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ABSTRACT. The aim of this paper is to present existence, Ulam-Hyers-Rassias
stability and continuous dependence on initial conditions for the mild solution
of impulsive integro-differential systems via resolvent operators. Our analysis
is based on fixed point theorem with generalized measures of noncompactness,
this approach is combined with the technique that uses convergence to zero
matrices in generalized Banach spaces. An example is presented to illustrate
the efficiency of the result obtained.

1. Introduction. Milman and Myshkis [27] considered differential equations with
impulses for the first time, which was followed by a period of active research cul-
minating in the monograph by Halanay and Wexler [20]. Many phenomena and
evolution processes in physics, chemical technology, population dynamics, and nat-
ural sciences can change state abruptly or be perturbed in the short term. These
disturbances can be viewed as impulses. In addition to communications, mechan-
ics (jump discontinuities in velocity), electrical engineering, medicine, and biology,
impulsive problems arise in a variety of other applications. [1, 2, 6, 19, 40, 7, 21],
and its references include current results for impulsive evolution equations.

In 1930, Kuratowski [22] proposed the concept of a measure of noncompactness.
This concept is extremely useful in functional analysis, such as metric fixed point
theory and operator equation theory in Banach spaces. This concept is also used to
investigate the existence of solutions for ordinary and partial differential equations,
as well as integral and integro-differential equations. In 1955, Darbo [11], an Italian
mathematician, used the Kuratowski measure to investigate a class of operators
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(condensing operators) whose properties are intermediate between contraction and
compact mappings. Darbo’s fixed point theorem can be used to prove the existence
result of various classes of operator equations. For more recent works on the subject,
see [12].

In 2009, Precup [32] showed the importance of vector-valued metric convergence
in the study of semilinear operator systems. Many authors have studied the exis-
tence of solutions for systems of differential equations using the vector version fixed
point theorem in recent years (see, [10, 15, 29, 33]).

Recently, many authors combined the concept of a measure of noncompactness
and matrices that converge to zero, R. Graef et al. in [15] gave the vector versions
of Sadovskii’s fixed point theorem. In [23], N. Laksaci et al. generalized Darbo’s
fixed point theorem for iterated Operators.

Another important aspect of the research that drew the attention of the re-
searchers was Ulam stability and its many kinds, See ([25, 42, 24, 34, 35, 36]) for
further information on recent developments in the Ulam type stability of differential
equations.

Motivated by works [9, 15, 23], we will investigate the existence and stability
of mild solutions for impulsive integro-differential system via resolvent operators of

the form:
§'(0) = A1E(9g + f1(0,£(0),9(8), Hi(£(0),9(6)))
+/ B1(0 — s)é(s)ds, for 0 € (:),
0

#'(0) = A>0(0) + > (0,£(0), 0(6), H1(£(6), 0 (9)))
+/0 By (6 — s)p(s)ds, for § € O, (1)

£00;5) —€(0,) =Ni(€(0;),0(07)), k=1,...,m,
e(0F) — () = Ru(£(0;), 0(0;)), k=1,...,m,

(£(0),#(0)) = (o, ¥0),

where © = [0,7], ©,, = {01,...,0}, © = O\O,, with 6y = 0 < 6 < 6 <
i <Oy < ... < Opy1 =T, and for i = 1,2, (E,| - ||) is a Banach space, A4; :
D(A;) C E — FE are the infinitesimal generators of a strongly continuous semigroup
{Si(0)}o>0, Bi(0) are a closed linear operator with domain D(A;) C D(B;(9)),

Vi, N E X E — E the operators H; are defined by

Hi(€,0)(0) = / a0, 5,€(5). 0())ds, a >0,

and the nonlinear term f; : © x E x E x E — E, are a given functions.

The paper is organized as follows. In Section 2, we recall some definitions and
facts which will be needed in our analysis. In Section 3, we prove some existence
and stability results. In the last section, we give an example that provides a relevant
illustration.

2. Preliminaries. We introduce in this section some of the notations, definitions,
fixed point theorems and preliminary facts that will be used in the remainder of
this paper.
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Let us denote by C(0, E) the space consisting of all functions defined and con-
tinuous on the interval © with values in the space (E,|| - ||), with the standard
norm

[€lloc = sup [|E(B)]]-
0cO

Next, we consider a division of ©, i.e., a finite set {fp,...,0mn+1} and put ©¢ =
[0,61], O = (Ok, Ok+1], Ok = [0k, Op11] for k= 1,....m, £(0F) = limg g+ £(0).
We define the space of piecewise continuous functions:

PC(0,F) = {5 10 = E: g, € C (O, E), such that § (6;) and & (6;") exist and

satisfy & (0, ) =& (0x), for k=1,... ,m}.
Note that (PC(©, E),| - ||pc) is a Banach space, with the norm
1€llpc = sup [|€(8)]]-
[4<C]

Let the Banach space PC*(0,E) = {¢ € PC(0,E) : ¢ € PC(©,E)}, with
norm
1€llpcr = max{[[¢]lpc, I€'lpc}-

2.1. Generalized Banach space.

Definition 2.1. Let X be a vector metric spaceon K=Ror C. Amap ||| : X —
R? is called a norm on X if it satisfies the following properties:

e If ||£]| = 0 then £ = (0,...,0);

o [[AE]F = [AJl[€]] for & € X, A € K;

o €+l < [[g]l + [[v]| for every §,v € X.

Remark 2.2. The pair (X, | - ||x) is called a generalized normed space. If the
generalized metric generated by || - || x (i.e d(&,v) = ||€ —v||x) is complete then the

space (X, | -|lx) is called a generalized Banach space, where
1€ = vllx
1€ —vllx = :
1€ = vlln

Let X x X = PC(0O, E)x PC (0, E) be endowed with the vector norm ||-|| x x x de-
fined by [|v||xxx = (|[uillpe » [|u2ll per) for v = (u1,us2). It is clear that (PC(©, E)x
PC(O,E), |- llxxx) is a generalized Banach space.

In the case of generalized Banach spaces in the sense of Perov, the notations of
convergent sequence, Cauchy sequence, completeness, open and closed subset are
similar to those for usual metric spaces.

Definition 2.3. A square matrix M of real numbers is said to be convergent to
zero if and only if, M™ — 0 as n — oo.

Theorem 2.4. A square matriz M of real numbers is convergent to zero if and
only if its spectral radius p(M) is strictly less than 1. In other words, this means
that all the eigenvalues of M are in the open unit disc i.e. |\| < 1, for every A € C
with det (M — XI) = 0, where I denote the unit matriz of Myxn(R).

Lemma 2.5 ([38]). Let M € Mysm (Ry). Then, the following assertions are
equivalent:
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e M is convergent towards zero,
M* =0 as k — oo,
The matriz (I — M) is nonsingular and

(I-M)'=T+M+M+...+ M +...

The matriz (I — M) is nonsingular and (I — M)~ has nonnegative elements.

Definition 2.6. Let Q € Myy2(R) is said to be order preserving (or positive) if
p1 < po, @1 < qo,

o(w)=e(i)
o= (2 ),

where o, B,7,0 >0 and det Q > 0. Then Q™' is order preserving.

imply

in the sense of components.

Lemma 2.7 ([32]). Let

2.1.1. Resolvent operator. We consider the following Cauchy problem
w'(0) = Aw(f) + foe B(6 — s)w(s)ds; for § >0, 2)
w(O) =wp € F.
The existence and properties of a resolvent operator have been discussed in [13,
16, 17).
In what follows, we suppose the following assumptions:

(R1) Ais the infinitesimal generator of a uniformly continuous semigroup {S(#) }s>0,

(R2) For all § > 0,B(0) is closed linear operator from D(A) to E and B(f) €
B(D(A), E). For any ¢ € D(A), the map § — B(6)¢ is bounded, differentiable
and the derivative § — B’(0)¢ is bounded uniformly continuous on R*.

Theorem 2.8 ([16]). Assume that (R1)-(R2) hold, then there exists a unique re-
solvent operator for the Cauchy problem (2).

2.1.2. Measure of noncompactness. Now, we give definitions and properties for a
measure of noncompactness.

Definition 2.9. Let X be a generalized Banach space and (A, <) be a partially
ordered set. A map f:P(X) > Ax Ax...x Ais called a generalized measure of
noncompactness (M.N.C.) on X if
B(coC) = B(C) for every C € P(X),
where
£(C)
B(C) = :
Bn(C)
A typical example of a M.N.C. is the Hausdorff measure of noncompactness x
defined, for all Q C X, by
x(Q) := inf {¢ € R : there exists n € N such that  has finite e-net }.
Lemma 2.10 ([26]). Let & C C(a,b) be bounded and equicontinuous. Then,
co(Q2) C C(a,b) is also bounded and equicontinuous.
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Lemma 2.11 ([18]). Let Q C C(a,b) be bounded and equicontinuous, and let 3 the
Kuratowski’s measure of noncompactness. Then, £(0) = B(Q(0)) is continuous and

8 ( / b9<s>d5> < / " 5(626))ds.

Definition 2.12. Let X, Y be two generalized normed spaces and a map N : X —
Y. N is called an M-contraction (with respect to ) if there exists M € M, x, (Ry)
converging to zero such that, for every 2 € P(X), we have

BIN(Q)) < MB(Q).
The next result is concerned with S-condensing or M-contractivity.

Theorem 2.13 ([15]). Let F C X be a bounded closed convexr subset and N : F' —
F be a generalized B-condensing continuous mapping, where 5 is a nonsingular
measure of noncompactress defined on the subsets of X. Then the set
Fix(N)={z € F:z=N(x)}
18 nonempty.
Theorem 2.14 ([23]). Let F' be a closed, bounded, and convez subset of X, and let
N : F — F be a continuous operator. For any subset Q of F, set
N'Q=NQ, NPQ=N (co(N?7'Q)), p=23,... (3)

Suppose there exists a matriz M that approaches zero and a positive integer pg

such that for any subset  of F', we have
B(NPQ) < MB(Q),

where B is an arbitrary generalized measure of noncompactness. Then, N has at
least one fized point in F.

Lemma 2.15 ([4]). Let £(0) and b(0) be nonnegative continuous function for § > «a,

and let
0

EO) <o —|—/ b(s)é(s)ds, 0> a,

«
where o > 0 is a constant. Then

0
£(0) < oexp </ b(s)ds) , 0>a.

Lemma 2.16 ([37]). Let £(6) be a nonnegative piecewise continuous function that
satisfies, for 8 > 0y, the inequality

6
£(0) §c+/ V(s)¢(s)ds+ > Bi&(6:), for all 6 > 6y,

fo 0y<0;<0

where C > 0,5; > 0,V (1) > 0, and 7; are the first kind discontinuity points of the
function £(0). Then the following estimate holds for the function £(6),

¢o)y<c J[ @+8)exp

Op<T; <0 bo

' V(T)dT‘| .

3. Main results. In this section we discuss the existence of mild solution for the
problem (1).
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3.1. Existence of solutions. Let us recollect the following particular measure of
noncompactness that derives from [3], and will be utilized in our main results in
order to establish a measure of noncompactness in the space PC(0, E) x PC(0, E).

For I, € PC(©, E), let us put

Hll@k :{f cC ((:)k,E) : §(6k) =X (9;{) ,5(9) = .7}(9)79 (S @k,
z € Ily; k:l,,m}

The set II; C PC(O, E) is relatively compact if and only if the set II;|g, is
relatively compact in C (C:)k,E) for k=0,1,...,m+ 1.

Now, for a nonempty bounded subset II; in the space PC(0, E) and I C ©, let
wo(IT1) be the modulus of quasi-equicontinuity of the set of functions II; denote

wo(I, 1) = lim sup sup{||&(k) — &(7)|| ; k,7 €1, |k — 7| < €}
€—>0§€H1

Given the Hausdorff measure of noncompactness p and let { be the real M.N.C.
defined on bounded subsets on PC(©, E) by ¢(H) = supyeg ©(H(9)).
Finally, consider the function xpc defined on the family of subset of H = H; X
H, C PC(©,F) x PC(0O, E) by the formula
xpo(Hy x Hy) = (XI(HI)) _ (maxk_m(wo(Gk,Hl),@(Hl)))
x2(Ha) max;, g (wo(Ok, Hz), P2(H2))
It can be shown similar to [3, 5, 15, 30] that the function ypc is monotone,

regular, and nonsingular measure of noncompactness on the space PC(0,FE) X
PC(0©,E).

Definition 3.1. A function (£, ) € PC(0, E) x PC(0, E) is called a mild solution
of problem (1) if it satisfies

[%
£(0) =R1(9)§o+/0 R1(0 = s)f1(5,4(s), (s), H1(£(s), o(s))) ds

+ 3 R0 - 0)N(EW; ) 0(67)); €O,

0<60, <6

[%
@(0) = Ra(0)po + / Ry(0 — ) f2 (5,4(s), p(s), Ha(£(s), 0(s))) ds

0
+ D Ra(0 - 0)R(E), 0(6;)); B €.
0<0r<0
The following assumption will be needed throughout the paper:

(H1) Fori=1,2; f; : © x Ex E X E — E are Carathéodory functions and there
exist p;, ¢ € L'(©,RT) and a continuous nondecreasing functions ;, ¢; :
© — (0,400) such that :

1£:(8, &, v, w(&,€)) — fi(8,&,0,w(& )| < pi()i(ll€ —El) + a:(0)di([|lv — D)),
for &, &,v, v,w € E,
with
$i(0) <0, ¢; <0, and f = | fi(-,0,0,0)|| € L'(6,RT).

(H2) Fori=1,2;h; : Dy, x EXE — E are continuous and there exists a continuous
© — (0,400) such that,

functions he,, he, :
||hi(9737€’v) - hi(evsagvﬁ)n < hCL(9)||€ - g” + BCL(G)HU - 5”?

i
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for each (0,s) € Dy, and &, &, v, D€ E,
with

max{sup{hci (9)},sup{ﬁci (6)}, sup {||h(0,s,0,0)\|}} = max{h:i,ﬁzi,hf} < 00.
0co 00 (0,s)€Dn,

(H3) Ny, &k : E x EF — FE are continuous and there exist positive constants
m;,,my, 4 = 1,2, such that,

IRk (€ 0) = Re(E O < mi (1§ = €D + Myl — 3],
R (€, 0) =Re(& D) < mi(l1€ =&l +mi(llv —a]),
with
> IR (0,0)]| < o0 and Y[Rk (0,0)]| < oo.
k=0 k=0
(H4) Assume that (R1) — (R2) hold, and there exist Mr, > 1 and §; >0i=1,2,
such that

1R ()] 5=y < Mp,e .
Theorem 3.2. Assume that the conditions (H1)—(H4) are satisfied, and the matriz

_ (MRI (Ipallee + 225 mi)  Me, (ol + 2255 mzlc)) @
4

M =
MR2 (||p2||L1 + ZZL:O mi) MRz (||q2HL1 + Z?:o ﬁli)

converges to zero. Then the system (1) has at least one mild solution.

Proof. Transform the problem (1) into a fixed point problem, consider the operator
Y : PC(©,E) x PC(O, E) — PC(O, E) x PC(O, E) define by:

T(£(0),%(0)) = (Y1(£(0), 0(0)), T2(£(0),%(0))),

where

Tl (5(9), (p(e)) = Rl(e)f() + f09 Rl(e - S)fl (57 5(5), (p(S), Hl (f(s), (p(S))) ds
+ EO<9k<9 R1 (0 - ak)Nk(g(ek_)7 (9};))a

Ta(£(0),(0) = Ra(0)o + fy Ra(0 — 5)f2 (5,£(5), 0(5), Ha(£(s), 0(s))) ds
+ Zo<9k<9 R2(0 - ok)Nk(§(9;)7 @(0;))
We show that T was well defined. Let (§,¢) € X x X, 0 € ©, then we have

1T1(£(8), (O < [[BL(O)][ (NS0l + Q1))
0
+/0 [1B1(0 = s)[l[|.f1 (5,€(5), p(s), Hi(£(s), ¢(s))) l|ds
+ Y 1RO = O IlIR(E(6;), (05 )]-

0<0, <0
From (H1), we have

[1f1(s,€(s), o(s), H1(E(s), p(s))I < pr(s)¥a(l€llx) + ar(s) (vl x)
+ ”fl(S»OvO?O)H

Also, we have

IR (& 0) | < mi(l1€]lx) + My ([[vllx) + IR (0, 0)]].
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Then, we get
1T2(€6), (O] < Ma, 6ol + Mr, (p1rea (1E]x) + a2 én (IE]x))
] m
+ Mg, / F9(s)ds + M, S (mb (€]l x) + Ak (lollx))
k=0

k=0

Similarly, we obtain

IT2(£(0), ()| < M, ol + M, (Ip2ller 1 (I€]lx) + llgzllzr d2(ll#ll x))

m

0
+ Mg, / f(s)ds + Mg, Y _(mi([€]lx) + mi (vl x))
0 k=0

+ Mg, Y[Rk (0,0)]].
k=0
Then
1€ @) llxxx < o0
Obviously, the fixed points of operator T are mild solution of the problem (1).
We use Theorem 2.13 to prove that YT has a fixed point.
Step 1. T is continuous.

Let (&, ©n)nen be a couple of sequences such that (&, on) — (£, ¢*), then for
0 € O, we have

1(T1(&ns0n))(0) = (To(€7, 7)) (O)]

0
< Mg, / 1 £1(5,€n(5), (), H(En(5), 2n(5)))
— (5, €5(5), 9" (), H(E*(5), ¢ (5)))|1ds

+ Mg, Y[Rk (6n(6), 0n(8)) = Ri(€°(8), " (0))-
k=0

By the continuity of hq, we get
h1(0,8,&0(8), on(s)) = h1(0,s,£°(s), 0" (s)) as n — +oo.
And we have
[71(0, 5,8 (5), pn(s)) — ha(0, 5,87 (), " (s))]| < he, 1€n(s) — 7 (s)]
+ heyllen(s) — ™ (s)]l-

By Lebesgue dominated convergence theorem, we obtain

0 0
/ hi(0,5,&n(s), on(s))ds —>/ hi(0,s,8%(s), ¢"(s))ds, as n — +oo.
0 0
Also, the continuity of N, give
N (n(0), 0n(0)) — Ri(£7(0), ¢"(0)) as n — +oo.

Hence, from the continuity of the function f; and the Lebesgue dominated con-
vergence theorem, we get

||T1(§n7(pn> - T1(§*7L)0*)HX — 07 as n — +00.



IMPULSIVE INTEGRO-DIFFERENTIAL SYSTEMS 9

Similarly, we get
[T2(&ns on) — T2(€", ")l x = 0, as n — +oc.

Thus, Y is continuous.

Let Bs be defined by Bs = {(£,¢) € X x X : (||¢llx, lellx) < (61,02)}, with
0; > 0. The set Bs is bounded, closed and convex of X x X.
Step 2.
Claim 1. Y(Bs) C (Bs).

Let (£,¢) € Bs and 6 € ©, from (H1) — (H3), it follows that

1T1(£(0), ()| < Mg, (Il + [[p1ll21%1(01) + [lq1 |21 ¢1(d2))

+ 37 (mh(61) + Wk (52)) + > IRk (0, 0.

k=0 k=0
Similarly, we obtain

1T2(£(8), p(O))]| < Mg, (ol + lIp2llL192(61) + llg2ll L1 62(02))

0
+ Mp, [ f9(s)ds
0
+ 37 (m3(0) + M3 (62)) + Y [IRe(0,0)].
k=0 k=0

Then

Mg, (Pl +25Zgmi)  Ma (oo + 20 mi)\ /s,
1T, 2)0)] < ( )

m m ~ 5
Mg, (llp2llzr + 230 mi) Mg, (g2l + 32520 m7) 2

0 m

M, (6] + / Fo()ds + 3 IR (0,0))

+ p k;() N

Mol + [ $8(s)ds+ Y [Ru(0.0))
0 k=0

— e -1
Since M converges to zero, then (I - M ) is invertible and its inverse (I - M )

has nonnegative elements. Hence
< ().
= s,

0 m

Mg, (€]l + / Fo(s)ds + 3 IRe(0,0))
-l 00 k=0

M, (loll + / £(s)ds + 3 IR 0,0) )
0 k=0

Thus
3
I )l < (5.
2

Claim 2. The set T(Bjs) is equicontinuous.
For (£,¢) € Bs and k1, k2 € O, we have

1T1(&, ) (k1) = T1(&, ) (R2)
< [[R(k1) = R(r2)I[([€0l])
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+ / R — 5) — R — )| (01 (8)1(51) + 41(5)1(52)) s

+ Mp, / P () (01) - ()6 (0))ds + M, S IRe(E6; ), 067))]

K1 <0k <ko
+ Z [ R1(k1 — 0) — Ra(k2 — Op)[|IN% (£ ), 0(0;)) |-
0<0r <k

By the strong continuity of Ry(-) and (H1)-(H3), we obtain
IT1(€ ) (1) — T1(§, ) (k)| = 0 as k1 — ko
Similarly, we get
1T2(&, @) (k1) = Ya(&, @) (K2)l| = 0 as k1 — k2.

Hence, the set T(Bs) is equicontinuous.
Step 3. T is generalized x pc-condensing operator.

Let Q C Q1 X Qg, then T, (2),7 = 1,2 are bounded and equicontinuous on O.
From (H1) and (H3), we have

i {fi(0,2(0), H;(€2(0)))} < pi(0)p1 {1(0)} + a:(0) 02 {Q22(0)},
and
o {REQO) | < mior {21(0)} + bz (22(0))
where
(RF,RE) = (X, Ry).
Then, we have

ou(T.00)) < M, [ {fi5.00) Hi@)bds+ M, 3 o0 {Re(06)}

0<0,<0

0
< Mg, / (pi(5)91 {0 ()} + () 02 {2a(5)})ds

+ Mg, Y (mior {21(0)} + koo {Q2(0)})
k=0

< Mg, <||pi| + Z”ﬁ) o1 {2 (0)}

k=0
+ Mg, <||qz'|| + Zﬁ”&i) P2 {Q22(0)}
k=0
Since T (Bs) is equicontinuous, we get
Ma, (ol + X3 mi) - Ma, (laullz + X3 mw) (m (m))

XPC(TQ) S ( X2 (92)

MR2 (Hp2”L1 + Z;gnzo mi) MRQ (HqQ”Ll + ka:O ﬁli)

As a consequence of Theorem 2.13, we deduce that T has a fixed point (£, ¢) in
X x X, which is a mild solution of problem (1). O

The next result is concerned with generalized Darbo’s fixed point theorem.
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Theorem 3.3. Assume that the conditions (H1) — (H4) are satisfied, and we as-
sume that the functions p;, q; in (H1) they belong to the space C(©,RT), such
that

p; = max{sup(p;(9)),sup(q;(¢))}.
0eO €O

Also we assume that Ny, ﬁk are compact and M converges to zero. Then, the
system (1) has at least one mild solution.

Proof. From the Step of the Proof of Theorem 3.2 , the operator T is continuous
and we have Y (Bs) C (Bs). Then we prove that there exist an iteration of order pg
of operator YT such that the operator TP° be M-contractivity.

Let Q; =0 (Y;(Bs))i = 1,2. Lemma 2.10 implies that Q; C Bs,i = 1,2 are
bounded and equicontinuous, and T : Q7 x Q5 — Q1 x Qy is a continuous and
bounded operator. Similarly to the Step 3 of the Proof of Theorem 3.2, T; (), i =
1,2 are bounded and equicontinuous on ©. Now, using Lemma 2.10 and equation
3, we conclude that T?Q,i = 1,2 are bounded and equicontinuous. For each p =
1,2,..., we have

Pi(Y79) = sup p; (Y7Q(0)).
6co
Then, we have

0
p:(T10(0)) < M, / pi(5) (01 {0 ()} + 4s(5) 2 {Q(5)}) dis
< Mp, (030) (91 {0 (0)} + 92 {2(0)})
For Y%(Q) = Y,c0(TH()), we get
0
0i(X29(0)) < Mp, / o { (5, 0(CHQ))(s), Hy (@0(T2(2))(s))) } ds

My, Y e Rl @)})

0<6r <6

9
< Mg, /o pi(s)Mg, (p;s) <@1 {Q1(5)} + 92 {92(8)}>d5

2

< (00?5 ) (0160000 + 62 (220} )

Also, for T3(Q) =T, (co(T2(Q2))), we obtain
0
pi(T79(0)) < MRi/O 9i { fi(s,e0(T7())(s), Hi(co(T7(2))(s))) } ds

+ M, Y o {RE(T2@)}

0<6r <6

< ot [ viat (00025 ) (1 60) + o2 (0050 s

30

< (002G ) (o0 () + 02 (0000 ).

Suppose that

o (12000)) < (012 ) (00 €000} + 62 (9000} ).
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Hence, for any 6 € [0, T, we obtain
0
oi(XPH10(0)) < M, / o1 {f1(5, 20(T2(9) (5), Hi(ca(Y2()(5)))} ds

+ M, Y o {RE@(Tn @)}
0<6, <6
<, | = ((MRipzwjj) (p [ (5)} + 02 {Qz<s>})ds
p+1

(p+ 1)

) (o0 690060 + 62 (00001} ).

= <<MR,.p:)p“

Then, if we put

and

it follows that
xpc(TPQ) < Mpxpc ().

Its clear that

lim ¢ =0.
p—too P

Then, there exist p1,p2 € N, such that for all p > max(py,p2), we have

(011,,02) < (1,1).
Thus, for
po =min{p € N: || Mp]|rs,, ,(r+) < 1},
we get
P(Mpy) < ([ Mpg |2z () < 1.

Thus, from Lemma 2.5, we deduce that M, converges to zero. Applying now
Theorem 2.14, we conclude that Y has at least one fixed point, which is a mild

solution of problem (1).

Remark 3.4. If we don’t assume that Ny, &k are compact, we can assume in

Theorem 3.3 that

NE

<MRi max{ZmZ, ﬁl%}) < 1.
k=0 k=0
Thus, we get
¢ *x\7J (1% _9]
o (02000) < ()7 | 65007012 | (0 () + 00 (200 ),
j=0 ’
where our sequence (&;) is defined by

! L j=0,
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and
m m
ko 7 ~q
l; max{ E my, g mk}.
k=0 k=0
Then, if we put
_ P e (p*)i(1*\P—3T3
a:z — (MR,)p z : fj(pz) (z)
=0

4!
and ) )
— 9 OIp
M, = ,
~2  ~2
9 Ip

it follows that
xpc(YPQ) < Myxpc(Q).

Consequently, we have that
€ = Cnor (=2l ne{l,...,m},
"T11 n=0,
is a novel representation of binomial coefficients in a recurrence relation, and it
gives all Pascal’s triangle lines as well as the binomial formula. Then, using this

sequence, all of the results obtained using Newton’s binomial formula or Pascal’s
triangle may be proven.

3.2. Results of Ulam’s type stability. In this section, we introduce Ulam’s type
stability concepts for the equation (1).

Let 31,32 >0; k=1,...,m, and A; € PC(6,R;) be nondecreasing. We
consider the following inequalities:

1€/(0) = A1€(0) — £1.(0,£(0),(6), Hi(£(0),2(0))) — fy Br(0 — 5)&(s)ds|
< Aq(9), for 6 € ©,

I/ (6) = Asp(0) — f2(0,£(0), 9(8), Hi(£(6), 2(6))) — fy Ba(0 — 5)p(s)ds]
< Aqy(h), for 0 € O,

o~

1€(6;5) = €(6;) — Ni(€(6; ), (B DI < Ay, k=1,...,m,

o~

lo(65) = @(6;) + Ri(€(6;,), 0(0:))]| < Doy k=1,...,m.

(5)

Consider the space
Xi={¢e€ PC'(0,E) : £(0) € D(A;)}.

The following concepts are inspired by the papers [39, 42, 41] and the references
therein.

Definition 3.5. The system (1) is generalized Ulam-Hyers-Rassias stable with

respect to (Aq, Ag, ﬁl, 32) if there exists ¢y, x,.Aq, Cr, Ry > 0 such that for each

solution (£, ) of the inequalities system (5) there exists a mild solution (E, Q) €
X1 x X5 of the system (1) with

~

1€0) = EO) < ¢,y 2(A1(O) + A1), O€O,
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and
lp(0) = 0N < ¢, 5. a(B2(0) + Ag), €O,
In another sense
I1(£(0) — £(0). (6) — 3(9))]]
< max (Cfl,Nk,ﬁ’cfz,gk,5> (Al(e) + Aq(0) + 31 + 32> , 0 €0.

Remark 3.6. A function (&, ¢) € X, x X5 is a solution of inequalities (5) if and
only if there exist G132 € PC(O, R) , gk, gr € R such that:

o [G:(O)] < Ai(0); 6.€ Ry, llgnll < As, Gl < Ao, ,
o £'(6) = Arl(0)+ 11 (0,£(0), 0(0), Hi(£(0), 0(0))) + [y B1(0—5)$(s)ds+G1(6),

0co,
o ¢(0) = Axp(0) + f2(6,£(0), 0(0), Hi(£(0), () + Jo Ba(6 — s)e(s)ds +
G2(0),0 € O,
o Ri(&(0;),0(0),) = €(O) —€(0;) + g, k=1,...,m,
o R(E0). 0 07)) = 4(67) — o(07) + G k=1
Remark 3.7. If (¢, ¢) € X x X is a solution of inequalities (5), then (¢, ¢) € X x X

is a solution of the following integral inequalities
0
1€(6) — R1(0)&0 — /O Ri(0 = 5)f1(s,8(s), 0(s), Hi(&(s), ¢(s))) ds
D Ri(6 = 0)Re(€(6;), 0(6;)l

0<0, <6

0
< Mg, / e PO=)A | (s5)ds + Mp,mA;; 6 € O,
0

0
1o(8) — Ra(8)go — / Ro(8— 5) 2 (5, £(5), 0(5), Ha(€(s), 0(s))) ds
S Re(0— 00)R(€(07 ), 0(07))

0<0, <0
0
< Mg, / ¢=B20=5) 7, (5)ds + Mp,mBo; 0 € O.
0

To discuss stability, we need the following additional assumption:

(Ha) We assume that for A; € PC(6,R") a nondecreasing function there exists
ca,; > 0, such that

0
/ A;(s)ds < ca, Ai(0).
0

Theorem 3.8. Assume that (H1) — (H4) and (Ha) are satisfied and and M con-
verges to zero. Then the system (1) is generalized Ulam—Hyers—Rassias stable with
respect to (Aq, Ag, Ak, Ak)

~

Proof. Let (v,0) be a solution of the system of inequalities (5) and (£,£) € X x X
be the mild solution of the system (1) with, (£(0),£(0)) = (v(0),7(0)) = (&0, o).
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Then we get

6
€0) = Ri0)6+ [ Ra(0 =) (3£, Ha(e(s). () s

~

+ 30 Ri(0 - 00)RR(E(0;), E07))

0<6<6

S
m
@

~ 0 —~ ~
E0) = Ral0)n + [ R0 5)2 (5800, 09 Hae(6). () s

+ 3 R0 00)Ru(E6;).606;)); 0 €o.

0<0 <0

In other hand, we get

0
0(0) — Ra(0)& — / Ri(0 - 3)fi (5,0(s), 5(s), Hi (v(s),7(s))) ds

0
< Mg, / eiﬁl(eis)A1(S)d8 + Mp,mAy; 6 € O,
0

— > Ri(0—0x)Rp(v(0),), B(0;,

0<6r <6

)

0
0(0) — Ra(0)p0 — /0 Ry(0 — ) f2 (s,v(s),0(s), Ha(v(s),v(s))) ds

6
< Mg, / e P2O0=9) Ny (s)ds + Mg,mAy; 6 € O.
0

— D Ro(0— 00)Ri(0(6;),5(0;))

0<0r <0

Hence, for 8 € ©, we have

[o(6) —£(0)] = (s), Hy(£(s), (s))) ds

v(0) — R1(0)&0 — /09 Ri(0—s)f1 (575(8)7

— > R0 - 0:)Re(€(6;), €(67))

0<0r <6

— Z R1(0 — 0, )Ry (v(0)),0(0),))

0<6r <6

+ > Ri(0— 0x)R(v(6;),0(6;)

0<0, <6

< MRchlAl(G) + Mleﬁl
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9 —~
+ Mg / pi(8)1(llv(s) = £ + qu(s)ea([[v(s) — E(s)l)ds,

+ Y (mi(lv(O) — €61 + M (15(6;) — €G-
k=0
Also we get

o~

0 o~ o~
— [60) ~ Ral)go ~ [ Ralo— 5)f2 (56060, E0) Falé(5). E05)
0
— D Ro(0— 0x)Nu(€(0;,). €(67))

0<0r <0
0
- / Ro(0 — 5)f (s,0(s), 3(s), Ha(v(s),0(s))) ds
0
4 [ Ra0 = 9)f2 (5.0(6),506). Ha(u(). 7)) s
0
— > Ro(0— )Rk (0(6;),5(0;))
S MR2CA2A2(9) + MRQ’ITLEQ

0<0, <0
+ Y R0 - 0)Ri(0(6;),0(6;))
0 ~
+ Mp, / pa(s)¥a(llo(s) = E)1) + az(s)d2([B(s) — E(s)|)ds,

0<6, <06

£ R lo(er) — €@ + R0 — €61,
Thus, -
O <o+ o0 -0l
< Mp(emas +m)(A1(0) + Do(6) + Ay + Bg)
[ 106) + ) 5) €I + 1906) — E) s
+4MRkiorm (I0(6;) - €01 + 1900;) — €6,)1)
where

Cmax = maX(CANCAz)’

my = max {mj, mj, } .
From Lemma 2.16, we get

lo(6) = £(O)] + 113(6) - £(0)]
1(0

< Mp(cmax + m)(A1(0) + As(6) + Ay + Ay)

< T1I (1+4MRm*)ke<MR”pl+p2”>.
0<0r <0
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Now, if we put

= (lp1 +p2]) ~\"
:fi;NkygkyCAi = MR(CmaX + m)e e H (1 + 4MRm*) ’
0<6, <6

then we have for all 0 € ©
lv(8) — £O)]| + [[3(0) — £(B)]| < 2 R, (A1 + D+ A1 (0) + As(0)),

which implies that the system (1) is generalized Ulam—Hyers—Rassias stable with
respect to (A, Ao, Ak, Ag). O

3.3. Data dependance. Now, we prove the continuous dependence of solutions
on initial conditions. For every (£o,¢0) € E x E, we denote by (£(+,&),¢ (-, ¢0))
the solution of (1).

We need the following condition:

(H5) p1 = q1, p2 = q2, and Mg(l5 +15) = max(Mg,, Mg,) (I +13) < 1

Theorem 3.9. Assume that conditions (Hq1) — (Hs) hold, with matriz M defined
in (4) converges to zero. Then (£, p0) = (£(-,€0),¢ (-, %0)) is continuous.

Proof. Let (&o,%0) , (20, %0) € E x E. From Theorem 3.3, we see that there exist
(5 ('a&)) y P ('? 300))a (é <'7€AO) 7923 ('7 @0)) € X x X such that

0
£(0,) = Ru(0)o + /0 Ri(0 — )1 (5, €(5,€0), (5, 00), Hi(€(s. €0). 05, 00))) ds

+ Z R1(0 — 0) 1 (€00, ,€0), (0, 00)); 0 €0,

0<6,<0
]
(0, 00) = Ra(0)g0 + / R0 — 5)fi (5,€(5. €0) (5, 0), Hal€ (5. £0). 05 00)) ds
+ Z R2(0 - ek)jk(€(0;>§0)a§0(0k_7§00))7 0 e 97

0<0r <6

and
~ ~ ~ 9 ~ ~
0.60) = Fa(@o+ [ a0 = 9)fy (5,805, E0). 005 0). i (€l 0) (5. 40)) s

+ > R0 - 0010, £0), 20, £0)); 0 €O,

0<0,<0 9 o -
P(0,$0) = Ra(8)Po / 2(0 — 5)fa ( ,f(s,fo),gb(s,@0),H2(§(s,§0)7@(37¢0))) ds
Z 20— 00Tk (E(0; . 0), §(0; . 90)); O €.
<0,
We put Qg( ) =

2
1Q¢(6) — Q¢(9)]| < Mp,léo — ol + Mk, /0 (pl(S)wl(IIQs(S) — Q31

£(6,&), then we get

()61 (1Qy(s) — Q@(S)II)>d8
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m

+ Mr, Y (milQe(07) = Qe 0l + ik Qu (67) — Qu(07)I) -

k=0
Similarly, we obtain

6
Qe (0) — Qe (0)I| < MR, llpo — foll + Mk, /0 (pz(S)wz(HQs(S) —Q¢(s)ID)

T p(5)6a(Qu(s) — Q@(S)II))ds

+ Mry > (m? (1Qe(67) = Qe (001l + 2NQu (6) — Qw6 -

k=0

Then,
|Qe) = Qe + 1@ () = Qe ()l
Hfo - éoH + lleo — Poll
<
- 1—Mg(lr+13)

ity o ([0 - @ e - ) o

Then, by Lemma 2.15, we get
Q<) = Qe , + 126 () = Qe

H&o - §oH + [lpo — ol . (MRTle + pall 1 )
- 17MR(II+I§) 17MR(ZI+I;) ’

Thus
@) = Qe , +11Qu() = QeI = 0, as (€0, 00) — (0, %0) -
O
4. An example. In order to give verification of the existence, data dependance

and Ulam-Hyers-Rassias stability of solutions, we consider the following class of
partial integro-differential system:

o _ 2% | (0 82¢1 (s,2) n(9+1) sect({/09+1)
2661(0, ) gz Jy T(0 — s) = ds + +1¢1(0,2)])

0,2 + \@(M)Ids), bel and xe(0,7),

1
X(fo 13

%@(97 ) a2 C2(9 x) f F 3 %22(:96)d8

1
0
() [ %wmn +1Ga(0,0)lds
= S S en e ,0el, xze(0,m)

_ (6)
Al (Ok, ) :akL’“’f), for Ox = 55,k =1:8, and z € (0,7),
1+1¢1(65, 2|
¢2(6, ,%)
Al (O, x) = ,for 0 = k=1:8, andxz € (0,7
G2k, @) = B ey for O o 0,m),

<1(0,0) = §1(0, 1) = CQ(&,O) = CQ(@, 1) = 0, for 6 2 O,

¢1(0,2) = (), ¢2(0,2) = (3(x),if € O, and = € (0,7),



IMPULSIVE INTEGRO-DIFFERENTIAL SYSTEMS 19

where I = [0,7], I'; : RT — R are continuous, 01,02 € R, n € (0,771), Xe {0,1},
g, Br € (0,e7). To rewrite system (6) in the abstract form, we introduce the
space X = L?(0,7) and we define the operator A; as follows:

D(4;) ={w < L?(0,7) /| w, @" € L?(0,7) , w(0) = w(rw) =0},
(AZW)(LE) _9 w(@,z)'

0z?

It is well known that A; generates a strongly continuous semigroup (5;(6))g>0,
which are dissipative and compact with [|.S;(0)| < e=<:% and for some b; > E%,

€

—e2 _e2
we assume that |T;(60)] < <5, and |[|[T}(0)]| < . Tt follows from [16] that
|R:(0)]| < e > where »; =1—b; ",
We define also the operators B;(0) : H — H as follows:

Bi(0)z =T;(0)Aiz, for 0 >0, z € D(A;).

More appropriate conditions on operators B;, (H4) hold with Mg, = 1 and
Bi=1-b"1.

7

We put ¢(0)(z) = (0, z), for 6 € [0,+0c0), and define

(0 +1) sect(v/69 +1)
(14 [é1(6,2)])

) (/01 e;zt?:s |91(6, )| + |¢2(‘9,$)‘ds>7
tan ((62 + 1) —2)

T 2= sin(2t) + sin(2(0 + 1))

x [ 0,0+ a0, ),
(0]

£1(0, b1, o, Hi (1, ¢2)(x)) = L

f2(0, p1, 2, Ha (1, $2)(x))

55
Re(2(67), 907 ) = ap—t0)
14 |¢1(0; ,2)]
Ri(2(65), (0 ) :ng.
L+ |¢2(0, )]

Using these definitions we can represent the system (6) in the following abstract
form

#(0) = Mz (0) + f1 (0, 2(0), (6), Hr(2(6), (6)))
+/ Bi(0 — s)z(s)ds, for § € ©\O,,,
0

¢(0) = A20(0) + £>(0,2(0), 0(0), Ha(2(0), £ (9)))
+/ By(0 — s)z(s)ds, for § € ©\O,y,,
0

Ri(2(0),), 0(0; ) = 2(070) —x(0;), k=1,....m,

Re(z(0;), 0(0;)) = @(0;) — (0 ), k=1,....m,

(2(0),4(0)) = (S0, #0)-
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For 0 € ©, we have
| f1(6, 521.(0), 52(0), Hy1(501(0), 522(0))) — f1(0, 31(0), 322(0), H1 (341 (0), 322(0)) )|
- sect(v/609 + 1)

< 113 (I521(0) = 522(0)| 4 [321(0) — 222(0) 1) ,
and
|2(0, 1(0), 22(0), Ha(51(0), 22(0))) — f2(0, 51(0), 22(0), H2 (541 (0), 22(0)))|
1 - ~ ~
< g5 tan (07 +1) ) (1 (0) = 2(0)| + [34(6) = 2(6))
We have that ;(0) = ¢;(0) = 6, are continuous nondecreasing functions from
(0, +00) to (0,400), i = 1,2. And, we have

sect(v/09 + 1
() =q(0) = % € LY(O,R1),
1 —2
pa(6) = g2(0) = 5 tam ((92 +1) ) e L'(O,RY).
Now, about hy, hs, N and &k, we have
—st—s
36,5, 561, 562) = b (6, 5,21, 72)] < S (51(6) — 52(0)] +121(0) = 72(0))
2
|ha (6, 5, 51, 33) — ha(0, 5,7, 3%)| < oo T2 (55; 9 (1521(60) — 502(0)] + (51 (6) — 2(0))),
[N (361, 202) — N (321, 522)| < aur (|50 (0) — 522(0)] + [0 (0) — 322(0)])
Rk (51, 202) = Ry (321, 22)| < B (|5.(0) — 502(0)| + [21.(0) — 22(0)]) ,
7 7 1 1 ~ 1 2 ~ 2
hey = he, Zm, hey = he, = %, my = my = g, my =my = B,

Ip1llr = llaullzr ~ 9.7 x 1072, [[pallr = lgallpr ~ 7 x 1072,

8 8
<||P1L1 + Zm}c, lp2]lLr + Zm%) o~ (3.56 x 1071, 3.53 x 10*1) :
k=1 k=1

(pt.p3) = (5.7x107%,7.1 x 1073), Mp(l] +15) ~0.69 < 1.

Then, we get p(M\) ~ 0,709, hence the matrix M converge to zero.
Also, we get

I—-M=

— 0,644 0,356
—0,353 0,647 /-

Therefore, we can take
81 > 2.22337(|¢7 || + 1.223371¢3 | 1,

and
82 > 1.21306C|| i + 2.21306(1C3|| -

Also, for all p > 2, we obtain
o) <0,018; o7 < 0,022.
Then, for all p > 2, we have
p(Mp) < ||MP||M2><2(R+) <L
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Thus, all conditions of Theorem 3.2, Theorem 3.8 and Theorem 3.9 are verified.
Then, the problem (6) has at least one mild solution, which is generalized Ulam-
Hyers-Rassias stable.

5. Conclusions. In the present study, we explore the existence of mild solutions,
Ulam-Hyers-Rassias stability, and continuous dependence of instantaneous impul-
sive integro-differential systems through the utilization of resolvent operators in the
sense of Grimmer. To attain the desired outcomes for the specified problem, we
employed a fixed-point approach in conjunction with techniques involving measures
of noncompactness and convergence to zero matrices within generalized Banach
spaces. Additionally, we present an illustrative example showcasing the practical
application of our key findings. Our results make a significant contribution to the
literature in this field and are novel in the given configuration. We anticipate that
this research could pave the way for diverse avenues of exploration, including but
not limited to hybrid systems, problems incorporating infinite delays, and potential
extensions to the fractional case. It is our hope that this article will serve as a
starting point for future endeavors in these areas.
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