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In this paper, firstly, we introduce a method for finding common fixed point of L-Lipschitzian and total asymptotically strictly
pseudo-non-spreading self-mappings and L-Lipschitzian and total asymptotically strictly pseudo-non-spreading non-self-
mappings in the setting of a real uniformly convex Banach space. Secondly, the demiclosedness principle for total asymptotically
strictly pseudo-non-spreading non-self-mappings is established. Thirdly, the weak convergence theorems of the proposed method
to the common fixed point of the above mappings are proved. Our results improved, extended, and generalized some corre-

sponding results in the literature.

1. Introduction and Preliminaries

Optimization theory (convex, nonconvex, and discrete) is an
important field that has applications in almost every tech-
nical and nontechnical field, including wireless communi-
cation, networking, machine learning, security,
transportation systems, finance (portfolio management),
and operation research (supply chain and inventory). Nu-
merous theoretical and practical areas, including variational
and linear inequalities, approximation theory, nonlinear
analysis, integral and differential equations and inclusions,
dynamic systems theory, mathematics of fractals, mathe-
matical economics (game theory, equilibrium problems, and
optimization problems), mathematical modelling, and
nonlinear analysis, rely on the fixed-point theory. Let Z be
a Banach space (BS), Z* the dual of Z, and @+ D C Z is
a closed and convex subset of Z. The mapping J: Z — 2%’
defined by

J@)={a" € Z: <@,@") =[al|@*]. Ial =[@*[}, (1)

is said to be normalized duality mapping.

Let I: D — D be a nonlinear mapping. The symbols
N,R, — ,—,F(T) and &F = n¥,F(T;) will be used to
denote the set of natural numbers, the set of real numbers,
strong convergence (SC), weak convergence (WC), the set of
fixed points of T, and the set of common fixed points of T,
respectively.

Definition 1. Recall that

(a) A mapping I is said to be nonspreading if there exists
j(s) € J(s) such that, for all s € D,

¢(Ts,Tt) + $ (T, Ts) < ¢ (Is, ) + ¢ (Tt,s),  (2)

where ¢(s,t) = ||s||2—2<s,j(t)> + ||t]|?, foralls, t € Z
and J is the duality mapping on D. Note that in real
Hilbert spaces (H), the ] is an identity mapping and
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(@, y)=o- y||2. Thus, in real Hilbert spaces, (2)
is equivalent to
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In 2008, Kohasaka and Takahashi [1] established this
class of mapping in a smooth, strictly convex, and
reflexive Banach space (RBS).

ITs — Tt|* < |ls — £ + 2¢s — s, t — Tt). (3) . . .
(b) A mapping T is called asymptotically nonspreading
(ANS) if there exists j(®@ — y) € J(® — y) such that,
for all s,t € D,
It () =T O <lls — tI* + 2¢s — T, j(¢ - T"¢)), foralln € N. (4)

Naraghirad [2] established the class of ANS mapping
as a generalization of the class of nonspreading
mapping. In addition, he proved that if K is
anonempty closed convex subset of a real BS and I is
an ANS mapping of K, then T has a fixed point.

(c) A mapping T is said to be uniformly Lipschitzian
with the Lipschitz constant L >0 if

T =T, j(s— 1)) <a,lls —t]

where y =1/2(1 - ) € (0,1),forall € (0,1) and o, = 1/2
(1 +k,). Observe that g, — lask, — landn — oo.
In a real Hilbert space (H) (see [3]), (6) is equivalent to

[Ts = Tt < K lls — 1P + Blls — £ - (T"s - %)
+2{s=TI"s,t —T"t), forallneN.

(7)

Remark 2. Tt is obvious from (4) and (7) that every ANS
mapping is a subclass of the class of asymptotically strictly
pseudo-non-spreading mapping with f=0andk, =1.
Again, the class of k-asymptotically strictly pseudo-non-
spreading mappings is more general than the classes of
k-strictly pseudo-non-spreading mappings and k-asymp-
totically pseudocontractions (see [4], for more detail).

Example 1 (see [4]). LetT: R — R be a mapping defined by

I's=

, if -00,0),
<]s if s €(—00,0) )

-2s, ifs €[0,00).

It was shown in [4] that ' is B-strictly pseudo-non-
spreading (ie., a mapping T: DCH — H such that
foralls,t € D(T), there exists 8 € [0,1] for which the in-
equality [I's— Tt><|ls — ¢t + Blls —Ts— (t - It +2¢s—
I's,t —T't) holds but not nonspreading.

Observe that for all integer n>2, we have

s, if s € (~00,0),
s = 9)
-2s, if s €]0,00).

- y"s -t—(I"s- l"nt)"2
+{s=T"s,t = T"t),

||F" (s)-T" (t)“ <L|s—t|,foralls,t € Dandn € N.
(5)
(d) A mapping T is called asymptotically strictly pseudo-
non-spreading  if  there exist k,<[1,00]

with k, — 1 as n—o00 and j(s—t) € J(s—1t)
such that

(6)
foralls,t € D,foralln € N,

Clearly, T 1is asymptotically strictly pseudo-non-
spreading mapping (see [3] for details).

Example 2. Let Z = ¢? with the usual norm ||.|| defined by

Zsl.z, forall(s,s,...) € Z, (10)

n=1

sl =

and D = {s = (s;,$,,...,5,,...)} bean orthogonal subspace of
Z (ie, foral®, y € D c Z, we have ({s,t) =0)). For each
s= (8,8, ..-5S,...) € D, define the mappingI': D — D by

(0]
(1S3 3 Spr- - o) ifl_[si<0,
I's = - (11)

[ee]
(=S =SS+ -)s isti >0.
i=1

Then, T is asymptotically strictly pseudo-non-spreading
mapping (see [5] for details).

Remark 3. In the above discussion, each of the mappings
considered is from a subset of a given space into itself.
However, there are so many real-life problems in which the
domain of the mapping under consideration is taken into the
whole space (and not its subset). When that happens, the
aforementioned mappings and their generalizations (as-
suming self-mappings) become irrelevant. Consequently,
there is a need to consider another set of mappings (called
non-self-mappings) that will bridge this gap.

The following definition will be required in the sequel.
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Definition 4 (see [6]). Let Z be a BS and K: Z — D
a continuous mapping. Then, D C Z is called a retract of Z
such that £(s) =s, Vs € D. Further, if £ is nonexpansive,
then it is said to be a nonexpansive retraction (non-ER) of Z.
Note that if £: Z — D is a retraction, then £* = K. A
retract of a Hausdorft space must be a closed subset. Every
closed convex subset of a uniformly convex Banach space
(UCBS) is a retract.

Example 3 (see [6]). Suppose H = R" with an inner product
(s,ty = Y s;t; and the usual norm ||s| = (Z;’zlsf)m, then
H is a Hilbert space. Let D ={s € H: |s| <1}. Define
A:H — D by

S, ifse€ D,
As = ] (12)
—, ifH-D.
Isl
Then, K is a non-ER of H onto D.
Definition 5. Let D be a nonempty, closed, and convex

subset of a BS Z and I': D — Z a non-self-mapping. Then,

(1) T is said to be ANS non-self-mapping if there exists
j(@) € J(@) such that, for all ®, y € D,

|T(<D)* ! (@) - T(<D)"" (y)||2 <@ -yl + 2@ - T(AT)" '@, y =T (K0)"'y), forallneN. (13)

(2) T is uniformly Lipschitzian with the Lipschitz con-
stant L >0 if

[T (<D " (@) - T(£D)" ! (»)| < Ll@ - yl,
forall@,y € C,n e N.
(14)

(3) T is said to be strictly asymptotically pseudo-non-
spreading  non-self-mapping if there exist
k,<(1,00) with k,— 1 as n—oo and
j(@—y) € J(@ - y) such that forall@e C,

(CAD)" '@~ T (KD 1y, j(@ - )y < ~y|@ - T (AT '@ ~(y - T (D) )|

where y =1/2(1 - ) € (0,1),forall € (0,1) and o, = 1/2
(1+k,). Observe that o, — lask, — landn — oco.
Note that if I is a self-mapping, then £ becomes the identity
mapping so that (15) reduces to (7).

The above study of various nonlinear mappings is quite
interesting. However, if there is no means to approximate their
respective fixed points, then the time spent in the study would be
a waste. Over the years, several researchers have constructed
varying iterative schemes to achieve approximate fixed points of
different nonlinear mappings. Chidume and Adamu [7] attained
convergence via their modified iteration scheme for the com-
mon solution of split generalized mixed equality equilibrium
and split equality fixed-point problems. Thianwan [8] estab-
lished a new iteration scheme for mixed-type asymptotically
nonexpansive mappings in hyperbolic spaces. Taiwo et al. [9]
studied a simple strong convergent method for solving split
common fixed-point problems. Shehu [10] investigated an it-
erative approximation for zeros of the sum of accretive oper-
ators, and Suantai et al. [11] worked on nonlinear iterative
methods for solving the split common null point problem in
Banach spaces. Still on the construction of the fixed-point it-
eration method, Saleem et al. [12, 13] proved several fixed-point
results, by utilizing some novel iterative methods, in the context

+{@ - T(AD)" '@, y —T(LD)" 'y (15)

+0,l® - y||2, foralln e N,

of intuitionistic extended fuzzy b-metric-like spaces and uni-
formly convex Banach space, respectively. Saleem et al. [14],
while working on graphical fuzzy metric spaces, employed a new
iterative method with the graphical structure to solve fractional
differential equations. Again, in 2006, Wang [15] generalized the
scheme studied in [16] (see below) for the case of two as-
ymptotically nonexpansive non-self-mappings (ANENSMs),
which was subsequently improved to a hybrid mixed-type it-
erative scheme involving two asymptotically nonexpansive self-
mappings ANESMs and two ANENSMs in [17], in UCBS. Agwu
et al. [18] generalized the scheme studied in [17] to hybrid
mixed-type iteration method involving three total ANESMs and
three ANENSMs (which simultaneously included the scheme
studied in [17]) in UCBS, and Agwu and Igbokwe [19] gen-
eralized the scheme in [18] to hybrid mixed-type iteration
method involving finite family of total ANESMs and finite
family of total ANENSMs in real UCBS. Albert et al. [20] did
work on the approximation of fixed point of nonexpansive
mappings. Agwu et al. [18] proved the convergence of a three-
step iteration scheme to the common fixed points of mixed-type
total asymptotically nonexpansive mappings in UCBSs. Acedo
and Xu [21] gave iteration methods for strict pseudocontractions
in Hilbert space. Other works concerning the formulation and



implementation of effective iteration techniques for fixed-point
problems are readily available in [22] and [23].

Chidume et al. [16] established the following iterative
scheme:

@, =0 €D,
w1 (16)
{ ®,,1= A(ocnI‘(/(I‘) o, +(1- ocn)a)n),nz 1,
where a,, is a sequence in (0,1), D is a nonempty closed
convex subset of a real UCBS Z, and K is a non-ER of Z onto
D and proved several SC and WC theorems for ANENSMs
in the context of UCBSs.
In [15], Wang generalized the iterative process (16) as
follows:

@, =® €D,
®,41= ’<((1 - an)mn + (anl (Arl)nilyn)’ (17)
yn: /<((1 - ﬁn)mn + ﬁnFZ (/<F2)n_1®n)’n2 1’

where T}, T,: D — Z are two ANENSMs and {a,,}, {8,,} are
real sequences in [0, 1) and proved several WC and SC
theorems for ANENSMs.

In 2012, Guo et al. [17] generalized the iterative process
(16) as follows:

®,=0¢€D,
®, 1= K((l - Ocn)Grll‘Dn + “nrl (Krl)n_ ly”)’ (18)
Yn= /<((1 - ﬂn)G;CDn + ﬁnr2 (’<r2)"7 ICD”)’ nzl,

where G,,G,: D — D are two ANESMs, I'},T,: K — Z
are two ANENSMs, and {a,,}, {B,,} are real sequences in [0, 1)
and proved several WC and SC theorems for the mixed-type
ANENSMs.

Recently, Saluja [24] generalized the iterative process
(16) as follows:

®,=®€D,
©41= ’<((1 - Ocn)G?CDn +a,l) (Krl)n_ lyﬂ)’ (19)
y,= A((1-B,)Gr@, + B, (AT,)" '@, ),n=1,

where G,,G,: D— D are two total ANESMs,
I,,T,: D — Z are two total ANENSMs, and {a,}, {f,} are
real sequences in [0, 1) and proved some weak SC theorems
for the mixed-type ANENSMs.

For the papers studied, it was discovered that a lot of
attention has been given to fixed-point results for asymp-
totically nonexpansive mappings and some of its general-
izations (Wang [15] studied convergence behavior of two
ANENSMs in UCBS, Guo et al. [17] examined convergence
character of four (two self and two nonself) asymptotically
nonexpansive mappings, Saluja [24] investigated conver-
gence behavior of four (two self and two nonself) total
asymptotically nonexpansive mappings, Agwu and Igbokwe
[19] understudied the nature of fixed point for a finite family
of total ANESMs and ANENSMs, and Chima [25] examined
fixed point for total asymptotically pseudocontractive
mappings in the setup of a real Hilbert space), and almost all
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the results were communicated in the setup of a real Hilbert
space. It is worth mentioning that there are other nonlinear
mappings (ANS and asymptotically strict pseudo-non-
spreading mappings; see, for instance, [3, 5]) that share the
same parents (asymptotically quasi-non-expansive and as-
ymptotically demicontractive mappings) with asymptoti-
cally nonexpansive mappings and asymptotically strict
pseudocontractive mappings. Unlike nonexpansive-type
mappings and their various generalization, the ANS-type
mappings (especially, the class of total asymptotically strictly
pseudo-non-spreading non-self-mappings) have not re-
ceived much attention in the setup of a real BS as compared
to those of the mappings studied above, perhaps due to
unavailability of some working instruments in this area.
Consequently, the following questions become necessary.

Question 6

(1) Is it possible to develop a demiclosedness principle
for total asymptotically strict pseudo-non-spreading
mappings in the setup of a real BS?

(2) Can one construct an independent mixed-type it-
erative scheme for the approximation of a common
fixed point for a finite family of certain nonlinear
mappings?

Motivated and inspired by the works of Ma and Wang
[5] and Wojtaszczyk [26], inadequate iteration method for
the class ANS-type mappings and the indispensable nature
of weak convergence theorems in applications, in this paper,
we study a new independent mixed-type iteration scheme
(27) and then provide some WC theorems of this new it-
erative scheme (27) for mixed-type total asymptotically
strictly pseudo-non-spreading self-mapping and total as-
ymptotically ~ strictly pseudo-non-spreading non-self-
mapping in the setup of real UCBSs. Also, an affirmative
answer is given to (1) and (2) in Question 6.

2. Relevant Preliminaries

In this section, we shall use the following definitions,
lemmas, and known results in order to prove the main
theorems of this paper: given a BS Z whose dimension is
greater than or equal to 2. The mapping 6, (¢): (0,2] —
(0,2] represented by

5,(2) = inf{l B ol == 1e-10 —yn},
(20)

for all s,t € Z, is called the modulus of convexity of Z. Note
that if 0z (e)>0,forall € (0,2], then Z is called uni-
formly convex.

We recall the following definitions and lemmas which
will be needed in what follows.

Definition 7 (see [27]). Let Zbe a BS, Z* its dual and 7" = {s
€ Z: |sll =1} If lim s + xt|| — [|@||/t exists foralls,t €7/,
n—aoo

then Z is given the Gateaux differentiable norm.
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Definition 8 (see [27]). If the limit in Definition 7 exists and
is attained uniformly for each s €7 (and forally €7"), then
Z is given the Frechet differentiable norm (see [28] for more
details). Consequent upon this, we have

() + 5o <l + hlE < (T (9)) + 5151 + d s,
(21)

foralls,t € Z, where functional 172] - |I? at
s € Z,with]is the Frechet derivative (-) is the pairing be-
tween Z and Z* and d is an increasing function defined on
[0, 0] such that (Dli_n)lood((b)/@ =0.

Definition 9. The BS Z is given Opial condition [29] if, for
any sequence {s,}e ZWCtos for each s € Z, it follows that

liminf ||s,, — s| < liminf [|s,, — t|| and equivalently limsup [s,,
n—~o0 n—-aoo n—> 00

—s|l < limsup ||s,, — || for all t € Z with s # ¢t. Whereas Hilbert

spaces and all spaces I? (1 < p < 00) satisfy Opial conditions,
the space L?[0, 7] with 1 < p#2 does not satisty the Opial
condition.

Definition 10 (see [5]). Let I D — D be a nonlinear
mapping. Then, T is said to be demiclosed at 0, if, for any
sequence {s,}e D, the condition that s,—se D and
I's, — 0 implies I's = 0.

Definition 11. Let Z be a real BS. If, for every sequence
s, € Z,s,—sand ||s,|| — |lsl| imply |®,, — @] — 0. Then,
Z is given the Kadec-Klec property [30].

Lemma 12 (see [31, 32]). Let Z be a real BS. Then, for all
ssteZ,j(s—t)eJ(s—1t)

Is + tI* < [Is* + 242, j (s + £)). (22)

Lemma 13 (see [33]). Let the sequences {a,} ., {Butoess
{yatoo) € [0,00] and satisfying the inequality:

Oy < (L+B,)a, + yy» foralln>1. (23)

If Y218, <co and ¥,2,y, < co, then
(1) lim a, exists
n—aoo

(2) In particular, if {a,}re, has a subsequence which
converges strongly to0,then lim =0.
n—-aoo

Lemma 14 (see [30]). Let Zbea UCBSand0< p <A,<q<1
for each n>1. Suppose that {s,} and {t,} are sequences in Z
such that

lim sup ||sn|| <r,lim sup “tn“ <r,
n—00 n—00

(24)
im s, (=206 =7,

hold for some r >0. Then, lim |s, —t,] =0.
n—aoo

Lemma 15 (see [30]). Let Z be a real RBS such that its dual
Z* has the Kadec-Klec property. Let {s,} be a bounded se-
quence in Z and y,& ew, (s,) (where w,, (s,) denotes the set of
all weak subsequential limits of {s,}). Suppose nlﬂ)n()O IAs,, +

(1= Ay = &|l exists for all A €[0,1]. Then, y = &.

Lemma 16 (see [30]). Let Z be a real UCBS and @+D C Z
be convex. Then, there exists a strictly increasing continuous
convex function ¢: [0,00) — [0,00) with¢(0) =0 such
that for each Lipschitzian mapping I': D — D with the
Lipschitz constant L> 0,

IT@ - (1 - Ty - T (tx - (1 - £)y)| sL¢*1(uo Y —%urm - ryu), (25)

for all ®, y € D and for all t € [0.1].

Lemma 17 (see [34]). Let Z be a real UCBS and @ +D C Z
bounded close and convex. Then, there exists a strictly in-
creasing continuous convex function ¢: [0,00) — [0, 00)

r(i t@j) - i t;lo;
= i

Lemma 18 (see [26]). If the sequence {®,},., WC to @, then

there exists a sequence of convex combination y; = Zijl)

W00 120 and 52910 = 1, uch that Iy, -0ll — .
as n— Q.

= L¢7 ' {maxlsj,kgn<

with ¢(0) =0 such that for any Lipschitzian mapping
I': D — Z with Lipschitz constant L>1 and elements

{@,}_; in D and any nonnegative numbers {tj}:.lzl with
Z;-’:ltj =1, the following inequality holds:
'(Dj—@k”—L’1||F®j—rmk||)}. (26)

3. Main Results

Let Z a real normed space and @# D C Z be closed and
convex. Let I';: D — Z be a finite family of total asymp-
totically strictly pseudo-non-spreading non-self-mappings



and G;: D — D be a finite family of total asymptotically
strictly pseudo-non-spreading self-mappings. We define an
iterative scheme generated by {®,},., as follows:

®, €K,

(0,1)andi

where {‘xn}nzl’ {ﬁn}nzl’ {Vn}nzl’ {rln}nzl €

=1,2,...,m.

Definition 19. Let Z be an arbitrary BS and @+ D C Z be
closed and convex. Let I'' D — Z be nonlinear mapping.
Following the terminology of Alber et al. [20], T is called total

A '@ =T (A1) 'y, j(@ - )y @~y ~y@ - T (AT '@~ (y - (D) 1y)[
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1 -
©1= ’<|:’7nyin + (1 - rln)(“n‘bn * E (1 - an))(G?(Dn + 1—‘i(’<ri)n 1yin):|;

(27)

Yin = (Aﬁn)G?Jrlwn + (1 - ﬁn)ri+1( (’<ri+1)nily(i+1)n)’

L y(i+1)n: A(VnG?JrZ(Dn + (1 - vn)ri+2 (’<ri+2)n7 I(Dn)’

asymptotically strictly pseudo-non-spreading if for every
®,yeD, ye (0,1), and j(®@—y) € J(® - y), there exist
sequences {0} (€0} s1 € (1,00): 0, — 1 with,
— O0asn —> 00 and a strictly increasing continuous
function ¢: R* — R*, R* denoting the set of positive real
numbers, with ¢ (0) = 0and nhinm Y (t) = 0o such that

(28)
+{@-T(AD)" '@, y T (KD ') + 0,4 (|0 - yl) +&,.
If F(T)+ < and g € F(I), then (28) reduces to
- . 12
(AT '@~ g j(@ @) <l —ql ~y|@ - T (D) '@ + 0,6 (1 ~ql) + £, (29)
m(n)
Lemma 20 (demiclosed principle for total asymptotically V= Z ti(")(i),- +n,ti(") >0,
strictly pseudo-non-spreading non-self-maps). Let Z be n=1 (30)
a UCBS, @+D c Z be closed, convex, and bounded and m(n)
I': D — Z be L-Lipschitz continuous and total asymptoti- D t\"” = 1suchthat||y, - w| — 0Oasn — co.
cally  strictly  pseudo-non-spreading  mapping  with n=1

¢: R* — R* and the sequences {u,},-1>{&,},5, such that
Upr &, — 0 as n—> 0. Then, I-I is demiclosed at zero.

Proof. Suppose {@,}2, WCtow € D and {®,-T®,} SCto 0.
We show that (I-T)w = 0. Itis clear that {®,},., is bounded.
Hence, there exists p>0 such that {@,},., cC=DnB, is
a closed ball in Z with center 0 and radius p. Thus, C is
nonempty closed bounded and convex subset in D.

T(AD)" 'w — w claimed as ne — oo. In fact, since
{®,},51 CW to w, by Lemma 18 (see, e.g., [14]), we get that,
for all n> 1, there exists a convex combination

Since {®,-T®,} converges to 0, it follows that for any
positive integer m > 1, and given any € > 0, there exists N =
N (€) >0 such that

[(T-Da,| < —foralln=N,. (31)

€
1+
Hence, foralln>N,, using Definition 19 and K is

nonexpansive, we deduce, for any fixed k > 1, utilizing the
well-known inequality

I+ yl* <l@l” + 2<y, j(y + @), (32)
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which holds for all ®, y € E and for all j(® + y) € J(® + y),

we have

2

|(r-r <0 Na,| =|e, - T@,+Ta, - (<D 0, ’

<|@, - Ta,|" + 2(T®, - T (£D)* '@, j(®, - T (<D 'a,)
=@, - T@,|" + 2(T®, - I (K1) '@, +T (KI)* 'T@, - T (AD)* 'Ta,, j(a, - T (D) '@,))
=|@, - L,|* + 2(T®, - T (£D)* 'Ta,. j(®, - [ (<) '@,))
- 2T (AD) '@, - T(AD)* 'Ta,, j(@, - T (L) '@,))
=@, - Ta,|" + 2(T®, - [ (D) T, j(@, - T (D) 'a,)>
- 220 (<D '@, - @, + @, - [ (D) 'Ta,, j(a, - T (D" '@,))
=|@, - Ta,|* + 2T®, - [ (£D)* 'Ta,. j(®, - [(£D)* '@,))
-2(@, - T(AD)* 'Ta,, j(@, - T (D) 'a,))
- 2T (A0, - @,, j(@, - T (D) 'a,))
=@, - T@,|" + 2(T®, - [ (KD)* 'Tx,, j(@, - T ()" '@, )
-2

@, -T(AD)" 1o, |||@, - T (<D,

- 2'|r(/<r)k’1®n -0, |[|e, -T(<D) o,

<|@, - T@,|" + 2(Ix, - T (D) 'T@,, j(, - T (<D 'a,)

- 2'|r(Pr)"* ', - a,||a, -T(<D) @,

=[@, - Tx, | + 2T (KD '@, - T (LKD) 'T(<T) ',
-(r(<D)* 'T@, - Tx,,)
—[(AD) ', - T (LKD) 'T(D) ', j(@, - T (LKD) '@,))

2 k-1 |2
-2|@, -T(AD)" o,

<||@, - Ta,|’
+ 2 (A1) '@, - T (LD 'T(AD) '@, j(@, - T (D) 'a,))

2 k-1 |2
-2|®, -T(AD)" o,

<@, - Ta,| + 2|@, - T (<) '@, |

2

@, - (D" '@, -(I(£D) '@, - T (A 'T(£D) '@,

-y
+(@, -T(<D)* '@, [ (K1) '@, - T (LKD) 'T(£1) 'a,)

>+€n}—2

=@, - Ta,| - 2Jy@ - (<) T (D) "o, |

2
@, -T(AD o, @, - T(AD) '@,

co

- 2@, - T(AD)* '@, T (D) (D) '@, - T (£1) '@,
+20,9(@, ~T (A1) '0,) + 2,

= |@, - Ta,|’-2y@, - T (<D T (<) 1o, |
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2@, -T (D) ',[|r (D) 'T (£D)* 0, - T (D)0,

@, -T(AD)" ',

+ 20nw< ) +2¢,

<||@, - Ta,|” - 2y|@, - T (KD} 'T (1) '@ @, -T(AD) '@,

n

1y 20n1//< > +2¢,

<||@, - Ta,|’ + 0n¢<||(1 -Da,| +|(T - T (<D)a,| +|(T(<D) - T (£1)’®,)

(T <0y -1 (410,

ot (4D)* 2 - T (41,

)+2£,,

m—1
<|o, - rwn||2 + 20n¢<L Z (1 - r)®n||> +2¢,
k=1

=@, - T@,|" + 20,6((m - DL|I - D@, | ) + 22,
(33)

From (31) and (33) and the condition on the function ¢, Moreover, with the help of Lemma 17, and foralln> N,
we obtain there exists ¢: [0,00) — [0, 00) with ¢(0) = 0 that is in-

k-1 creasing function, and we obtain
|| (I- (<D a,|<e (34)

In addition,

[ <Dy, = 5,

m(n)
<Py, = Y tPr (<0 o,
i=1

I (A0, - @

i+n

m(n)
+ Z tl.(”)
i=1

(35)

m(n)
T(AD) 'y, = Y 1D 'y,

i=1

m(n)
r(<D Y Py,
i=1

m(n)
- Y (<D ey,

i=1

-1
< uk(/) {maxlsk,ugn (COHn ~ @iy

- u;l“vxlur1 -T(AD '@

)

@, -T(AD)" '@

u+n

_ -1
- uk¢ maxlsk,usrl

+T(AD" o

i+n

k-1
itn r (/(F) (Du+n

+T(AD)" ', -

i+u

- 1,1;1||r(,<r)’<‘1a>i+1 ~T(AD '@

u+n

)

-1 k-1
< uk¢ {maxlgk,ugn(wz#n -T ( /<F) (D,q.n

u+n

+[re«n ey, - T (<0 e

i+u

+re«n'e,., - @
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_ k— k—
—uk1||l"(/<l") 'a.,, -T(AD)f o

-1
<uid {maxlgk,ugn (e+e€

(1= r (<D @y, - T (4D o

u+n

)

u+n

)

< uk¢71{maxlsk,ugn(€ te +(1 - ulzl)ukumiﬂ - ®u+nl|)}

-1
<uid {maxlgk,ugn (e+e

(1= u (@ | +@u])}

<ud ! {maxlik’ugn (2e + 2r(1 - ulzl)uk},

since ®;,,,®,,,, € Candu, =1+ 0,

m(n)
T(AD) 'y, = Y (4D '@

i=1

i+n

Equations (34), (35), and (37) imply that

[t <0y, -y,

On the other hand, for any k> 1, it follows that (using
(34))

[T (40w - wf <[ (4D 0 - T (<T)y,

(36)

Thus,

< ukgb*l{maxlgk)ugn(ze + 2r(1 - ugl)uk}. (37)

<ud l{maxlgk,ugn (2e + 2r(1 - u,?l)uk} +€. (38)

e« 'y, - 5,

#yn - ol

< uk”w - yn” + uk(,b_l{maxlsk)usn (2e + Zr(l - u,zl)uk} +e€ (39)

Hly = ol

Taking lim sup of both sides of (39), using (30) and for
k— 00

an arbitrary € >0, we deduce
[r<D o -w|<¢7 (@) =0. (40)

That is, |T(AT)* 'w - w| — 0ask — co. By the
continuity of TP, we get

lim F(/(F)k’lw =TAw=Tw = w. (41)
k—o00
This completes the proof. O

Remark 21. The result of Lemma 12 still holds true if A = 1.
Thus, Lemma 12 can as well serve as a proof for the
demiclosedness principle for total asymptotically pseudo-
contractive non-self-mappings in UCBSs with A = 1.

Lemma 22. Let Z be a UCBS, @+ D c Z be closed and
convex, I';: D— Z be a finite family of uniformly
L'-Lipschitzian and total asymptotically strictly pseudo-non-

spreading  non-self-mappings ~ with  sequences {u,},-1,
{€,},51 € [0,00): y,, &, — Oasn — oo and G;: D — D
be a finite family of uniformly L'-Lipschitzian and total
asymptotically strictly pseudo-non-spreading self-mappings
with sequences {y,},-1,{0,},51 € [0,00): y,,0, — Oasn
s 00 Let by Uinbyos, Dnbyos and {81, be real se-
quences  such  that  a,,1,,7,,5, € (0,1).  Suppose
F =N F(G)N N F(I;)# 9. If the following conditions
are satisfied,

(i) 0<nn, <y, <fysa<asl TEm<co X,

(1-1,) =00, 3,2, (1 - 1,)* <00
(ii) Y21y <00, 3,218, <00, 30219, <00, 32,0, <00
(iii) There exist constants M' and M and a strictly in-
creasing and continuous functions ,¢: [0,00)
— [0,00) with w(0)=0=w(0) such that
y(t) = M"t? and ¢ (s) = M's2, for allt,s >0

Then, lim ||®,-glland lim d(®,,F) both exist for
n—aoo n—aoo
all g € F, where {®,},., is as defined by (27).
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Proof. Set Ty, = MAX) (oo (s Yo M = maX{M', M”}, coand )’ 6, < 00. Suppose g F is arbitrary, with the help
L= max{L',L”} and 0, = max,_,.,{&,, 0,}. Then, Y2 7, < of (27), we get

B,Gr®@, + (1= B,)T, (’q‘z)n_l)’zn - ‘J”

B (Gy@, —q) + (1= B,) (T, (AT,)" Yo - Q)"

<BulGr@, = al + (1= )| T (AT2)" q"

<B,L'|@, gl + (1= B)E 2, -

<B,L]@, - g + (1 = B)L|P(B.Gi@, + (1= B)T5 (KT5)" ' ys,) -4

<B.L|@, gl + (1~ B,)L|B.G3@, + (1~ B,)Ts (AT3)" "y, - ‘1"

= B.L|@, — af + (1 - B)L|B, (Gi@, — q) + (1 = B,)(T5 (<T3)" ' y3, - q)|

<B,L|@, - gl + (1 - B)B.LL @, - q + (1 - B,)’LL [ y5, - q

<BuLl@, — gl + (1 = B)B.L*|@, — gl + (1 = B,)"L*][ 3, —

= BuL|@, — gl + (1 - B)B,L*|@, ~ 4]
+(1- /3,1)2L2”P([3,1G2®n + (1= BT (AT0)"  y, = q”

<L, al+(1-B)B.L°|@, -l (42
+(1-B,)B.L |Gi@, —a + (1 - B.)L’ '|F4 (AT ya - ‘Z"

<BuLl@, —al + (1 = B)B.L* @, gl + (1 = B,)B.L’|@, ~ g
+(1=B.) L ysn —

<B.Ll@, - g +(1-B)B.L|@, - g + (1 - B.)B.L’|@, — g
+(1- ﬁn)3L3 B,G5@, + (1~ B,)Ts (Krs)nil)’Sn - q"

= BuLl@, — g + (1 - B.)B.L* @, - g + (1 - B.)’B.L’|@, — g
+(1=B,Y’L’|B.(Gi@, - q) + (1= B,)(Ts (ATs)" 'y, - q)|

<B.Ll@, - g +(1-B)B.L|@, - g + (1 - B,)B.L%|@, — g
+(1=B)BLL @, - al + (1= ) L'L |y, - q

<BuL|@, - al + (1= B)B.L*[@, ~ gl + (1 = B,)*BuL’|@, ~ 4]
+(1=B.) Bl @, — g + (1= B.) L5, — ql|

|y1n =l <

By continuing in this manner, we obtain that

Iy - all <B.L|@, - a] + (1 - B)B.L*|@, - af + (1 - B,)’B.L*]|@, - ]
+(1-B,)B.L @, - g + (1-B,)'B.L°|@, - q
+o+(1-B)" BL" @, - q]
<(BuL+ (1= B)BLY + (1= B, B,L> + (1= B,)B,L" +(1-B,)'B,L° (43)
+ot (1=8)" ' BL" )@, - 4]

BL(1-(1-B,)"L")
= 1-— (1 _ﬁn)L “(Dﬂ - q"
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Following the same method as above, we get

_ ||<ﬁnL(1| — ((1 _/gn)mLm)
W= -p,)L

|y —q|<@|@,-4q| G=1.2,....m),meN,  (45)

I @, —q] (44

where ® =f,L(1- (1- B,)"L™)/1- (1-,)L.
Also, for i = 1, we obtain the following estimation using

In general, 27):

1 n n—
"‘Dnﬂ _yln" = P[ﬂnyln + (1 - I/In)(‘xn@n +5 (1 - an)(Gl(Dn + l—‘1 (’<r1) 1y1n>] _P(yln)

IN

1 . _
HoVin T (1 - rlfl)(“i’l@n +E (1 - (Xn) (Glmn + 1—‘1 (Krl)n 1yln) ~Vin

1 _
= (1 - ﬂn)[‘xn (a)n - yln) + E (1 - ‘xn) (GTQn + rl (Arl)n 1yln ~Vin (46)
1 " e
< (1 - ﬂn)‘xn"a)n - yln” +5 (1 - ‘xn)(l - ’1;1) (len + 1—‘1 (’<Fl) 1yln - yln)
1 n e
< (1 - qn)‘xn"(Dn - yln“ + 5(1 - ’711)2 KGl(Dn + l—‘1 (’<r1) lyn - yln) .
By following the same method as above for i= 2, we get
1 " e
||®n+1 - y2n|| < (1 - ﬂn)“n”wn - y2n|| + 7(1 - ’1”)2 GZ(Dn + I“1 (’<r1) 1y2n - yZn) > (47)
2
and in general,
1 _
"(Dn+1 - yin" < (1 - ﬂn)“n"(bn - yin" + _(1 - ’7n)2 G?(Dn + ri(xri)n 1yin - yin) . (48)
2

In addition, using (27) and Lemma 12, we obtain, for all
qe Fandi =1,2,...,m, that

2

1 " "
nwnﬂ - 61"2 < [rlnyin + (1 - nn)[“non + E (1 - ‘xn)(Gi CDn + I‘i (’<ri) lyin] -4q

1O =) + (1= 1) 2,(@, - @)+ (1~ @) (G2, - 4)
(0 (AT - )

<lyn-dl +20-n) o, @, - ) +5 (1- ) (G0, - q)
+(T (AT i = @) ] (@01 — 9))

= |, ~ | + 20, (1= 1,)@, = 4 j (@1 = 9))

+ (1 - ’771) (1 - an)<G?(Dn+l - q>j(®n+1 - Q)>
+ (1 - ’714) (1|_‘xn<G?C‘)n -q- (q - ®n+l) - (G?(Dnﬂ - Con+1)
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“2(®@ps1 ~q) = G @py15 j (@1 — q))

+ (1 - ’7n) (1 - ‘Xn)<ri (Kri)n_ 1®n+1 - Q»j(®n+1 - ‘Z)>

+ (1= 1,) (1= )< (AT iy =g = (4= @)

~(T; (AT @y = @pi1) = 2(@ps1 = 9)s (@1 — 9))
= 10|, - q| +2a, (1 - 1)@, - q]|@,.. - q]

+(1=1,)(1 = 0, )G/ @11 = G, j (@11 — q))

+(1-1,) (1 - ®)|G®, - qf|@:1 - 4]

= (1=1,) (1 = D]q = @y || @01 — 4

—(1-7,) (1 = DG/ @,1 = @y || @1 4]

=2(1-1,) (1 = )]@,,; - qf|@,.1 -4

+ (1= 1,) (1=, )<T; (AT;)™ 1‘Dn+1 ~ 4 j(@p1 — q))

(1= 1,) (1= ) [0 (AT)" " i = ] [@

~(1=1,) (1 = D] q = Dy || @01 — 4

-(1-n,)1- "‘)“ri (AT @y = Oy

—2(1-1,) (1= Q)]@,,; - qf|@,1 - 4]
< @@, - q| +2a,(1 - 1,)|@, - 4] |®,.. - q

+(1=1,) (1 =, )G/ @y,1 = 4 j(@p1 = 9))

+(1-1,) (1= L' |@, = g @1 — a] - 4(1 = 1,) (1 = D)@y, — g’

(1= 1) (1= )T (AT @ = G (@0 — )

+(1=1,) (1= @)L | i = qll|@ner —

||®n+1 - q"

(49)

From (45) and (49) and the fact that 2ab<a® + b, we
obtain

[0 - al* <1,9%@, - af’ + 20,1 = n, )]0, ~ alle, - al
+(1=11,) (1 = )G @py1 = @5 j (@p1 — )
+ (=) (1-1,)L|@, - @ - a - 4(1 - 1,) (1 = D@1 - g
+(1-1,)(1- “n)<ri(’<ri)n_1®n+1 -4 j(@p1 —q))
+(1=1,) (1 - o, )OL|@, - q|@,.1 -4

= 0’|, - gl + 20, (1 - )@, - g|[|@, - g

+(1=1,) (1= )G @y = (@ ~ )
+(1=1,) (1 = 0)L|@, - g||[(@ps1 ~ @) + @, — 4
—4(1=1,) (1 = @)@, 4|’
(1= 1,) (1= @ )T (AT @y = G (@0 — )
+(1-1,) (1 - 0OL|a, - q]|-(@,,, - @,) + ®, - 4]
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<l@,—al’ + @ (1 = 1, |@, — ql” +[ @1 — 4l
+(1=71,) (1 = @, )G @1 = @ j (@1 — )
+(1=n,) (1 =L@, - gl + (1 -7,) (1 - DL|@,,, - @, ]|, - q]
—4(1-1,) (1 - 9@, - qff
+ (1= 1,) (1= 0, )<T; (AT @yt = G (@01 — 9))
+(1-7,) (1= )OL|@, - g|* + (1 - 7,) (1 = OOL|@,,, - @,][|@, - g 0

Since each I;: D — ZandeachG;: D — D, for
i=1,2,...,m, is total asymptotically strictly pseudo-non-
spreading mappings, the last inequality becomes

@ -al < [1+ (mo+ (L= ?*(1+ @)1)]l@, - I +]@,1 - alf

+ (1 - 77) (1 - ‘xn) “wml - 61"2 - A’"GDHH - G?(’Dnﬂuz + Vn‘P("@ml - q") + Gn]

40 =) (1= @@, —af + (1= (1 - a0, - af

- /1” (M ri (,(ri)”_ 1@n+1

"ty ([0 - al) + €]

+(1-n,) 1+ )L, - a,]|o, -]

[+ (s (1= (14 ©°)L)]|@, = gl +[ @y - alf

- (1= l-a) @, - G?@ml”z + (1= (1 - a,)y,¢(|@,1 —al)
+(1=n(1-a)0,-2(1 -1 - @)@, -q|

~(1-n-a)t
+ (=) (1= )y ([ @ns = q) + 1= (1 - @,)E,

+(1=1,)" (1 + DL, -, @, - 4]

[1+ o+ = n(1+ @%)L)]Jo, - ql o, - aff

— (=) (U= @1 = Gi@pr’| + (1= 1) (1 = 0,)y,M'|@,, - Q||2
L= (1-a)(0,+&) -2 -1 - D@, -4l
—(1-n(1-a)
+ (L= (1= e ), M @0 — g+

+(1=n,) 1+ O)L|@,,; - @,[|@, - 4]

[1+ (o4 (1= (14 @°)L)]|@, = 7 + @ - aff

- (1= a ) |@,, - Gj’a)nﬂ||2 +(1-n(1-a,)yM|@,, - 61||2
+(1-m(1-a)(0,+&) -2 -1 - @)@, - 4|’

-1 -a)
+ (=) (1= )i, M|@,, = ql + (1= 7,)° (1 + D)L|@,., - @, |@, - 4
=[1+ (Ro+ (1 - (1 + @*)L)]|@, - g’ +|@ns - 4|’

(O I‘i (’<ri)w lm

IN

@y — T (AT)" '@

n+l

IN

@ — T (AT ‘o

n+l1
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== )1 @A @ = G+ (1=, + 1, M[@,0 - af
F A=) (0, +8) = (1= ) (1 - @)@, — g
—(=-m-a
+(1-7,)" (1 +DO)L|@,,; - @,||, - 4|

<[1+ (o -1+ @*)L)]|0, - al @, - aff

- (=1 4]0, - Gio, |+ 20 - 'r, M0,

_ 2
©py1 — I‘i (Krz)n 1CDnJrl

~2(1- ) (1= @)@, - |- A -m(1-a)

+(1=1,)*[260,+ (1 + D)L|@,,, - @,[|@, - q]]- (51)

@y — T (AT)" '@

n+1

Set Y=[1-7,)(1-a)-21-7,)7,M]o,,, —ql* Observe that
Then, we obtain from (51) that

(1-7,)(1-a,)=2(1-n,)r,M<1-2(1 - a,)7,M.
Y<[1+(n0+(1-n)?(1 +G)2)L)]||Con—q||2 (53)
-(1-1n) (1 - “n)A,"(Dnﬂ - G?‘Drm"z Thus,
+(1-n?[20,+ (1 + D)L|@, — q]|@.: 4]  (52)
(- -a)

_ 2
X (@41 _ri(xri)n 1CDnJrl .

(1-2(1 =, ' 1,M)| @1 — g < [1 + (20+ (1 = )*(1 + *)L)] @, - g
= (=) (1= @V | @ = G0, |
+(1-1)*(26,+ (1 + O)L|o, - q|@,.. - 4]) (54)
-1-n(1- (xn))L”

_ 2
X @, = T; (AT,)" 1®n+1 .

Since Y% 7,<00, it follows that lim 2(1-#,)°r,  number n, such that 2(1-#,)’r,M <e. Without loss of
M = 0. Consequently, for any € >0, thefe eXists a natural  generality, let € = 1/2 so that 2(1 - ,)*7,M < 1/2. Let

L+ 7 ®+(1 =)’ (1+ @)L . @+ (1 - n)*[(1+ @)L +2Mr, |
C1-2(1- )’ Mx, ) 1-2(1- )Mz,

n

(55)
_ (=26, + (1 + @)L|@, - g |@,., - 4])
B 1_2(1_ nn)zMTn

n

2 2 2
Thus, when 112 o, we have 0<b, <2{m®+(1 - n)?*[(1+®*)L+2Mr7,]},

0<c,<2(1-n)°(26,+(1+ ®)L|a, - q||@,., - 4])-
(56)
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By condition (ii), Y ,2,b, <0co and Y 2c, < 0o.
From (51)-(53), we have

A, < (1+b,)a, +c, (57)

Again, from (57) and Lemma 13, it follows that
lim [|®, — gl exists so that there exists a constant Q such
n—aoo

that |@, — gl <Q.
By utilizing the infimum for all g € F in (57), we obtain

d(®,,,F)<(1+b,)d(®,,F) +c, foralln e N.  (58)

Moreover, Y 2.b,<co and Y,2 c,<o0o, by utilizing
Lemma 13 that lim d(®,,F) exists. This completes
the proof. e O

Lemma 23. Let Z,D,{I}}},{G,}\, and F be as stated in
Lemma 13. If, in addition to the assumptions of Lemma 13,
the following conditions are satisfied:

lim [y 1) — 4] =

n—aoo n—aoo

Also, we have

15

(@) @, - [; (AT '@, <IG] @, = T;(K[)""'@,l,

i=1,2,...,m
() @, - I; (<) yall <IGi®, = T; (AT y, I,
i=1,2,....,m

then lim |®,-T;®,|=0 and
n—>oo
i=12,...,m

lim [®, - G@,| =0
n—>~oo

Proof. Set T, = MAX ycoo it Vu b M = max{M;, M},
L= max{L' L”} and 0, = max,_,..{¢,,0,}. Then, Y ° 7,
<ooand )’ 0,<oco. With the help of arbitrary

q € F, lim |®, — gl exists by Lemma 22. Now, assume that
n—maoo

lim @, —-4gl=¢c, then wusing the fact that
n—

7,<ocoand Y2 0, < 0o, we get
nl n n g

v (Gp®, — ) + (1= Vn)(rnz (AT;)" @, - Q)" =C (59)

||G1+2 quz < ”(Dn - qZ - /v"(:on - 1+2® + Vn (“‘Dn - q“) +0,
<[o,~al* + v.y(|@, ~al) + o, (60)
= limsup|G},,®, - q| <ci=1,2,...,m
n——-aoo
Furthermore,
n— 2 2
|ri+2 (/<ri+2) 1(‘)n - q" < " n 1+2 (/<rl+2) n + #n(/’("a)n - q”) +
<[o,-q|’ +#n¢(||®n—Q||) +&, (61)
=>limsup| T., (AT;,)" '@, - q" <ci=12,...,m
Therefore, from (59)-(61) and Lemma 22, we obtain nhin '(D" L (ATi) '@ =0, i=1,2,om
. n n—1 . (63)
lim |G7,®, - Tis (AT,)" '@, =0, i=1,2,...,m.
e Again, from (27), we get
(62)
From (62) and condition (ii) (i.e.,
1@, = T;\p (AT;,0)" '@, )l < G, ®, — Tiya (AT '@, of
Lemma 23, we get
nh_r)nm”yin - q” = nh—r>noo ﬁn (G?H(Dn - q) + (1 - ﬁn)(riﬂ (’<ri+l)n_1y(i+1)n - Q)” =c (64)
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Using (59) and (64), condition (b), Lemma 14, and
following the same technique as above, we obtain

. —1 .
nhi?m G?HCDn - I‘i+1 (’<ri+1)n Y+u| = 0, i=12...,m, (65)
. -1
nll—r>noo a)n - 1—‘i+1 (’<ri+l)n y(i+1)n =0, i=L2...,m (66)

Moreover, from (54), we get

(1-a,) (1=

(O ri (/<1—‘1’)7171‘:D

n+l

Y1+ (Ro+ (1 -1+ 0?)L)]|@, - aff
_(1 - 2(1 - r]n)zTnM)NCDnH - ‘1"2
- (1 - nn) (1 - an)A,|l®n+l - G?(Dnﬂuz

+2(1-1,)°(26, + (1 + D)L, - q] x|@,., - q])-

:Zu—nn)(l—an)a”

(Dn+1 - 1_‘i (Kri)n71®n+l

<o —qf +(1+ )@Y (1-4,)
n=1

+0Q* Y +2MQ* Y (1-1,)r,
n=1 n=1

+2 Z (1- 17n)26n+LQ2 z (1- 11“)2 < 00,
n=1 n=1

(67)
= liminf|@,.,, - I; (£T})" '@, = 0. (68)
Similarly, we obtain from (54) that Now, from (65) and (66) and the inequality
lim inf|®,,, - S/®,,| = 0. (69)
“yin - (Dn” = ||’<(ﬁnG?+1®n + (1 - ﬁn)riﬂ (Kri+1)n71y(i+l)n) - (Dn
< ﬁnG?H(Dn + (1 - ﬂn)riﬂ (’<ri+l)n71y(i+l)n - CDn (70)
<)@, = Loy (ATi)" ly(i+1)n + B, Gl @, — Tisy (’<rz’+1)n_1)’(z’+1)n >
we obtain that Also, from (71) and (72) and the inequality
lim "yin — (Dn" =0. (71) ”‘Dnﬂ - C')n” < “COHH - yin” +||yin - (Dn”’ (73)
Again, (48) and (74) and utilizing Zﬁil (1- 11n)2 < 00, we we obtain that )
obtain nlgnoononﬂ - ‘Dnn =0. (74)

n@m||®n+1 - ym|| =0. (72) Observe that
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GDn+1 - 1—‘i (Ari)nilyin <

<

<

Equations (68), (71), (74), and (75) imply that

. -1
hl>nm @41 — ri(xri)n Yin

=0, i=12,...,m (76)

n

Gla, —T;(AT,)" 'y,

®n+1 - ri (Ari)n71®n+l

®n+1 - ri (’<ri)rk 1®n+1

@1 — ri(’qi)nil@

n+1

< "GTGJ” - G?a)ml “ +||®n+1 - G?(Dnﬂ" +

+ L||®n+1 - )’m“

+ L@,y - @, + L@, = yin-

Furthermore,

< L"(Dn - ®n+1" +”®n+1 - G?(Dnﬂn

+

so that from (69), (74), and (77), we get

G'@, -T;(AT)" 'yl =0, i=12,...,m

lim
oy

(78)
Observe that

G?(Dn - ri (Kri)n_ lwn

<

-1
G?(Dn -T; (Kri)n Yin

+

ri(xri)nilyin - ri(xri)nilon

<|Gia, - T, (£1,)" 'y,

+ L“yin - ‘Dn”’
(79)

G/o,-T; (Kri)n_l)’m

<
i hS

<

so that from (71) and (80), we get

G/@, - T; (<T,)" Yin

lim
e

=0, i=12,...,m

n

(83)

@, - ri(xri)n_lyin

<

<

so that from (71) and (81), we get

@41 — ri(xri)n_lyn

Gio, - T; (Ari)n_lon

G'a, - T;(AT))" ',

@, - 1—‘i (Kri)n_lmn

@, - 1—‘i (Kri)n_ 1('On

>

so that, using (71) and (78), we have

:O)

ll‘noo G?(Dn - Fi (Ari)n_ I(Dn

n

+“ri (Ari)n71®n+1 -T; (PTi)nilyin

(Dn+1 - I‘i (Kri)nilyn

17

(75)

(77)

RN (D

(80)

Thus, from condition (a) of Lemma 14 and (80), we

obtain

lim |@, - T;(<I,)" '@,

n—aoo

Again, observe that

+

'ri (AT)" @, = T, (K1)

+L]@, =yl

Also,

+' L (AT)"'@, = T (A1) s,
+ L”‘Dn - yin"’

lim o, - I‘i (Kri)n7 1yin
n—oo

=0, i=12,...

,m. (81)

(82)

(84)

:0, i:1,2,...,m. (85)
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Now, we estimate |®, — I;®,,| as follows:

|@ - T, =
<
<
<
<
<

<

+T; (’<ri)m lym -T

, - 1—‘i (Ari)nilwn

+

n

@, - I; (AT;

1

®, - I; (KAT,)"

1

1 n

n

)

'@

@, - T;(AT,)" '@
y

@, _ri(xri n

1

L; (’<Fi)n71Yin -0,

a| t L“)/m - mn” +||ri (Ari)(/(ri)nizyin - rimn

a| L“ym - ‘Dn” + L"(/(I‘l) (Kri)nizyin - Con

o)

Journal of Mathematics

@, - T; (<)@, (T, (AT)"y, =T (Ari)nilmn)

n

+"ri (‘Fi)nﬂ)’in -I; (Ari)nilmn

+ L”ym - (Dn” + L"rl (Kri)n_zyin - (Dn

Uy -]+ L"ri (Kri)n_z)’in - (’<ri)n_2®n—1

+®, -0, _(‘Dn—l - I‘i (Kri)n_ZQ"*l)"

@, - ri (Kri)n_ 1®n

+L|®, , -®,|+L

@, - 1—‘i (Ari)n_ 1®n

+ L

@, - 1—‘i (Ari)n_ I(Dn

+L|@, , -0,|+L

@, - 1—‘i (Ari)n_ 1(Dn

+L|@, , -o,|+L

(Dn - ri (Ari)n_ I(Dn

+ L

From (71), (74), (81), and (82), we obtain

lim |@, - T@,| =0,
n—oo

lo, - Glo,| =

i=12,...,m.

<

@, 1~ ri (Kri)n_zwn—l

0, I} (Ari)n72®

®, - T; (A1), _(G?(Dn - I (‘ri)nilwn)

(Dn - 1—‘i (Kri)rF 1(Dn

-0+ T - (41,

(86)

o, — I (Kri)n_z‘D;H

Ly =@+ Llyin = @] + L@,y - @,

+ L”yin - C')n” + L2||yin - (Dn + (Dn - (Dn—l “

‘Dn—l - 1—‘i (Kri)n_z(bn—l

+ Ly =@ + Py = @, + L@, - @,

‘Dn—l - 1—‘i (Kri)n_z(bn—l

+L(1+ D)y, - a)n|| +L(1+ D)@, - (Dn”

n-1

Next, observe that

(87)

Glo,-T; (Kri)nila)n

+ (88)

= lim |@,-G/o,|=0.
n—oo

By (80) and (81), again, observe that
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o, -G, =]

©, - G?(Dn - (G?anﬂ - G?mn) + Gi(G?_la)rH—l) - Go,

= "(Dn N G?(Dﬂ" +”G?®n+1 - G?a)n" +|'Gi(G?_l(Dn+1) - Gion

<|@, - G'a,|| + L|@ ;- @] + L|G' @y — @,
=|®, - G'@,l + LI®,,; - ®,l + LIG "' ®,., - G/ ',
+G @, -G @, + 8D, — 0, + @, - @
<|@, — G'a,| + L|@yy ~ @, + LG @y — G @, (89)
+L|GI @, - S @, | + L|G T @,y — @,y || + L@y — @
<|@, - G'a,| + L|@py — @, + L[| @1 — @,
+ L||@, = @, | + L|GI ' @,y — @,y || + L|@,y — @
=|@, - Gla,|+ L1 +L)|®,,;, -®,| +L(1+L)|®, - @,

+L|GI @, - @,

so that from (69), (74), and (88), we get Proof. Clearly, lim [®, — gl exists for all g¢ & (by Lemma
lim "a)n _ Gl.a)n” =0, i=12,...,m (90) 13), and hence, {®,} is bounded. Let a, (1) = |lux, + (1 -

O u)é; — Ejll,i, j=12.--- ,N,withi# j exists for all u € [0,1].
Then, lim a = [I§ - EjII and lim aq =[®, - £j|| exist
n—aoo n——m~oo

N N )
Lemma 24. Let Z,D,{I'};_},{G;};C, and F be as stated in by Lemma 22. It remains, therefore, to prove Lemma 24 for
Lemma 13. Under the conditions of Lemma 13, ¢ (0,1). Now, for all @ € D, define

forallf,-,fj € F,i,j=12.---,N,withi+#j, the lim |ux,+

(1-u), - &1 exists for all u €[0, 1], where {@,} is the se-
quence defined by (27).

( 1 _
%n ((D): ’<|:’7nyin + (1 - ’7n)<“n®n + E (1 - “n)(G?CDn + 1—‘i (Ari)n lyin)];

1 @inz K(ﬁnG?H(Dn + (1 - ﬂn)riﬂ (’<ri+1 )nﬁly(iﬂ)n)’ (91)

| S (1= /<<an7'1 @, +(1=7,), (’<Fi+2)n_l(’3n)-

i+2

Then, it follows that ®,,,, = 7,®,, 7' ,§ = &, forall{e F.
Now, from (57) of Lemma 22, we see that

|7,@) -7, @ < Q1+ 810~ yI* +c, = £,l@ — yIP + £, (92)

where 8,=2(1-a,)%r, and f,=2(1-a)f, with i j=1.2.---,N,withi# j exists for all u € [0,1]. This com-

n

Y218,<00, Y2 f,<oo and £,= 149,. Since Y 2,8, <0co,  pletes the proof. O
it follows that #,, — 1 as n—> 00. Set

S =V s vmn -V € N Lemma 25. Let Z,D,{I,}},,{G,}Y, and F be as stated in

| Lemma 13. If, in addition to the assumptions of Lemma 13, E

Zugm = [|Sum (X, + (1= 1)&;) = S, (%, + (1= 1)8) - has Frechet differentiable norm, then, for all &,]

(93)  §eF i j=12,...,mi<j, the limit lim (@, ] (-

Then, it follows from the standard argument that §;)) exists, where {@,} is the sequence defined by (27). If
lim a,(u) exists ie, lim [ux,+ (1-w)é -l w,{s,} denotes the set of all weak subsequential limits of {®,,},
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then (n; — nj,fi - Ej) =0 for all fi,fj €eF,i,j=i,j=12, Proof. Setd =¢; - fj with Eiqéfj and h = u(®, - &) in (21).
com;i<j and for all n,n; € w,(®,);ij=1j=12, Then, we have
cmyi< g,
1@, £ (- &) + x| <5wm, + (- - ¢
(94)
< t<COn - fi,](fi - £])> + %“51 - fj”z + b(t”@n - Pz")
From sup,,.[|®, — &l < ™ for some ™ >0, we get
u lim sup<®,, - &, (f -&; >+ "f -&; " <5 n@m “uxn +(1-u); _gj”Z
wlim inf<@, -~ £,7(& - &) + 36 - & ©9)
+b(uF”).
That is,
u lim sup@, - &, J(& - &) <u lim inf(@, - & J(&§ - &) +b<”‘% >3z . (96)

If u — 0, then hm <a) -&, (& - f )) exists for all
§,8;€ F and for " 111,7’[16(1) @1 =1, ]—12 , m;
i< j. This completes the proof. O

Theorem 26. Let Z, D, {I;}1,,{G,}, and F be as stated in
Lemma 13. If, in addition to the assumptions of Lemma 13, Z
has Frechet differentiable norm, then the sequence {®,} is
defined by (27) WC to a common fixed point in F

Proof. With the help of Lemma 25, <x; - 1, J(& -8&) =0,

Vit € 0, (@,),1,7=1,2,...,m; i<j. Hence,
" = &ExI? =<y =&, ] (g = &)y =0.  Thus, p*=q"
Therefore, {®,} WC to a common fixed point of &. This
completes the proof. O

Theorem 27. Let Z, D, {I;}1,,{G,}Y, and F be as stated in
Lemma 13. If, in addition to the assumptions of Lemma 13,
the space Z* of Z has the Kadec-Klec (KK) property and the
mappings I — G; and I —T; fori=1,2,...,me N, where I is
an identity mapping, are demiclosed at zero, then the se-
quence {@,} described by (27) WC to a common fixed point
in .

Proof. By Lemma 14, {®,} is bounded and Z is reflexive,

there exists a subsequence {(an} of {@,} which WC to some

n* € K. With the help of Lemma 14, we deduce lim IIGJnk
n——aoo

G,-(anll =0 and lim ||(an - FimnkH =0,i=12,...,meN.
n——oo

By the assumptions, the mappings I - G; and I -T; for
i=1,2,...,meN, where I is an identity mapping, are
demiclosed at zero, boundedness of {®,}, and the unique-
ness of the limit of the weakly convergence sequence follows
that the sequence {®,} WC to g* € F. This completes
the proof. O

Theorem 28. Let Z, D, {I;},,{G,}\, and F be as stated in
Lemma 13. If, in addition to the assumptions of Lemma 13, Z
satisfies Opial’s condition and the mappings I — G; and I — T;
fori=1,2,...,me N, where I denotes the identity mapping,
are demiclosed at zero, then the sequence {®,} defined by (27)
WC to a common fixed point in F

Proof. Suppose n*€ F. With the help of Lemma 22, the
sequence {[|®, — n*|I} exists and is convergent and {®,} is
bounded. By utilizing Lemma 23, we deduce that
lim l®,, - G;®, |l =0 and lim lo,, -
n—oo n—aoo

0, i=1,2,...,me N. Finally, the demiclosed property of
each (I-S;))and (I-T;), boundedness of {®,}, the
uniqueness of the limit of the weakly convergence sequence,
and the Opial property of the underlying space follows that
the sequence {®,} weakly converges to ¢ F. O

1 nk" -

Remark 29. The following iteration techniques are imme-
diate consequences of our newly constructed iteration
scheme:
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(1) If a, = 1 in (27), we have
®, €D,
@1 = MYin + (1= 77,)@p;
Yin= A(ﬁnG?ﬂa)n +(1 =Bl (’<ri+1)n_1y(i+1)n)’
Y (i)n= ’<(” Gy @, + (1= 7,)Ti, (’<ri+2)n_1®n)’

n=i+2
(97)
where {ﬁn}nzl’ {Yn}nzl’ {I/In}nzl € (0’ 1) andi =
,2,...,meN.

(2) If r/n: l’y(i+l)n = yn’G?H = GT’ G?+2 = G2’ri+1 =

IandT,, =T, in (97), we have
@, € D,
®,01= A(B,Gl@, + (1= BT (AT 'y,)i  (98)
Iu= (7G50, + (1 -,)T, (‘rz)n_l‘bn)’

where {8}, {#lu}s1 € (0, 1).

(3) If G} = G, = I in (98), where I is an identity map on
1 2 y map
D, we have

@, €D,
®n+1: K(ﬁnmn + (1 - ﬁn)rl (’<r1)n7 lyn); (99)
yn: A(vnmn + (1 - vn)r2 (’<F2)n_1®n)’

Where {ﬁn}nzl’{r]n}nzl € (0’ 1)'

(4) If Gln =J= K =], o, =1,= 0 and ri: T, Yin = Y
and y (;,1), = 2, in (27), we get
(@, € D,
1
Oy = 5 (®n+ryn) 5
3 (100)

Yn = ﬁnmn + (1 - Bn)rzn’

L Zn =vn®n + (1 - vn)r(bn)’

Where {ﬁn}nzl’{)/n}nzl € (0> 1)-
(5) IfI'l =T3=Tand K =I in (99), where I is an identity
map on D, we have
@, € D,
®n+1 = ﬁn(bn + (1 - ﬁn)ryn;
yn = anDn + (1 - vn)rmn’

Where {ﬁn}nzl’{nn}nzl € (O: 1)
(6) If B,=1=v, in (100), we get

(101)

®, €D,
(102)

@ (®,+I'y,).

N~

nel =

21

4. Conclusion

In this manuscript,

(1) We established a new fixed-point algorithm for
approximating the common fixed point of finite
families of L-Lipschitzian and total asymptotically
strictly pseudo-non-spreading self-mappings and
L-Lipschitzian and total asymptotically strictly
pseudo-non-spreading non-self-mappings in the
setup of a real UCBS

(2) We introduce a new type of nonlinear mapping
called total asymptotically strictly pseudo-non-
spreading self-mappings in the setup of UCBS

(3) Demiclosedness principle for total asymptotically
strictly pseudo-non-spreading self-mappings and
several WC results were obtained using our newly
constructed iteration scheme in the setup of
a real UCBS

(4) A slight modification of our iteration scheme
resulted in several well-known iteration schemes
currently existing in the literature, see, for instance,
(97)-(102)

(5) Our WC results improve, generalize, and extend
several well-known WC results from the setup of real
Hilbert spaces to those of real UCBSs
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