overestimated and underestimated 
groups were compared, it was observed that the data was balanced. Both 
overestimated and underestimated strength predictions were around 
11% of the whole test set when the prediction difference was 5% or 
more. This means 93% of the strength predictions were safe to use in any 
structural analysis. As can be seen from Fig. 6, underestimated strength 
values are mainly accumulated between 20 and 50 MPa, whereas 
overestimated values lie primarily under the 30 MPa region. 

Consequently, compressive strength is more likely to be over
estimated for low-strength concrete. Especially large overestimations 
are more likely if the concrete strength is lower than 20 MPa. The reason 
in this overestimation can be attributed to the under representation of 

low strength concrete in the dataset, only 6% of the dataset contains 
concrete with strengths lower than 20 MPa. Considering that concrete 
strength lower than 20 MPa is not used as structural concrete, the risk of 
overestimation is less than 7% for most existing structures. Conse
quently, the model can be used when reliable UPV data is available, and 
it has the potential to estimate the strength of structural concrete with 
both relatively low error and low risk of overestimation. 

6. Discussion and practical implications 

The model obtained from simultaneous optimization can potentially 
be used as part of a material assessment method for existing structures. 
However, when the input features in this final model are considered, we 
observed that some of these features in the final model might be harder 
to access in a field operation, especially for older structures. Conse
quently, as an additional consideration, the final features listed in 
Table 12 were evaluated regarding accessibility for existing structures in 
particular application scenarios. Features that are most likely to be 
accessible for older structures were concrete age, air entrainment 
percent, trajectory distance for UPV measurement, frequency of the UPV 
measurement, maximum aggregate size, specimen shape, curing method 
(exposure), along with the obvious UPV reading. Assuming air 
entrainment and maximum aggregate size of a concrete specimen can be 
assessed using either a secondary non-destructive method or a semi- 
destructive method, the rest of the features listed above will be acces
sible in the majority of structural evaluation. As a result, we trained, 
optimized, and evaluated another model using the aforementioned 
“field applicable” features as a final consideration. We performed the 
hyper-parameter optimization using GA once again on this model, and 
the results were assessed. We observed the training and validation RMSE 
to be 4.7 and 5.3 MPa for this model, respectively. Table 17 compares 
the test RMSE of field applicable models with and without optimization. 
When we compared test RMSE values, the model from simultaneous 
optimization had a 48% improvement over the initial ANN model 
without optimization. This model optimized with field-applicable 

Table 14 
Summary of outlier data points for the discrete features in the final model 
compared to the entire dataset.  

Parameter Most 
common 
value 

% of most 
common 
value 

Most 
common 
value 

% of most 
common 
value 

(Dataset) (Outlier groups) 

20% 5% 20% 5% 

Age (Days) 28 40 28 28 40 38 
Specimen 

Dimension 1 
(mm) 

100 61 100 100 62 60 

Specimen 
Dimension 2 
(mm) 

200 39 200 200 45 40 

Maximum 
Aggregate Size 
(mm) 

13 18 13 13 21 18 

Chemical 
Admixture 
Count 

1 51 1 1 52 54 

Mineral 
Admixture 
Count 

0 47 0 0 55 46 

Fiber Aspect 0 99 0 0 100 99 
Curing Temp (C) 23 71 23 23 67 73  

Table 15 
Summary of outlier data points for the continuous features in the final model 
compared to the entire dataset.  

Parameter Average value 
(Dataset) 

Average value 
(Outlier 
groups) 

20% 5% 

UPV Reading (Km/s) 4.38 4.54 4.48 
Compressive Strength (MPa) 47.56 22.02 32.16 
Coarse/Fine Aggregate 1.29 1.26 1.34 
Cement/Total Aggregate 0.32 0.32 0.37 
Water/Binder 0.42 0.45 0.41 
Chemical Admixture 1 Content (kg/m3) 1.53 1.74 1.84 
Mineral Admixture 1 Content (kg/m3) 48.68 41.97 50.89 
Chemical Admixture 2 Content (kg/m3) 0.36 0.11 0.21 
Mineral Admixture 2 Content (kg/m3) 8.63 6.35 7.75 
Mineral Admixture 1 Calcium Content 

(%) 
8.52 9.07 16.95 

Mineral Admixture 1 Silica Content (%) 1.47 1.29 1.35 
Air Entrainment % 0.26 0.02 0.24 
Fiber Content (% Vol) 0.01 0 0  

Table 16 
Summary of outlier data points for the categorical features in the final model 
compared to the entire dataset.  

Parameter Most 
common 
value 

% of most 
common 
value 

Most 
common 
value 

% of most 
common 
value 

(Dataset) (Outlier groups) 

20% 5% 20% 5% 

Coarse Aggregate 
Type 

2 29 2 2 24 25 

Specimen Shape 1 52 1 1 57 50 
Concrete Type 1 40 1 1 33 43 
Cement Type 19 37 19 19 33 37 
Chemical 

Admixture 1 
Type 

5 43 5 5 48 45 

Mineral 
Admixture 1 
Type 

7 48 7 7 36 44 

Chemical 
Admixture 2 
Type 

3 81 3 3 83 85 

Mineral 
Admixture 2 
Type 

4 88 4 4 90 90 

Fiber Type 0 99 0 0 100 98 
Curing Method 

(Exposure) 
12 50 12 12 57 59 

UPV 
Configuration 

0 97 0 0 100 96 

Transducer 
Contact 
Material 

1 94 1 1 93 91  
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features still has a 39% improvement over the ANN model without 
optimization. 

When literature is scanned for compressive strength prediction based 
on mix design properties of concrete using neural networks, RMSE 
values obtained from those studies range anywhere between 0.018 and 
9.71 MPa (Nunez et al., 2021). It is undeniable that these RMSE values 
are dependent on various parameters as we discussed earlier. Most of 
these studies either focus on specific concrete type (limited mix design 
variability) and/or dataset sizes are very small. However, the median of 
the reported RMSE values in this specific review paper was around 4-5 
MPa. On another note, there are a limited number of studies on 
compressive strength prediction of concrete using neural networks 
optimized with metaheuristic algorithms. Two of these studies stand out 
with large dataset sizes. Bui et al. (2018) focuses on high performance 
concrete with 1133 rows of data. They reported an RMSE of 4.85 MPA 
with a Modified firefly optimization algorithm and neural network 
hybrid (Bui et al., 2018). Galofshani et al. (2020) reported an RMSE of 
4.69 MPa again focusing on high performance concrete with 2817 rows 
of data (Golafshani et al., 2020). 

In both of these studies inputs are only mix design parameters, 
however they did not use any additional NDT data such as UPV mea
surements. Consequently, we can roughly state that 4 -5 MPa of RMSE 
for concrete strength prediction is optimal when neural networks are 
utilized. This conclusion is somewhat more accurate when a specific 
type of concrete strength is targeted. We overcome the increased errors 
due to various concrete types and high mix design variability by utilizing 
UPV measurements and optimization algorithms. Thus our hybrid model 

can predict strength with the same range of error reported in the liter
ature when predicting low mix design variation and/or a specific con
crete type. 

The final output of the study is two ANN/meta-heuristic models that 
were trained and optimized for concrete strength prediction. The first 
model has higher accuracy for strength prediction and can be used for 
existing structures where mix design information is available. This 
model can also be used for construction planning, such as calculating the 
cost/benefit ratio before mix design, selecting a curing method, etc. The 
second model has relatively lower accuracy; however, it can be applied 
to existing structures where there is very little information available on 
the properties of concrete. 

7. Conclusion and future research recommendations 

Current evaluation methods can be time-consuming and costly. 
Relatively high accuracy in the models shows that advanced techniques 
relying on machine learning can easily replace current practices. As the 
state of the literature on concrete strength prediction based on UPV is 
considered, this study is the first of its kind where relatively high ac
curacy is obtained from a dataset of significant variability. Metaheuristic 
optimization was effective for increasing accuracy. We observed a sig
nificant improvement between 39% and 48% in test RMSE values when 
we used metaheuristics to optimize artificial neural networks when 
predicting the compressive strength of concrete. 

As mentioned in the discussion, we considered two models as the 
final output. The first one is the direct output of simultaneous optimi
zation, which yields the lowest prediction errors (RMSE 4.8 MPa, R2 

0.93, MAPE 10.7%). The second model only uses features that might be 
easier to access in a field operation. RMSE of this model increased to 5.6 
MPa (R2 0.89, MAPE 11.7%). We selected these features as; specimen 
age, air entrainment percent, trajectory distance for UPV measurement, 
frequency of the UPV measurement, maximum aggregate size, specimen 
shape, curing method (exposure), and UPV reading. 

Considering the variety of cement types, aggregate types, mixing and 
curing practices, etc., and the level of noise created in the data by these 
variables, it might be safe to assume the models provide the lowest 
possible prediction error. Both models perform within acceptable limits 

Fig. 6. Histograms of overestimated and underestimated strength predictions comparing the number of specimens for each concrete strength range - both predicted 
and actual. 

Table 17 
Comparing the initial model and the optimized field applicable model perfor
mances over the test data.  

Initial ANN model without optimization 
Test Error (RMSE-MPa) 9.3 
Test Coefficient of Determination (R2) 0.71 

Hybrid ANN with MetaHeuristic Optimization-Field Applicable Features 
Test Error (RMSE-MPa) 5.6 
Test Coefficient of Determination (R2) 0.89  

S. Selcuk and P. Tang                                                                                                                                                                                                                          



Developments in the Built Environment 15 (2023) 100220

13

for a wide range of concrete types, proving their potential convenience 
in practical applications. 

The model with field-applicable features has the potential to be used 
as part of an alternative structural evaluation scheme for existing 
buildings. An alternative evaluation procedure that integrates the cur
rent model can eliminate destructive testing for concrete strength 
evaluation and be useful during disaster response operations. 

Additionally, a two-stage procedure for structural evaluation can be 
formulated using the models developed in this study. The first stage 
would cover determining the mix parameters as inputs of the model. A 
second non-destructive or a simple semi-destructive test can be used if 
the features are not readily available. The second stage would predict 
concrete strength using the outputs of the first stage using the ANN 
model. Additionally, if a second NDT method is not possible in the first 
stage, the second ANN model with 5.6 MPa RMSE would be used for 
strength prediction. Such a modified procedure for strength assessment 
can increase accuracy and decrease procedural fieldwork 
simultaneously. 
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