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A B S T R A C T

With the recent worldwide statistical rise in the amount of public violence, automated violence detection in surveillance cameras has become a matter of high 
importance. This work introduces an end-to-end, trainable 3D Convolutional Neural Network (3D CNN) for detecting violence in video footage. The proposed 
network is inherently capable of processing both spatial and temporal information, thereby obviating the need for additional models that would introduce higher 
computational requirements and complexity. This work has two main contributions: 1) developing a lightweight 3D CNN suitable for inference on edge devices 
as mobile systems, and 2) a comprehensive explanation of all components comprising a CNN model, thereby enhances model interpretability. Experiments were 
conducted to assess the performance of the proposed model using a consolidated dataset combining four benchmark datasets. The results of the experiments support 
the asserted contributions, which are discussed in detail.
1. Introduction

In recent years, there has been a significant increase in the amount 
of public violence. This increase brought about a worldwide concern 
for preserving the security and safety of public places. Consequently, 
surveillance cameras have been installed in several places to contin-

uously monitor public scenes. Despite the installment of surveillance 
cameras, there remains the problem of consistent manual human in-

spection to address disturbances or anomalies promptly. However, the 
human decision-making process is often characterized as slow and bi-

ased. This inhibition limits the capacity for simultaneous monitoring in 
the case of having multiple cameras. Moreover, employing humans for 
such tasks leads to a significant increase in costs.

The limitations of human supervision indicate the need for more 
reliable and effective monitoring system alternatives, especially in time-

sensitive situations such as violence prevention. As a result, researchers 
have turned to computerized systems for solutions, with a specific fo-

cus on Machine Learning (ML), a subset of Artificial Intelligence (AI). 
ML involves training machines to learn patterns from data, which en-

ables them to make predictions or decisions for similar problems. The 
integration of ML models into various domains and industries has sig-

nificantly reduced human-dependency in many tasks and resulted in 
higher efficiency, performance, and efficiency.

The field of ML has advanced substantially over the years, espe-

cially with the emergence of Deep Learning (DL), particularly in pattern 
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recognition tasks. Violence detection can be characterized as a pattern 
recognition problem, where machines can be taught to identify patterns 
in videos that indicate the presence of a violent act. This ability allows 
machines to identify violence quickly and unbiasedly, instantaneously 
alerting authorities to take the necessary actions to prevent such acts 
of violence. Moreover, machines can respond to multiple simultaneous 
stimulations, which immediately outperforms the capabilities of hu-

mans. Also, implementing automated violence detection systems would 
result in significant reductions in cost in the long run. These points 
support the consensus that ML models are more beneficial alternatives 
to manpower in many tasks, particularly violence detection in public 
places.

To that end, a violence detection framework is proposed in this 
work. In order to design a violence detection model, violence must be 
explicitly defined. In the context of this research, violence is defined as 
a voluntary, physical action exercised by one or more people with the 
intent of hurting one or more people against their will. While the ex-

tent of violence is not limited to this definition, this research focuses 
on detecting violent acts in alignment with the provided definition. The 
proposed model has a considerably small model size with a reduced 
number of parameters. Reducing parameters in a deep model has sev-

eral advantages. It improves computational efficiency, leading to faster 
training and reduced memory requirements, making the model more 
suitable for resource-constrained environments like mobile devices. A 
smaller number of parameters often results in reduced overfitting and 
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enhances model interpretability. Additionally, models with fewer pa-

rameters are well-suited for transfer learning and deployment on edge 
devices, contributing to energy efficiency. Striking a balance between 
model complexity and performance is crucial, as overly reducing pa-

rameters may compromise the model’s representational capacity. The 
benefits of parameter reduction depend on the specific needs and con-

straints of the application at hand. Additionally, comparable results to 
more complex models proposed in the literature are obtained.

This paper is organized as follows. A thorough literature review of 
violence detection frameworks is presented in Section 2. The proposed 
model is explained in detail in Section 3. The settings and implemen-

tation details of the experiments, as well as the results, are given in 
Section 4. Final assessment and ideas for future research are presented 
in Section 5, thus concluding this paper.

2. Related works

This section presents previous works about violence detection, di-

vided into two categories: Hand-Crafted and DL methods.

2.1. Hand-crafted methods

Early studies on violence detection in video mostly used visual or 
audio features to detect flame and blood [29], skin and blood [14], 
gunshots and explosions using Gaussian mixture models and Hidden 
Markov Models [13], etcetera. Later, the Bag-of-Words (BoW) proce-

dure, often used for images, was adapted to videos [36] and was used 
frequently for video classification tasks. For example, [10] used spa-

tiotemporal video cubes and the BoW approach for aggressive behavior 
detection. [30] developed a method for verifying person identity and 
detecting unusual human behavior based on the descriptors derived 
from Histograms of Optical Flow (HOF) at the automated Access Control 
Points (ACP). [7] used the BoW framework with action descriptors STIP 
[25] and MoSIFT [11]. They also created the Hockey Fights Dataset [7], 
one of the most commonly used datasets in violence detection tasks. 
[16] considered the change in the flow-vector magnitudes over time and 
used the Violent Flows (ViF) descriptor to represent these statistics, then 
classified ViF descriptors using linear Support Vector Machine (SVM). 
The Bag-of-Visual-Words (BoVW) approach was tested by [44] to com-

pare optical flow algorithms such as Farnebäck [15], Horn-Schunck 
[18] and Lucas-Kanade [27]. They used descriptors based on local 3D 
volumes of Histograms of Oriented Gradients (HOG) and Histograms of 
Optical Flow (HOF). They used Random Forest [8] and the Fisher Ker-

nel [21] for the final representation of the video. [49] used the MoSIFT 
algorithm to extract the low-level description of a video, Kernel Den-

sity Function (KDE) to eliminate the feature noise and sparse coding 
instead of BoW for human action representation. [50] used the Gaus-

sian Model of Optical Flow (GMOF) to extract regions in the video that 
are candidates for violent activity. They proposed a novel descriptor, 
Orientation Histogram of Optical Flow (OHOF), which is given as an 
input to a linear SVM for the classification of the activity as violent or 
nonviolent. [6] proposed a ViF variation using Horn-Schunck as an op-

tical flow algorithm and SVM for the classification of violent events. In 
another work, [6], they used the method proposed in [5] and, in addi-

tion, applied the non-adaptive interpolation super-resolution algorithm 
to improve the video quality and fire Kanade-Lucas-Tomasi (KLT) face 
detector to detect not only violence but also identify the person. [48]

analyzed the features of the motion vectors in each frame and between 
the frames and got Region Motion Vectors descriptor (RMV), then used 
SVM for classification. [33] proposed a novel feature using Lagrangian 
direction fields based on a spatiotemporal model. They applied an ex-

tended BoW procedure for classification for each video to ensure proper 
spatial and temporal feature scales.

While the hand-crafted methods discussed above demonstrated sat-

isfactory performance given the technology available then, many did 
2

not rely on GPUs for computations. Nevertheless, these methods were 
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computationally intensive and were not able to achieve high accuracies. 
Moreover, their adaptability to diverse situations and environments was 
limited, making them less suitable for real-world applications. In re-

sponse to the need for faster, less computationally expensive, more 
power-efficient models in violence detection, as well as other pattern 
recognition tasks, researchers turned to DL. This shift was aligned with 
the rapid technological advancements, and DL emerged as a promis-

ing approach to overcome the limitations associated with hand-crafted 
methods.

2.2. Deep learning methods

3D CNNs were used to extract spatiotemporal features and the out-

put was fed to a multi-class linear SVM for classification in [43]. [40]

used the pre-trained CNN model AlexNet [24] for feature extraction and 
aggregated the features using a Convolutional Long Short-Term Mem-

ory (ConvLSTM). [3] used CNN for spatial feature extraction and LSTM 
for classification. [45] proposed an end-to-end framework consisting 
of three steps. The first step is human detection using a lightweight 
CNN, the second is spatiotemporal feature extraction using a 3D CNN, 
and the third is the classification of the extracted features using a Soft-

max classifier. [37] used the VGG-16 [35] CNN model pre-trained on 
ImageNet [24] to extract spatial features followed by LSTM as the 
temporal feature extractor and a sequence of Fully-Connected layers 
for classification. A modified 3D CNN was presented by [38], where 
they improved the method for preprocessing the data and proposed a 
new sampling method by using the key frame as dividing nodes. [41]

used three models: VGG-16 [35], VGG-19 [35] and ResNet50 [17], pre-

trained on ImageNet [24] for feature extraction. They applied CNN, 
LSTM, and ConvLSTM to the dataset they created consisting of violent 
and nonviolent videos in different settings in the Bangladesh context. 
They also experimented with Spatial Transformer Network, a particu-

lar type of attention mechanism, and applied attention to the extracted 
features in some of their experiments. [4] combined a pre-trained 3D 
CNN with a linear SVM classifier to reduce overfitting and make a 
broader generalization. A novel violence detection framework that can 
be combined with 2D CNNs was proposed by [23]. They also proposed 
a spatial attention module called Motion Saliency Map (MSM) and a 
temporal attention module called Temporal Squeeze-and-Excitation (T-

SE) to improve the model’s performance. [20] presented a two-stream 
architecture leveraging Separable Convolutional LSTM (SepConvLSTM) 
and the pre-trained MobileNet [31] model. [28] proposed an approach 
that combines the VGG-16 [35] model pre-trained on ImageNet [24]

with ConvLSTM [16]. [47] used ResNet50 [17] for feature extraction 
followed by ConvLSTM for detecting anomalies. [42] proposed a com-

bination of 3D CNN and CNN Bidirectional LSTM (CNN-BiLSTM). [46]

proposed two methods, 3D DenseNet Fusion OF RGB and 3D DenseNet 
Fusion OFnom RGB, and developed a new dataset called AICS-violence.

3. Proposed model

This section provides an overview of CNNs, describes their architec-

ture, and introduces the proposed model.

2D CNNs exhibit considerable efficacy in static image recognition 
tasks. Therefore they are frequently used for such tasks. This success 
can be associated with 2D CNNs being specifically designed to handle 
spatial information present in images. However, there is strong spatial 
and temporal information inherent in videos. The limitation of 2D CNNs 
leads to the loss of motion information in videos, making them an in-

sufficient alternative to handle video data.

In contrast, 3D CNNs incorporate a third dimension, time, enabling 
them to effectively capture spatiotemporal information. This distinct 
characteristic allows 3D CNNs to exploit motion information obtained 
from the differences between consecutive frames. Consequently, 3D 
CNNs appear as more suitable models for video recognition tasks. The 

objective of this work is to develop an end-to-end, trainable, lightweight 
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Fig. 1. The architecture of a typical CNN model.
3D CNN designed to extract spatiotemporal features and classify videos 
into violent and nonviolent categories. The benefits of a 3D CNN lie in 
its capacity to capture both spatial and temporal features. This is par-

ticularly advantageous in applications such as video analysis. Unlike 2D 
CNNs, 3D CNNs can model dynamic changes over time, making them 
well-suited for tasks where temporal information is crucial. The ability 
to consider the temporal dimension enhances the network’s capabil-

ity to recognize complex patterns and relationships within volumetric 
datasets. However, it’s important to be mindful of the increased com-

putational requirements associated with 3D CNNs and to consider their 
application in scenarios where spatiotemporal insights are essential for 
accurate analysis. Nonetheless, the main objective of this work was to 
design a 3D CNN model with a few parameters, allowing for inference 
in mobile systems with limited memory and scarce computational re-

sources.

3.1. Convolutional neural networks

CNNs are a particular type of Deep Neural Network (DNN), distin-

guished by the incorporation of the convolution operation. They were 
first developed and introduced in the 1980s by Yann LeCun. CNN is a 
feed-forward neural network that uses the backpropagation algorithm 
for training, which is a type of supervised learning. They consist of 
multiple layers of artificial neurons, also referred to as nodes. These 
nodes are mathematical functions used to calculate the weighted sum 
of the inputs and give the output in the form of an activation map, high-

lighting significant features within the input. CNNs process their input 
represented by a pixel matrix, which is essentially a matrix of num-

bers. Each node within a CNN accepts input in the form of a matrix, 
calculates the product of their values and their corresponding assigned 
weights, adds them up, and channels them through an activation func-

tion.

A typical CNN architecture is comprised of three main types of 
layers: convolutional layers, pooling layers, and fully-connected layers 
stacked sequentially. The output of each layer serves as input for the 
subsequent layer. The configuration and characteristics of these layers 
can be adjusted, and additional layers may be included based on the 
task. CNNs perform in two phases: feature extraction, spanning from 
the input layer to the final pooling layer, and classification, which oc-

curs in the fully-connected layer. The typical architecture of a CNN is 
given in Fig. 1.

The input of a CNN undergoes a series of floating point operations 
and matrix computations. Recent technological developments have fa-
3

cilitated an increase in the depth of CNNs, which refers to the number 
of layers they incorporate, to improve network performance. Conse-

quently, this enhancement led to a notable increase in both compu-

tational complexity and size of CNNs. Although CNNs are rate-based 
neural networks, meaning they are suitable for CPU implementation, 
most new CNN models now require more powerful computing plat-

forms, such as GPUs, due to the increased computational intensity [9]. 
For example, the ConvLSTM model proposed by [40] uses 9.6 million 
parameters and 14.40 billion floating-point operations. This scale of 
model size and computational intensity highlights the stronger comput-

ing resource requirements of modern CNNs.

3.2. Model architecture

In the proposed 3D CNN model, the input video undergoes 3D Con-

volution, 3D Max-Pooling, and Batch Normalization twice, a Flatten 
layer and a Fully-Connected (Dense) layer. Given that video data, such 
as AVI files, is used in the experiments, the input data is structured as 
a 5-dimensional object with dimensions [batch_size, number_of_frames, 
height, width, channels]. The layout of the proposed model is given in 
Fig. 2.

In a neural network, parameters refer to the weights and biases used 
for computation across all neurons. The proposed model incorporates a 
total of 54, 634 parameters, with 54, 602 being trainable, and 32 being 
non-trainable. While the overall parameter count is considerably low, 
keeping in mind that 3D CNNs process volumetric data, it should be 
noted that its parameter count does not solely determine the efficacy 
of a network. In fact, a reduced parameter count in 3D CNNs may hin-

der their ability to accurately model the complex relationships in the 
input data. Nonetheless, the main objective of this work was to design 
a 3D CNN model with a few parameters, allowing for inference in mo-

bile devices with limited memory and scarce computational resources. 
Through several experiments, the parameter count has been success-

fully reduced without compromising a significant degree of accuracy.

3.2.1. 3D convolutional layer

In Mathematics, convolution refers to the calculation of how the 
shape of a function is influenced by another function. It uses two func-

tions as input and generates a third function as the output. In DL, 2D 
convolution refers to the operation of sliding a kernel (filter) of a spec-

ified size 𝑀 ×𝑀 with learnable weights across the input image, which 
is represented as a pixel matrix. The scalar (dot) product is calculated 
between the kernel and the parts of the input image based on the size 
of the kernel. Consequently, the output of a convolutional layer is the 

weighted sum of input and weights, also referred to as an activation 
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Fig. 2. Layout.

map. In the context of images, the convolution operation requires the 
rotation of the kernel 180◦ counterclockwise, as a digital filter is used, 
which implies that the convolution is only applied after the feature 
vector is time-reversed [39]. The process of using the kernel without 
rotation is referred to as cross-correlation. In other words, convolution 
and cross-correlation are the same operation, differing only through 
kernel rotation. This distinction can be further explained mathemati-

cally, as presented in Equation (1).
4

𝑓 ∗ 𝑔 = 𝑓 ⋆ 𝑟𝑜𝑡180◦(𝑔) (1)
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where 𝑓 , 𝑔 are functions, 𝑟𝑜𝑡180◦(𝑔) refers to the time-reversed form of 
𝑔, ∗ represents convolution and ⋆ represents cross-correlation.

In this work, video data is used instead of image data. A video is a 
series of images shown consecutively to give the impression of continu-

ous motion [38]. While an image has only spatial information, motion 
features between the adjacent frames of a video introduce a temporal 
dimension that must be considered. This added dimension makes 2D 
convolutions ineffective for robust feature extraction, since a substantial 
amount of temporal information is lost. To overcome this limitation, 3D 
convolutions are commonly used for feature extraction in video analysis 
tasks.

3D convolution operates similarly to 2D convolution, with the dis-

tinction that the kernel slides in three dimensions instead of two. 3D 
convolution is obtained using a 3D kernel on the cube formed by stack-

ing adjacent frames together [4]. Consequently, movement information 
is acquired from adjacent frames. Thus, by using 3D convolution and 
3D pooling, temporal information of the input video remains well pre-

served [38].

2D and 3D convolution operations are given in Equation (2) and 
Equation (3), respectively, where 𝐾 is the convolution kernel, 𝐴 is the 
convolution matrix, and 𝐵 is the resulting matrix [26]. As shown in 
Equation (3), time dimension 𝑇 is added to the 2D convolution given 
in Equation (2).

𝐵(𝑖, 𝑗) =
𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝐾(𝑚,𝑛) ∗𝐴(𝑖−𝑚, 𝑗 − 𝑛) (2)

𝐵(𝑖, 𝑗, 𝑟) =
𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝑇∑
𝑡=0

𝐾(𝑚,𝑛, 𝑡) ∗𝐴(𝑖−𝑚, 𝑗 − 𝑛, 𝑟− 𝑡) (3)

In addition, [22] defined the formal equation for the value of a unit 
at position (𝑥, 𝑦, 𝑧) in the 𝑗th feature map in the 𝑖th layer denoted by 
𝑣
𝑥𝑦𝑧

𝑖𝑗
, given in Equation (4), where tanℎ(⋅) is the hyperbolic tangent 

function, 𝑏𝑖𝑗 is the bias for this feature map, 𝑚 indexes over the set 
of feature maps in the (𝑖 − 1)th layer connected to the current feature 
map, 𝑤𝑝𝑞𝑟

𝑖𝑗𝑚
is the (𝑝, 𝑞, 𝑟)th value of the kernel connected to the 𝑚th 

feature map in the previous layer, 𝑃𝑖 and 𝑄𝑖 are the height and width 
of the kernel, respectively and 𝑅𝑖 is the size of the 3D kernel along 
the temporal dimension. By this construction, the feature maps in the 
convolution layer are connected to multiple contiguous frames in the 
previous layer, thereby capturing motion information [22].

𝑣
𝑥𝑦𝑧

𝑖𝑗
= tanℎ

(
𝑏𝑖𝑗 +

∑
𝑚

𝑃𝑖−1∑
𝑝=0

𝑄𝑖−1∑
𝑞=0

𝑅𝑖−1∑
𝑟=0

𝑤
𝑝𝑞𝑟

𝑖𝑗𝑚
𝑣
(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑟)
(𝑖−1)𝑚

)
(4)

In the proposed model, the 3D convolutional layers are configured 
with 8 filters, a kernel size of (3, 7, 7), and valid padding, implying 
that no zero-filled borders are added around the images. The stride is 
set to 1 by default, indicating the step size for each kernel movement, 
and the activation function applied is the Rectified Linear Unit (ReLU). 
The purpose of activation functions in neural networks is to transform a 
node’s weighted sum into the node’s activation. Various types of activa-

tion functions are commonly used, including ReLU, hyperbolic tangent, 
and sigmoid. ReLU is a piecewise function that retains the values of pos-

itive numbers and changes all negative numbers to zero. The equation 
of ReLU is given in Equation (5), where 𝑥 is the input and 𝑓 (𝑥) is the 
output of the function. ReLU is a default choice for many neural net-

works due to its facilitation of training and enhancement of network 
performance.

𝑓 (𝑥) =

{
𝑥 if 𝑥 > 0
0 if 𝑥 < 0

(5)

3.2.2. 3D max-pooling layer

In most CNN architectures, each convolutional layer is typically fol-
lowed by a pooling layer. The pooling operation, similar to convolution, 
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Table 1

Properties of the datasets used in the experiments.

Datasets Resolution Context Number of 
violent videos

Number of 
nonviolent videos

Hockey Fights [7] 720 x 576 Hockey Games 500 500

Movies [7] 360 x 250 Movies 100 100

RWF-2000 [12] Varying Surveillance 1000 1000

RLVS [37] 480p–720p Varying 1000 1000

Fig. 3. Sample video frames of fights extracted from the datasets randomly. From left to right: Hockey fights, Movies, RLVS, RWF-2000.
groups up the pixels in the input image and filters them down to a sub-

set. Pooling layers serve to decrease the size of the convolved feature 
map by decreasing the connections between layers. Various types of 
pooling exist, and the type used in this work is 3D Max-Pooling. The 
3D Max-Pooling layer performs non-linear downsampling by dividing 
3D input into cuboidal pooling regions and then computing the max-

imum of each region [1]. Although the term downsampling might be 
misconstrued as data loss, it is a crucial step in reducing overfitting and 
speeding up model training by denoising redundant data. In the pro-

posed model, the 3D Max-Pooling layer kernel has a size of (2, 2, 2), 
and padding is valid.

3.2.3. Batch normalization layer

Normalization is commonly used to standardize raw data, thereby 
downscaling the data’s range. This process increases the model’s learn-

ing rate and convergence speed, preventing model divergence and con-

sequently, facilitating training [32]. Batch normalization [19] is a par-

ticular type of normalization that differs from standard normalization 
by being applied between the model layers along training mini-batches. 
It can be added to the model as a layer. Batch normalization allows 
the use of higher learning rates, being less careful about initialization, 
and in some cases, eliminating the need for Dropout [19]. Given the 
use of batch normalization in the proposed model, the incorporation of 
Dropout was deemed unnecessary.

3.2.4. Flatten layer

As the name suggests, the flatten layer transforms the pooled feature 
maps, initially in the form of square matrices, into a one-dimensional 
column vector. Although the purpose of this layer is straightforward, 
it is an essential step in neural networks, given that neural networks 
accept input in the form of one-dimensional linear vectors. After the 
data is flattened, it becomes suitable for input into the fully-connected 
layer of the network.

3.2.5. Dense layer

The dense layer consists of neurons, each receiving input from all the 
neurons in the preceding layer, hence also referred to as fully-connected 
layer. The output of the convolutional layers is flattened in the pre-

ceding flatten layer to facilitate input into the dense layer. Following 
the extraction of features in the previous layers, the dense layer per-

forms the classification based on the output of the convolutional layers. 
Given that the proposed model has two output classes, namely fight and 
non-fight, the shape of the final dense layer is set to 2. The Softmax func-

tion is the activation function used to normalize the input values into a 
5

probability distribution. Each input component, regardless of the value 
or sign, is converted to a number within the (0, 1) interval. The Soft-

max function is given in Equation (6), where 𝜎(𝑧) denotes the Softmax 
function applied on vector 𝑧, 𝐾 is the total number of elements in the 
vector, 𝑖, 𝑗 are index variables representing the different elements in 
the vector, 𝑒 is Euler’s constant, and 𝑧𝑖, 𝑧𝑗 are elements of the vector.

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖∑𝐾

𝑗=1 𝑒
𝑧𝑗

(6)

4. Experiments

This section presents comprehensive details regarding the experi-

ments, results, and comparisons with other works.

4.1. Dataset descriptions

The violence detection datasets used in the experiments are Hockey 
Fights [7], Movies [7], RWF-2000 [12], and Real Life Violence Situa-

tions (RLVS) [37]. Table 1 provides the properties of these datasets, and 
Fig. 3 presents sample frames of fight scenes from each dataset. In the 
experiments, all four datasets were combined into one large dataset, 
consisting of 5200 videos in total, with 2600 labeled as violent and 
2600 as nonviolent. This combined dataset was then divided into train-

ing, test, and validation sets, corresponding to 60%, 20%, and 20%, 
respectively. The percentage split corresponds to 3120 videos for train-

ing, 1040 for validation, and 1040 for the test set. Given that the model 
has two output classes, half of each set is violent videos, and the other 
half is nonviolent.

The training set is used to fit the model parameters based on the ob-

servational relationships between the data and their respective labels. 
Meanwhile, the validation set is used for hyperparameter tuning and ap-

proximating the model’s predictive performance during training [32]. 
The split into training and validation sets is crucial to prevent overfit-

ting, which is when the model gets too familiar with the training set and 
fails to generalize well to new, unseen data. The test set is not involved 
in the training process but shares the same predictive relationship as 
the training set and is used for evaluation.

Splitting the videos into training, validation and test sets was done 
randomly in the algorithm for each experiment. This randomized ap-

proach was chosen to ensure that the model is trained and tested with 
a different selection of videos for each experiment, resulting in a more 

precise and accurate evaluation of the proposed model.
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Fig. 4. Experiment 1.

Fig. 5. Experiment 2.

Fig. 6. Experiment 3.
4.2. Implementation details

All experiments were carried out on a computer equipped with 11th 
Gen Intel(R) Core(TM) i7 64GB RAM and 16 cores complemented by 
an NVIDIA GeForce GTX 1660 SUPER GPU. The implementation was 
done using Python 3.7, leveraging the Tensorflow framework, with the 
network layers imported from the Keras library. While the code’s struc-

ture was inspired by [2], it was modified and adapted accordingly to 
the specifics of the proposed model.

4.3. Hyperparameters

Hyperparameters play a crucial role in determining the network’s 
structure and how it is trained. They are set before the training process 
begins. Among these hyperparameters, the learning rate is particularly 
significant in neural network training. If the learning rate is too large, 
the optimization process may diverge or miss potential local minima. 
Conversely, if the learning rate is too low, the training duration may 
be extended, as the convergence to a minimum would take longer com-

pared to a higher learning rate [32]. Through experimentation, it was 
determined that a learning rate of 10−4 yielded optimal results for the 
proposed model.

In neural networks, the optimizer and the loss function work to-

gether to optimize the network’s performance. A loss value is computed 
in each epoch, and the optimizer tries to compensate for the loss, 
6

thereby improving the model’s overall performance. In the proposed 
model, training was conducted using the Adam algorithm as the opti-

mizer and Sparse Categorical Cross Entropy as the loss function, which 
is a common choice for multiclass classification tasks. The batch size 
was set to 8, meaning that 8 videos were processed simultaneously in 
each iteration. After experimenting with different numbers of epochs, it 
was observed that the loss ceased to improve after 100 epochs. Conse-

quently, the number of epochs was fixed at 100. Each epoch’s average 
duration was approximately 640 seconds, corresponding to a total run-

time of 17.7 hours. This run-time is expected for 3D CNNs, especially 
considering the dataset’s substantial size and the moderate computa-

tional power of the GPU used in this work.

4.4. Results

Loss and accuracy graphs were generated for each experiment. The 
loss graph exhibits a decreasing trend in loss with each epoch, while 
the accuracy graph exhibits an increasing trend. Given the inherent 
relationship where accuracy naturally increases as loss decreases, the 
graphs mirror each other. Additionally, confusion matrices were cre-

ated for both the training and test sets in each experiment. Confusion 
matrices contain the values of false positives, true positives, false nega-

tives, and true negatives, providing a simple yet effective evaluation of 
the model’s performance. The graphs and confusion matrices of all five 
experiments are presented in Figs. 4, 5, 6, 7 and 8.

Five experiments were carried out on the combined dataset, and the 

performance of the proposed model was assessed using metrics such as 
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Fig. 7. Experiment 4.

Fig. 8. Experiment 5.
Table 2

Accuracy, loss, precision, recall and F1-score values of each experiment 
for the proposed 3D CNN model.

Experiment Accuracy Loss Precision Recall F1-Score

1 0.7981 1.3180 0.773214 0.832692 0.801852

2 0.7952 1.4102 0.749169 0.867308 0.803922

3 0.8135 1.2759 0.779110 0.875000 0.824275

4 0.7933 1.2523 0.749201 0.901923 0.818450

5 0.8288 1.2670 0.807143 0.869231 0.837037

Table 3

Overall accuracy, loss, precision, recall and F1-score values 
calculated as the average of all five experiments.

Accuracy Loss Precision Recall F1-Score

0.8058 1.3047 0.771567 0.869231 0.817107

accuracy, precision, recall, and F1-score. These metrics were computed 
based on the confusion matrices created from the test set of each exper-

iment. The formulas of the metrics are given in Equations (7), (8), (9), 
and (10), where TP, TN, FP, FN denote true positive, true negative, false 
positive, and false negative, respectively. Their corresponding elements 
in the confusion matrices are the top left corner for TP, the top right 
corner for FN, the bottom left corner for FP and the bottom right corner 
for TN. Accuracy, loss, precision, recall, and F1-score values are pre-

sented in Table 2 for each experiment. The average of each evaluation 
metric of the five experiments was computed, which is considered to 
be the overall performance of the network. The overall accuracy, loss, 
precision, recall, and F1-score values are presented in Table 3.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(8)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9)

2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
7

𝐹1 −𝑆𝑐𝑜𝑟𝑒 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

(10)
The overall accuracy computed for the proposed model was 80.58%, 
which is in alignment with expectations. Notably, the network was 
trained with 3120 out of the 5200 videos in the combined dataset, 
and many of these videos have low resolutions, with some featuring 
out-of-focus camera actions. Additionally, it should be acknowledged 
that accuracy was, to some extent, sacrificed to reduce the number of 
network parameters, enabling it to run efficiently on mobile systems, 
which was the main objective of this work.

While the run-time of this model with the combined dataset was 
17.7 hours, the model is expected to achieve high performance on mo-

bile devices once the training is completed. It is also expected that 
training the network with a larger number of videos of higher reso-

lutions would increase the model’s accuracy. Moreover, the accuracy of 
a neural network is also dependent on the computational power of the 
GPU used for the experiments. Thus, a more powerful GPU would not 
only decrease the run-time of the network but also improve its accuracy.

Precision is an assessment of the accuracy of the model’s positive 
predictions, measuring its ability to correctly identify positive samples 
(i.e., fight videos in this context) while minimizing false positives. A 
precision value of 77.1567% indicates that the network has a relatively 
high rate of true positive predictions compared to false positives. This 
value suggests that the model consistently makes accurate positive pre-

dictions, which is the desired outcome.

Recall quantifies the proportion of true positive predictions out of all 
actual positive samples. A recall value of 86.9231% is an indication of 
the model’s ability to correctly identify around 86.9231% of the actual 
positive samples in the dataset. This result suggests that the model has 
a considerably low rate of false negatives and can capture a significant 
number of positive instances.

Additionally, the F1-score metric represents the harmonic mean of 
precision and recall, providing a balanced evaluation of the model’s 
performance. An F1-score of 81.7107% suggests that the model has 
achieved a good balance between precision and recall. Overall, these 
metrics allow for a comprehensive evaluation of the model’s effective-

ness in violence detection.

Numerous violence detection models have been published and eval-

uated on the four datasets used in this work. However, these evaluations 
were typically conducted on individual datasets. Since these datasets 

were combined into one large dataset, making direct, fair compar-
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Table 4

Accuracy comparisons with other models.

Model Year Hockey Movies RWF RLVS

MoSIFT+HIK [7] 2011 90.9% 89.5% - -

C3D [45] 2019 96% 99.9% - -

VGG16+LSTM [37] 2019 95.1% 99% - 71.5%

C3D+SVM [4] 2020 98.51% - - -

VGG16+ConvLSTM [28] 2021 99.1% 100% 92.4% -

Xception+LSTM [34] 2021 96.5% 98.3% - -

SepConvLSTM-M [20] 2021 99.5% 100% 89.75% -

CNN+BiLSTM [42] 2022 94.9% 92.9% - -

Proposed 2023 95.5% 100% 73% 88%

isons with previously proposed models was challenging. To address this 
limitation, five experiments were conducted for each dataset, and the 
average accuracy across these experiments was computed, presenting a 
fair basis for comparison with other works in the literature. The results 
of the individual experiments and the accuracy values of some other 
works in literature, are presented in Table 4.

While the proposed model did not outperform other works in the lit-
erature, it performed well within the expected range. Moreover, the pri-

mary objective was to create a model substantially smaller in size than 
other existing models to enable mobile inference, which was achieved. 
Consequently, the proposed model is substantially smaller in size than 
most other works in the literature, resulting in a reduction in computa-

tional requirements. In addition, since the four datasets were combined 
into one large dataset, the model was trained on a much larger dataset 
than other proposed models, making it more capable of identifying vio-

lence in unseen data. Training the model with a larger dataset of varying 
context and resolutions also significantly reduces overfitting, resulting 
in a more consistent evaluation of the model’s performance. The per-

formance of the proposed model can be further improved to achieve 
higher results, which is a consideration for future works.

5. Conclusion

This paper introduces an end-to-end, trainable 3D CNN designed 
to detect physical fights in videos. The model processes video input, 
extracts features, and performs classification, all within a single feed-

forward 3D CNN architecture. The model’s evaluation uses a com-

bined dataset of four publicly available datasets: Hockey Fights, Movies, 
RLVS, and RWF-2000. Five experiments were conducted on this com-

bined dataset, with the training, test, and validation sets randomly 
selected by the network at the beginning of each experiment.

Real-time violence detection poses a considerable challenge. To inte-

grate a violence detection framework seamlessly into a real-life surveil-

lance system, ensuring it does not overlook anomalies or trigger false 
alarms, the model must undergo training on a substantial number of 
videos. Training a model on a larger dataset introduces diverse situ-

ations and contexts, leading to higher accuracy. However, processing 
large amounts of volumetric data significantly increases the network’s 
run-time, memory usage, and storage requirements. Given the available 
resources and data, along with the computational efficiency of the pro-

posed model, a satisfactory trade-off between accuracy and model size 
was achieved.

While all evaluation metrics scored above the upper quartile, the 
proposed model, designed to detect violent activity in public places, 
requires further improvement to be used as the sole detector of a del-

icate and time-sensitive matter such as violence. The main objective 
of this paper was to design a lightweight CNN that is considerably 
small in size to detect violence, which was achieved. The model’s accu-

racy and performance can be improved through hyperparameter tuning, 
weight initialization, and the exploration of efficient combinations with 
other ML algorithms. These improvements are aimed to be considered 
8

in future works, as well as extending the definition of violence beyond 
Egyptian Informatics Journal 26 (2024) 100455

physical fights, ensuring comprehensive coverage of all types of vio-

lence and threats to society.
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