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Abstract
The theoretical approach of random impulsive stochastic integrodifferential
equations (RISIDEs) with finite delay, noncompact semigroups, and resolvent
operators in Hilbert space is investigated in this article. Initially, a random impulsive
stochastic integrodifferential system is proposed and the existence of a mild solution
for the system is established using the Mönch fixed-point theorem and
contemplating Hausdorff measures of noncompactness. Then, the stability results
including a continuous dependence of solutions on initial conditions, exponential
stability, and Hyers–Ulam stability for the aforementioned system are investigated.
Finally, an example is proposed to validate the obtained results.
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1 Introduction
The study of impulsive dynamical systems is an emerging area that is attracting interest
from both theoretical as well as practical disciplines. Additionally, the impulsive differen-
tial equations act as essential models for the investigation of the dynamical processes that
are subject to abrupt changes in their states. The study of impulsive systems, especially
the impulsive differential, is of great importance because many evolution processes, op-
timal control models in economics, mechanics, electricity, several fields of engineering,
stimulated neural networks, frequency-modulated systems, and some motions of missiles
or aircrafts are characterized by the impulsive dynamical behavior. For more information,
see [1–3]. In the past several decades, differential equations with impulses have been uti-
lized to model the processes subjected to abrupt changes at discrete moments and the dy-
namics of impulsive differential equations have attracted the attention of a large number
of scholars, see [4–6]. Furthermore, since real-world systems and unpredictable events
are almost inevitably affected by stochastic perturbations, mathematical models cannot
ignore the stochastic factors due to a combination of uncertainties and complexities. In
order to take them into account, differential equations driven by stochastic processes or
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equations with random impulses offer a natural and practical approach to describe vari-
ous impulsive phenomena. It is also possible to successfully apply the theory of stochastic
differential systems to a variety of nonmathematical issues, such as those in science, eco-
nomics, epidemiology, mechanics, and finance. For more details, we refer the reader to
books [7–9] and the articles therein [10–13].

Many evolution processes involve stochastic functional differential equations with an
impulse. This is widely used in modeling systems in medicine and biology, mechanics,
economics, telecommunications, and electronics (see [1, 14, 15]). Impulses can occur at
random points, for example, the impulse time tk is a random variable for k = 1, 2, . . . and
the impulsive function bi(.) is a random variable. Recently, there have been massive stud-
ies covering the existence and stability of solutions of stochastic differential systems and
stochastic functional differential systems with impulses or randomness. Hu and Zhu [16]
have used the Lyaponov method to investigate the exponential stability of stochastic dif-
ferential equations with impulse effects at random effects. In addition, Hu and Zhu es-
tablished stability analysis by considering impulsive stochastic differential systems using
the Lyapunov and Razhumikhin technique [17, 18]. Sakthivel and Luo [19] investigated
the existence and asymptotical stability of mild solutions containing impulsive stochas-
tic differential systems. Zihan Li et al. [20] established the existence of solutions to the
Sturm–Liouville differential equation with random impulses and boundary value prob-
lems via Dhage’s fixed-point theorem. Yu Guo et al. [21] solved the viscosity solution of
the HJB equation for an optimal control system with random impulsive differential equa-
tions. Recently, many researchers have discussed the existence and stability of stochastic
differential equations with a random impulse, see [22–24]. However, no papers have been
published that investigate stochastic differential equations with random impulses involv-
ing a resolvent operator. As a result of the above, we investigate the existence, continuous
dependence of solutions on initial conditions, Hyers–Ulam stability, and mean-square ex-
ponential stability results for the proposed random impulsive stochastic differential equa-
tions.

Let us take into consideration the following stochastic differential equations with a ran-
dom impulse of the form:

d
[
ϑ(t)

]
=

[
Aϑ(t) +

∫ t

0
B(t – s)ϑ(s) ds + f(t,ϑt)

]
dt + g(t,ϑt) dω(t), t ≥ t0, t �= ςk,

ϑ(ςk) = bk(δk)ϑ
(
ς–

k
)
, k = 1, 2, . . . , (1.1)

ϑt0 = η =
{
η(θ ) ≤ θ < 0

}
,

where A is the infinitesimal generator of an analytic semigroup (R(t))t≥0 of bounded linear
operators in a real separable Hilbert space X, A is a closed linear operator with dense
domain D(A) that is independent of t, B is a closed linear operator with domain D(B) ⊃
D(A), and ω(t) is the standard Weiner process on X. The maps f : [t0, +∞] × X → X,
g : [t0, +∞] ×X →L0

2(Y,X) are Borel measurable functions. Let δk be a random variable
from � to Dk := (0,dk) with 0 < dk < +∞ for k = 1, 2, . . . , with δi, δj being independent of
each other as i �= j for i, j = 1, 2, . . . . Here, bk : Dk →X, ϑt is an X-valued stochastic process
� ϑt ∈ X, ϑt = {ϑ(t + θ ) : –δ ≤ θ ≤ 0} and ς0 = t0 and ςk = ςk–1 + δk for k = 1, 2, . . . , where
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t0 ∈ [δ, +∞] is an arbitrary given nonnegative number. It is obvious that

t0 = ς0 < ς1 < · · · < lim
k→∞

ςk = +∞,

then, {ςk} is a process with independent increments. Denoting ϑ(ς–
k ) := limϑ→ς–

k
ϑ(t), the

norm

‖ϑ‖t := sup
t–δ≤s≤t

‖ϑ‖X,

with the jump

	ϑ(ςk) :=
[
bk(δk) – 1

]
ϑ

(
ς–

k
)

represents the random impulsive effect in the state ϑ at time ςk. The initial data η :
[–δ, 0] →X is a function with respect to ϑ when t = t0. We may assume that {N (t), t ≥ 0} is
a simple counting process generated by {ςk}, �(1)

t is the σ -algebra generated by {N (t), t ≥
0}, and �(2)

t indicates the σ -algebra generated by {ω(t) : t ≥ 0}, where �(1)∞ ,�(2)∞ , and ς are
mutually independent.

2 Preliminaries and notations
Let X and Y be real separable Hilbert spaces with norm ‖ ·‖ and ‖ ·‖Y and L(Y,X) denotes
the space of bounded linear operators from Y to X. Let (�,F,P) be a complete filtered
probability space provided the filtration �(1)

t ∨ �(2)
t (t ≥ 0) satisfies the usual notation. Let

{βn(t), t ≥ 0} be a real-valued one-dimensional standard Brownian motion mutually inde-
pendent over probability space (�,F,P). Let L2(�) denote the space of square-integrable
random variables for the probability measure P . Let Q ∈L(Y,X) be a positive trace class
operator on L2(X) and (λn, en)n symbolizes its spectral elements. The Weiner process ω(t)
is expressed as follows:

ω(t) =
+∞∑

n=1

√
λnβn(t)en with trQ =

+∞∑

n=1

λn < +∞.

Then, the Y-valued stochastic process ω(t) is called a Q-Weiner process.

Definition 2.1 Letting ς ∈L(Y,X), we define

‖ς‖2
L0

2
:= tr

(
ςQς∗) =

{ +∞∑

n=1

‖√λnςen‖2

}

.

If ‖ς‖2
L0

2
< +∞, then ς is called a Q-Hilbert–Schmidt operator and L0

2 is the space of all
Q-Schmidt operators ς : Y→ X.

Partial integrodifferential equations Let A and ϒ(t) be closed linear operators on a Ba-
nach space denoted by X, and Y is the Banach space D(A) endowed with the norm

|y|Y := |Ay| + |y| for y ∈ Y.
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The notations C ([0, +∞);Y), C 1([0, +∞);X), and L(Y,X) denote the space of continuous
functions from [0, +∞) into Y, the space of continuously differentiable functions from
[0, +∞) into X and the set of bounded linear operators from Y into X, respectively.

Let us consider the problem

dν(t) =
(
Aν(t) +

∫ t

0
ϒ(t – s)ν(s) ds

)
dt, t ≥ 0, (2.1)

with ν(0) = ν0 ∈X.

Definition 2.2 [25] If the following conditions are met, a bounded linear operator-valued
function R(t) ∈ L(T), t ≥ 0 is called a resolvent operator for (2.1):

(i) R(0) = I and ∃ two constants α ≥ 1 and δ � |R(t)| ≤ α exp(σ t) ∀t ≥ 0.
(ii) For each element x in X, the function t �→R(t)x is strongly continuous for each t ≥ 0

and for x in Y, R(.)x ∈ C 1([0, +∞);X) ∩ C ([0, +∞);Y) and satisfies

dR(t)x =
(
AR(t)x +

∫ t

0
ϒ(t – s)R(s)x ds

)
dt

=
(
R(t)Ax +

∫ t

0
R(t – s)ϒ(s)x ds

)
dt.

When Definition 2.1(i) holds with δ < 0, the resolvent operator is said to be exponen-
tially stable. The two conditions derived from Grimmer [25] are sufficient to guarantee
the existence of solutions for (2.1).

(H1) The operator A is an infinitesimal generator of a C0-semigroup on X.
(H2) ∀t ≥ 0, ϒ(t) denotes a closed continuous linear operator from D(A) to X and

ϒ(t) ∈L(Y,X). For any y ∈ Y, the map t �→ ϒ(t)y is bounded, differentiable, and
its derivative dϒ(t)y/dt is bounded and uniformly continuous on [0,∞).

Now, consider the conditions that ensure the existence of solutions to the deterministic
integrodifferential equation:

dν(t) =
(
Aν(t) +

∫ t

0
ϒ(t – s)ν(s) ds + m(t)

)
, t ≥ 0, (2.2)

with ν(0) = ν0 ∈ X and m : [0, +∞) →X is a continuous function.

Lemma 2.1 ([25]) Suppose the assumptions (H1) and (H2) hold and if ν is a strict solution
of (2.2), then

ν(t) = R(t)ν0 +
∫ t

0
R(t – s)m(s) ds, t ≥ 0. (2.3)

Lemma 2.2 ([25]) Assuming (H1), (H2) holds, the resolvent operator R(t) is continuous
for t ≥ 0 on the operator norm, namely for t0 ≥ 0,

lim
τ→0

∥
∥R(t0 – τ ) – R(t0)

∥
∥ = 0.

Lemma 2.3 ([25]) Assume (H1), (H2) are satisfied, then ∃G > 0 �
∥∥R(t + ε) – R(ε)R(t)

∥∥ ≤ G ε.
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Lemma 2.4 ([26]) If �(s) is a L0
2(Y,X)-valued stochastically integrable process in [0,T],

then for p≥ 2, ∃C ′
p = (p(p – 1)/2)p/2 �, for every t ≥ 0:

sup
s∈[0,t]

E

∥
∥∥
∥

∫ s

0
�(m) dω(m)

∥
∥∥
∥

p

≤
(
p(p – 1)

2

) p
2
(∫ t

0

(
E

∥∥�(s)
∥∥p

L0
2

) 2
p ds

) 2
p

.

The Hausdorff measure of noncompactness α(.) defined on a bounded subset E of a
Banach space X is

α(E ) = inf{ε > 0 : E has a finite ε – net in X}.

Lemma 2.5 ([26]) Let X be a real Banach space and M ,N ⊂ X be bounded. Then, we
have the following properties:

(1) M is precompact if and only if α(M ) = 0;
(2) α(M ) = α(M ) = α(convM ), where M and convM are the closure and the convex

hull of M , respectively;
(3) α(M ) ≤ α(N ) when M ⊂ N ;
(4) α(M + N ) ≤ α(M ) + α(N ), where M + N = {ϑ + � : ϑ ∈ M ,� ∈ N };
(5) α(M ∪ N ) ≤ max{α(M ),α(N )};
(6) α(λM ) ≤ |λ|α(N ) for any λ ∈R;
(7) If K ⊂ C ([0,T]) is bounded, then

α
(
K (t)

) ≤ α(K ) ∀t ∈ [0,T],

where K (t) = {m(t) : m ∈ K ⊂ X}. Further, if K is equicontinuous on [0,T], then t →
K (t) is continuous on [0,T], and α(K ) = sup{K (t) : t ∈ [0,T]};

(8) If K ⊂ C ([0,T],X) is bounded and equicontinuous, then t → α(K (t)) is continuous
on [0,T] and α(

∫ t
0 K (s) ds) ≤ ∫ t

0 α(K (s)) ds ∀t ∈ [0,T], where
∫ t

0 K (s) ds = {∫ t
0 m(s) ds :

m ∈ K };
(9) Let {mn}∞n=1 be a sequence of Bochner integrable functions from [0,T] to X with

‖mn(t)‖ ≤ û(t) for almost all t ∈ [0,T] and n ≥ 1, where û(t) ∈ L([0,T],R+), then �(t) =
α({mn(t)}n=1) ∈L([0,T],R+) and satisfies

α

({∫ t

0
mn(s) ds : n ≥ 1

})
≤ 2

∫ t

0
�(s) ds.

Lemma 2.6 ([26]) If K ⊂ C ([0,T],L0
2(Y,X)) and ω is a Weiner process,

α

(∫ t

0
K (s) dω(s)

)
≤ √

Tα
(
K (t)

)
,

where,

∫ t

0
K (s) dω(s) =

{∫ t

0
m(s) dω(s) : ∀m ∈ K , t ∈ [0,T]

}
.
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Lemma 2.7 ([26]) Let D be a closed convex subset of X with 0 ∈ D. Suppose � : D → D is
a continuous map of Mönch type that satisfies:

M⊂D countable and M⊂ co
({0} ∪ �(M)

)
implies that M is relatively compact,

then, � has a fixed point in D.

3 Existence results
Definition 3.1 For a given T ∈ (t0, +∞), an X-valued stochastic process {ϑ(t), t ∈ [t0,T]}
is said to be a mild solution of (1.1) provided:

(i) ϑ(t) is an �t-adapted process for t ≥ t0;
(ii) ϑ(t) ∈X has a cadlag path on t ∈ [t0,T] almost surely,
(iii) ϑ(t) = η if t ∈ [–δ, 0] and for each t ∈ [t0,T], we have

ϑ(t) =
+∞∑

k=0

[ k∏

i=1

bi(δi)R(t – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)f(s,ϑs) ds

+
∫ t

ςk

R(t – s)f(s,ϑs) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)g(s,ϑs) dω(s)

+
∫ t

ςk

R(t – s)g(s,ϑs) dω(s)

]

I[ςk,ςk+1)(t),

where
∏k

j=i(.) = 1 as i > k,
∏k

j=i bj(δj) = bk(δk)bk–1(δk–1) · · ·bi(δi), IA(.) is the indicator func-
tion expressed as,

IA(t) =

⎧
⎨

⎩
1 if t ∈A,

0 if t /∈A.

We may take into consideration the following hypotheses:
(A1) The map f : [t0,T] ×X →X satisfies

(i) f(.,ϑ) : [t0, ,T] → X is measurable for each ϑ ∈X and f(t, .) : X →X is
continuous for each t ∈ [t0,T].

(ii) There occurs a continuous function νf(t) : [t0,T] → R+ and a continuous
nondecreasing function �f : R+ → R+ and ‖ϑ‖2 ≤ r �

∥∥f(t,ϑ)
∥∥2 ≤ νf(t)�f

(‖ϑ‖2) ≤ νf(t)�f(r).

(iii) ∃ a positive function Cf(t) ∈L1([t0,T]),R+ � for any bounded subsets
β1 ⊂X, we have

α
(
f(t,ϑ)

) ≤ Cf(t) sup
θ∈(–δ,0]

α
(
β1(θ )

)
.

(A2) The function g : [t0,T] ×X →L0
2(Y,X) satisfies

(i) g(.,ϑ) : [t0, ,T] →L0
2(Y,X) is measurable for each ϑ ∈X and

f(t, .) : X→L0
2(Y,X) is continuous for each t ∈ [t0,T].
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(ii) There occurs a continuous function νg(t) : [t0,T] → R+ and a continuous
nondecreasing function �g : R+ → R+ and ‖ϑ‖2 ≤ r �

∥
∥g(t,ϑ)

∥
∥2 ≤ νg(t)�g

(‖ϑ‖2) ≤ νg(t)�g(r).

(iii) ∃ a positive function Cg(t) ∈L1([t0,T]),R+ � for any bounded subsets
β2 ⊂X, we have

α
(
g(t,ϑ)

) ≤ Cg(t) sup
θ∈(–δ,0]

α
(
β2(θ )

)
.

(A3) E[maxi,k{∏k
j=i ‖bj(δj)‖}] < +∞ ∃B > 0 �

E

(

max
i,k

{ k∏

j=i

∥
∥bj(δj)

∥
∥
})

≤ B for all δj ∈ Dj, j ∈N.

(A4) 3 max{1,B2}(T – t0)H 2[limr→+∞
�f(r)
r

∫ t
t0

νf(s) ds + limr→+∞
�g(r)

r

∫ t
t0

νg(s) ds] ≤ 1.

Theorem 3.1 Assume the conditions (A1)–(A4) hold, then there exists at least one mild
solution for (1.1) provided:

max
{

1,B2}H 2(T – t0)‖Cf‖L1([t0,T],R+)

+ max
{

1,B2}H 2(T – t0)
1
2 ‖Cg‖L2([t0,T],R+) < 1. (3.1)

Proof Let us introduce the set ϒT : PC([t0 – δ,T],L2(�,X)) equipped with the norm

‖ϑ‖2
ϒT

= sup
t∈[t0,T]

E‖ϑ‖2
t = sup

t∈[t0,T]
E

(
sup

t–δ≤s≤t

∥∥ϑ(s)
∥∥2

)
.

It is obvious that ϒT is a Banach space and we may define

ϒT =
{
ϑ ∈ ϒT : ϑ(s) = η(s), for s ∈ [–δ, 0]

}
,

with the norm ‖ϑ‖2
ϒT

. Thus, (1.1) can be transformed into a fixed-point problem. We may
define an operator � : ϒT → ϒT by

(�ϑ)(t) =
+∞∑

k=0

[ k∏

i=1

bi(δi)R(t – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)f(s,ϑs)) ds

+
∫ t

ςk

R(t – s)f(s,ϑs)) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)g(s,ϑs) dω(s)

+
∫ t

ςk

R(t – s)g(s,ϑs) dω(s)

]

I[ςk,ςk+1)(t), t ∈ [t0,T]

and

(�ϑ) = η(θ ), t ∈ [–δ, 0].

Let us divide our proof into several steps.
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Step 1: Initially, we have to compute that � satisfies the property N (Br) ⊂ Br, Br = {ϑ ∈
ϒT : ‖ϑ‖2

ϒT
≤ r}. If the result contradicts, for ϑ ∈ Br, N (Br) � Br. Thus, we may find

t ∈ [t0,T] satisfying E‖(�ϑ)(t)‖2 > r. By the aforementioned assumptions,

E
∥∥(�ϑ)(t)

∥∥2 = E

[ +∞∑

k=0

[ k∏

i=1

bi(δi)R(t – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)f(s,ϑs) ds

+
∫ t

ςk

R(t – s)f(s,ϑs) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)g(s,ϑs) dω(s)

+
∫ t

ςk

R(t – s)g(s,ϑs) dω(s)

]]

I[ςk,ςk+1)(t),

≤ 3E

((

max
k

{ k∏

i=1

∥
∥bi(δi)

∥
∥
})2)

∥
∥R(t – t0)

∥
∥2
E

∥
∥η(0)

∥
∥2

+ 3E

(

max
i,k

{ k∏

j=i

∥
∥bj(δj)

∥
∥, 1

})2

×E
(∥∥R(t – s)f(s,ϑs) ds

∥∥2) + 3E

((

max
i,k

{ k∏

j=i

∥∥bj(δj)
∥∥, 1

})2)

×E
(∥∥R(t – s)g(s,ϑs) dω(s)

∥
∥2)

≤ 3B2H 2
E

∥
∥η(0)

∥
∥2

+ 3 max
{

1,B2}H 2(T – t0)
∫ t

t0

νf(s)�f(r) ds

+ 3 max
{

1,B2}H 2(T – t0)
∫ t

t0

νg(s)�g(r) ds.

Dividing the above inequality by r, and letting r → +∞, we have

3 max
{

1,B2}H 2(T – t0)
(

lim
r→+∞

�f(r)
r

∫ t

t0

νf(s) ds + lim
r→+∞

�g(r)
r

∫ t

t0

νg(s) ds
)

> 1,

which contradicts our assumption (A4). Thus, ∃ some ϑ ∈ Br �N (Br) ⊂ Br.
Step 2: In order to compute the continuity of the operator � in Br, let ϑ ,ϑn ∈ Br and

ϑn → ϑ as n → +∞. By condition (ii) of (A1) and (A2), we have

f(t,ϑn) → f(t,ϑ), n → +∞,
∥∥f(t,ϑn) – f(t,ϑ)

∥∥2 ≤ 2νf(t)�f(t),

g(t,ϑn) → g(t,ϑ), n → +∞,
∥∥g(t,ϑn) – g(t,ϑ)

∥∥2 ≤ 2νg(t)�g(t).

Using the Dominated Convergence theorem and (A3), we may deduce that

E
∥∥(�ϑn)(t) – (�ϑ)(t)

∥∥2

≤ 3E

∥∥
∥∥
∥

+∞∑

k=0

k∏

i=1

bi(δi)R(t – t0)
(
ϑn(0) – ϑ(0)

)
∥∥
∥∥
∥

2
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+ 3E

∥
∥∥∥
∥

+∞∑

k=0

( k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)
[
f
(
s, (ϑs)n

)
– f(s,ϑs)

]
ds

+
∫ t

ςk

R(t – s)
[
f
(
s, (ϑs)n

)
– f(s,ϑs)

]
ds

)

I[ςk,ςk+1)

∥∥
∥∥∥

2

+ 3E

∥∥
∥∥∥

+∞∑

k=0

( k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)
[
g
(
s, (ϑs)n

)
– g(s,ϑs)

]
dω(s)

+
∫ t

ςk

R(t – s)
[
g
(
s, (ϑs)n

)
– g(s,ϑs)

]
dω(s)

)

I[ςk,ςk+1)

∥
∥∥∥
∥

2

≤ 3B2H 2
E

∥∥ϑn(0) – ϑ(0)
∥∥2

+ 3 max
{

1,B2}H 2(t – t0)
∫ t

t0

E
∥∥f

(
s, (ϑs)n

)
– f(s,ϑs)

∥∥2 ds

+ 3 max
{

1,B2}H 2(t – t0)
∫ t

t0

E
∥∥g

(
s, (ϑs)n

)
– g(s,ϑs)

∥∥2
L0

2
ds

→ 0 as n → +∞.

Therefore, � is continuous on Br.
Step 3: To prove � is equicontinuous on [t0,T], for t0 < t1 < t2 < T and ϑ ∈ Br, we

have

(�ϑ)(t2) – (�ϑ)(t1)

=
+∞∑

k=0

[ k∏

i=1

bi(δi)R(t2 – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t2 – s)f(s,ϑs) ds

+
∫ t2

ςk

R(t2 – s)f(s,ϑs) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t2 – s)g(s,ϑs) dω(s)

+
∫ t2

ςk

R(t2 – s)g(s,ϑs) dω(s)

]

I[ςk,ςk+1)(t2)

–
+∞∑

k=0

[
k∏

i=1

bi(δi)R(t1 – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t1 – s)f(s,ϑs) ds

+
∫ t1

ςk

R(t1 – s)f(s,ϑs) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t1 – s)g(s,ϑs) dω(s)

+
∫ t1

ςk

R(t1 – s)g(s,ϑs) dω(s)]I[ςk,ςk+1)(t1)

=
+∞∑

k=0

[ k∏

i=1

bi(δi)R(t2 – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t2 – s)f(s,ϑs) ds

+
∫ t2

ςk

R(t2 – s)f(s,ϑs) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t2 – s)g(s,ϑs) dω(s)
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+
∫ t2

ςk

R(t2 – s)g(s,ϑs) dω(s)

]
(
I[ςk,ςk+1)(t2) – I[ςk,ςk+1)(t1)

)

+
+∞∑

k=0

[ k∏

i=1

bi(δi)
(
R(t2 – t0) – R(t2 – t1)

)
η(0)

+
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

(
R(t2 – s) – R(t1 – s)

)

× f(s,ϑs) ds +
∫ t2

ςk

(
R(t2 – s) – R(t1 – s)

)
f(s,ϑs) ds +

k∑

i=1

k∏

j=i

bj(δj)

×
∫ ςk

ςk–1

(
R(t2 – s) – R(t1 – s)

)
g(s,ϑs) dω(s) +

∫ t2

ςk

(
R(t2 – s) – R(t1 – s)

)

× g(s,ϑs) dω(s)

]

I[ςk,ςk+1)(t1)

= 2E‖J1‖2 + 2E‖J2‖2,

where

E‖J1‖2 = E

∥
∥∥∥
∥

+∞∑

k=0

[ k∏

i=1

bi(δi)R(t2 – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t2 – s)f(s,ϑs) ds

+
∫ t2

ςk

R(t2 – s)f(s,ϑs) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t2 – s)g(s,ϑs) dω(s)

+
∫ t2

ςk

R(t2 – s)g(s,ϑs) dω(s)

]
(
I[ςk,ςk+1)(t2) – I[ςk,ςk+1)(t1)

)
∥∥
∥∥
∥

2

,

E‖J2‖2 = E

∥∥
∥∥
∥

+∞∑

k=0

[ k∏

i=1

bi(δi)
(
R(t2 – t0) – R(t2 – t1)

)
η(0)

+
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

(
R(t2 – s) – R(t1 – s)

)

× f(s,ϑs) ds +
∫ t2

ςk

(
R(t2 – s) – R(t1 – s)

)
f(s,ϑs) ds +

k∑

i=1

k∏

j=i

bj(δj)

×
∫ ςk

ςk–1

(
R(t2 – s) – R(t1 – s)

)
g(s,ϑs) dω(s) +

∫ t2

ςk

(
R(t2 – s) – R(t1 – s)

)

× g(s,ϑs) dω(s)

]

I[ςk,ςk+1)(t1)

∥∥
∥∥
∥

2

.

By treating each term separately,

E‖J1‖2 ≤ 3E

(

max
k

{ k∏

i=1

∥∥bi(δi)
∥∥2

})
∥∥R(t2 – t0)

∥∥2
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×E
∥∥η(0)

∥∥2(I[ςk,ςk+1)(t2) – I[ςk,ςk+1)(t1)
)2

+ 3E

(

max
i,k

{ k∏

j=i

∥∥bi(δi)
∥∥, 1

})2

E

( +∞∑

k=0

∫ t2

t0

∥∥R(t2 – s)
∥∥2∥∥f(s,ϑs)

∥∥2 ds

)

× (
I[ςk,ςk+1)(t2) – I[ςk,ςk+1)(t1)

)2 + 3E

(

max
i,k

{ k∏

j=i

∥
∥bi(δi)

∥
∥, 1

})2

×E

( +∞∑

k=0

∫ t2

t0

∥
∥R(t2 – s)

∥
∥2∥∥g(s,ϑs)

∥
∥2 dω(s)

)
(
I[ςk,ςk+1)(t2) – I[ςk,ςk+1)(t1)

)2

→ 0 as t2 → t1.

Similarly,

E‖J2‖2 ≤ 5B2∥∥R(t2 – t0) – R(t1 – t0)
∥∥2
E

∥∥η(0)
∥∥2 + 5 max

{
1,B2}(t1 – t0)

×
∫ t1

t0

∥
∥R(t2 – s) – R(t1 – s)

∥
∥2
E

∥
∥f(s,ϑs)

∥
∥2 ds + 5(t2 – t1)

∫ t2

t1

∥
∥R(t2 – s)

∥
∥2

×E
∥∥f(s,ϑs)

∥∥2 ds + 5 max
{

1,B2}(t1 – t0)
∫ t1

t0

∥∥R(t2 – s) – R(t1 – s)
∥∥2

×E
∥∥g(s,ϑs)

∥∥2 ds + 5(t2 – t1)
∫ t2

t1

∥∥R(t2 – s)
∥∥2
E

∥∥g(s,ϑs)
∥∥2 ds

→ 0 as t2 → t1.

Thus, we have

E
∥∥(�ϑ)(t2) – (�ϑ)(t1)

∥∥2 → 0 as t2 → t1,

which implies � is equicontinuous on [t0,T].
Step 4: Now, to compute the Mönch condition, let γ ⊂ ϒT be a nonempty set and ϑ1,ϑ2 ∈

γ , by probability 1, we have

d
(
�ϑ1(t),�ϑ2(t)

)
= d

(
�ϑ1(t),�ϑ2(t)

)
,

where

(�ϑ)(t)

= max{1,B}
+∞∑

k=0

[∫ ςk

ςk–1

R(t – s)f(s,ϑs) ds +
∫ t

ςk

R(t – s)f(s,ϑs) ds
]
I[ςk,ςk+1)(t)

+ max{1,B}
+∞∑

k=0

[∫ ςk

ςk–1

R(t – s)g(s,ϑs) ds +
∫ t

ςk

R(t – s)g(s,ϑs) ds
]
I[ςk,ςk+1)(t)

= �1 + �2.
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By a similar procedure to that used in Lemma 2.3,

α
(
(�ϑ)(t)

)
= α

(
(�)(t)

)
.

Let 	 ⊂ Br be countable and 	 ⊂ co({0} ∪ �(	)). By proving α(	) = 0 the Mönch condi-
tion is verified. Set 	 = {ϑn}∞n=1, then it is well defined that 	 ⊂ co({0} ∪�(	)) is equicon-
tinuous on [t0,T] by step 3.

By Lemma 2.2 and Lemma 2.3,

α
({

�1ϑ
n(t)

}∞
n=1

) ≤ max{1,B}H (T – t0)
∫ t

t0

Cf(t) sup
θ∈(–δ,0]

α
({

ϑn(θ – μ(θ )
)}∞

n=1

)
ds

≤ max{1,B}H (T – t0)‖Cf‖L1([t0,T],R+) sup
t∈[t0,T]

α
({

ϑn(t)
}∞

n=1

)
,

α
({

�2ϑ
n(t)

}∞
n=1

) ≤ max{1,B}H (T – t0)
1
2 ‖Cg‖L2([t0,T],R+) sup

t∈[t0,T]
α
({

ϑn(t)
}∞

n=1

)
.

By using Lemma 2.3,

α
({

�1ϑ
n(t)

}∞
n=1

)
= α

({
�1ϑ

n(t)
}∞

n=1

)

≤ α
({

�1ϑ
n(t)

}∞
n=1

)
+ α

({
�2ϑ

n(t)
}∞

n=1

)

≤ [
max{1,B}H (T – t0)‖Cf‖L1([t0,T],R+) + max{1,B}H (T – t0)

1
2

× ‖Cg‖L2([t0,T],R+)
]
α
({

ϑn(t)
}∞

n=1

)
.

It follows that

α(	) ≤ α
(
co

({0} ∪ �(	)
))

= α
(
�(	)

) ≤ α(	),

implying α(	) = 0 and then 	 is a relatively compact set. Thus, � has a fixed point in 	

that is the mild solution of (1.1). This completes the proof. �

4 Stability
4.1 Continuous dependence of solutions on initial conditions

(A5) ∃ constants C1,C2 �
∥
∥f(t,ϑ) – f(t,� )

∥
∥ ≤ C1‖ϑ – �‖,

∥
∥g(t,ϑ) – g(t,� )

∥
∥
L0

2
≤ C2‖ϑ – �‖L0

2
.

Theorem 4.1 Let ϑ(t) and ϑ(t) be mild solutions for (1.1) with initial values η(0) and
η(0), respectively. Assuming (A3), (A5) holds, then the mild solution of (1.1) is stable in the
mean-square.

Proof

E
∥
∥ϑ – ϑ

∥
∥2

t

≤ 3E

∥∥
∥∥
∥

+∞∑

k=0

k∏

i=1

bi(δi)

∥∥
∥∥
∥

2
∥
∥R(t – t0)

∥
∥2 + 3E

∥∥
∥∥
∥

+∞∑

k=0

[ k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)
(
f(s,ϑs)
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– f(s,ϑs)
)

ds +
∫ t

ςk

R(t – s)
(
f(s,ϑs) – f(s,ϑs)

)
ds

]

I[ςk,ςk+1)(t)

∥
∥∥
∥∥

2

+ 3E

∥
∥∥
∥∥

+∞∑

k=0

[ k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)
(
g(s,ϑs) – g(s,ϑs)

)
ds

+
∫ t

ςk

R(t – s)
(
g(s,ϑs) – g(s,ϑs)

)
ds

]

I[ςk,ςk+1)(t)

∥∥
∥∥
∥

2

≤ 3B2H 2
E

∥∥η(0) – η(0)
∥∥2 + 3 max

{
1,B2}(T – t0)

[∫ t

t0

E
∥∥f(s,ϑs) – f(s,ϑs)

∥∥2 ds

+
∫ t

t0

E
∥
∥g(s,ϑs) – g(s,ϑs)

∥
∥2 ds

]
,

which implies

sup
t∈[t0,T]

E‖ϑ – ϑ‖2
t ≤ 3B2H 2

E
∥
∥η(0) – η(0)

∥
∥2

+ 3 max
{

1,B2}H 2(T – t0)(C1 + C2)
∫ t

t0

sup
s∈[t0,t]

E‖ϑ – ϑ‖2
s ds.

By Gronwall’s inequality

sup
t∈[t0,T]

E‖ϑ – ϑ‖2
t ≤ 3B2H 2

E
∥∥η(0) – η(0)

∥∥2
exp

{
3H 2 max

{
1,B2}(T – t0)(C1 + C2)

}
.

For ε > 0, there exists a positive number

τ =
ε

3B2H 2 exp{3H 2 max{1,B2}(T – t0)(C1 + C2)} > 0.

� E‖η(0) – η(0)‖2 < τ , then

sup
t∈[t0,T]

E‖ϑ – ϑ‖2
t ≤ ε.

This completes the proof. �

4.2 Hyers–Ulam stability
Definition 4.1 Suppose � (t) is a Y-valued stochastic process and there exists a real num-
ber C > 0 � for arbitrary ε > 0 satisfying

E

∥
∥∥
∥∥
� (t) –

+∞∑

k=0

[ k∏

i=1

bi(δi)R(t – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)f(s,�s) ds

+
∫ t

ςk

R(t – s)f(s,�s) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)g(s,�s) dω(s)

+
∫ t

ςk

R(t – s)g(s,�s) dω(s)

]

I[ςk,ςk+1)(t)

∥
∥∥∥
∥

2

≤ ε, ∀t ∈ [t0,T]. (4.1)
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For each solution � (t) with the initial value �t0 = ϑt0 = η, if ∃ a solution ϑ(t) of (1.1) with
E‖� (t) – ϑ(t)‖2 ≤ C ε, for t ∈ [t0,T]. Then, (1.1) has Hyers–Ulam stability.

Theorem 4.2 Assume conditions (A3) and (A5) are satisfied, then (1.1) has Hyers–Ulam
stability.

Proof Let ϑ(t) be a mild solution of 1.1 and � (t) a Y-valued stochastic process to satisfy
(4.1). Obviously, E‖� (t) – ϑ(t)‖2 = 0 for t ∈ [–δ, 0]. Moreover, for t ∈ [t0,T], we have

E‖� – ϑ‖2
t

≤ 2E

∥∥
∥∥
∥
� (t) –

+∞∑

k=0

[ k∏

i=1

bi(δi)R(t – t0)η(0) +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)f(s,�s) ds

+
∫ t

ςk

R(t – s)f(s,�s) ds +
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)g(s,�s) dω(s)

+
∫ t

ςk

R(t – s)g(s,�s) dω(s)

]

I[ςk,ςk+1)(t)

∥∥
∥∥
∥

2

+ 2E

∥∥
∥∥
∥

+∞∑

k=0

[ k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)

× (
f(s,�s) – f(s,ϑs)

)
ds +

∫ t

ςk

R(t – s)
(
f(s,�s) – f(s,ϑs)

)
ds

+
k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)
(
g(s,�s) – g(s,ϑs)

)
ds +

∫ t

ςk

R(t – s)

× (
g(s,�s) – g(s,ϑs)

)
ds

]

I[ςk,ςk+1)(t)

∥∥
∥∥∥

2

≤ 2ε + 2E‖J ‖2.

Now, we consider

E‖J ‖2 = 2E

∥∥∥
∥∥

+∞∑

k=0

[ k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)
(
f(s,�s) – f(s,ϑs)

)
ds

+
∫ t

ςk

R(t – s)
(
f(s,�s) – f(s,ϑs)

)
ds +

k∑

i=1

k∏

j=i

bj(δj)
∫ ςk

ςk–1

R(t – s)

× (
g(s,�s) – g(s,ϑs)

)
ds +

∫ t

ςk

R(t – s)
(
g(s,�s)

– g(s,ϑs)
)

ds

]

I[ςk,ςk+1)(t)

∥
∥∥
∥∥

2

≤ 2 max
{

1,B2}H 2(T – t0)
∫ t

t0

E
∥
∥f(s,�s) – f(s,ϑs)

∥
∥2 ds

+ 2 max
{

1,B2}H 2
∫ t

t0

E
∥∥g(s,�s) – g(s,ϑs)

∥∥2 ds.
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Taking the supremum on both sides and using (A5),

sup
t∈[t0,T]

E‖� – ϑ‖2
t ≤ 2ε + 4 max

{
1,B2}H 2(T – t0)C1

∫ t

t0

sup
t∈[t0,T]

E‖� – ϑ‖2
s ds

+ 4 max
{

1,B2}H 2C2

∫ t

t0

sup
t∈[t0,T]

E‖� – ϑ‖2
s ds.

By following Gronwall’s inequality, there occurs a constant

C := 2 exp
{
max

{
1,B2}H 2[(T – t0)C1 + C2

]}
> 0.

This implies that

sup
t∈[t0,T]

E‖� – ϑ‖2
t ≤ C ε.

This implies the Hyers–Ulam stability of (1.1). Thus, the proof is complete. �

4.3 Mean-square exponential stability
In order to prove the theorem we may take into consideration the following lemma

Lemma 4.1 [26] For ρ > 0, ∃ some positive constants υ,υ ′ > 0 � if υ ′ < ρ , the following
inequality

� (t) =

⎧
⎨

⎩
υe–ρ(t–t0), t ∈ [–δ, 0]

υe–ρ(t–t0) + υ ′ ∫ t
t0

e–ρ(t–s) supθ∈(–δ,0] � (s + θ ) ds, t ≥ t0

holds. Then, we have � (t) ≤ F e–τ (t–t0), where τ > 0 satisfying

υ ′

ρ – τ
eτ (δ+t0) = 1

and

F = max

{
υ

υ ′ (ρ – τ )e–τδ ,ρ
}

.

Theorem 4.3 Assume (A3), (A5) is satisfied, then the mild solution of (1.1) is mean-square
exponentially stable.

Proof Together with the assumed hypotheses and Holder’s inequality,

E
∥
∥ϑ(t)

∥
∥2

≤ 3E

(

max
k

{ k∏

i=1

∥∥bi(δi)
∥∥2

})2
∥∥R(t – t0)

∥∥2
E

∥∥η(0)
∥∥2 + 3E

(

max
i,k

{ k∏

j=i

bj(δj)

}

, 1

)2

×E

(∫ t

t0

∥
∥R(t – s)

∥
∥
∥
∥f(s,ϑs)

∥
∥ds

)2

+ 3E

(

max
i,k

{ k∏

j=i

bj(δj)

}

, 1

)2
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×E

(∫ t

t0

∥∥R(t – s)
∥∥∥∥g(s,ϑs)

∥∥dω(s)
)2

≤ 3B2H 2e–ρ(t–t0)
E

∥∥η(0)
∥∥2 + 3 max

{
1,B2}H 2

∫ t0

t
e–ρ(t–t0)

E
∥∥f(s,ϑs)

∥∥2 ds

×
∫ t

t0

e–ρ(t–t0) ds + 3 max
{

1,B2}H 2
∫ t

t0

e–ρ(t–t0) ds
∫ t0

t
e–ρ(t–t0)

E
∥∥g(s,ϑs)

∥∥2 ds

≤ 3B2H 2e–ρ(t–t0)
E

∥∥η(0)
∥∥2

+ 3 max
{

1,B2}H 2(C1 + C2)
ρ

∫ t

t0

sup
θ∈[–δ,0]

E
∥
∥ϑ(s + θ )

∥
∥2 ds

≤ F e–ρ(t–t0), ∀t ∈ [–δ, 0],

where F = max{3B2H 2
E‖η(0)‖2, supθ∈[–δ,0] E‖η‖2}.

Thus, by Lemma 4.1, ∀t ∈ [t0 – δ, +∞],

E
∥
∥ϑ(t)

∥
∥2 ≤ F e–τ t.

This completes the proof. �

5 Illustration
In order to validate the abstract theory, let us take into account the system on a bounded
domain � ⊂ Rn with the boundary ∂�:

d[z(t,ϑ)
∂t

] =
∂2

∂ϑ2 z(t,ϑ) +
∫ t

0
α(t – s)

∂2

∂ϑ2 z(s,ϑ) ds +
∫ t

–r

[
κ1(θ )z(t + θ ) dθ

]

+
∫ t

–r

[
κ2(θ )z(t + θ ) dθ

]
dω(t), t ≥ δ, t �= ςk ,

z(ςk ,ϑ) = h(k)δkz
(
ς–

k ,ϑ
)
, ϑ ∈ � (5.1)

z(t0,ϑ) = η(θ ,ϑ) =
{
η(θ ) ≤ θ < 0

}
, ϑ ∈ �, θ ∈ [–δ, 0]

z(t,ϑ) = 0, ϑ ∈ ∂�.

Let X = L2(�), α : R+ → R+. κ1,κ2 be positive functions from [–δ, 0] to R . Assuming δk

to be a random variable defined on Dk = (0,dk) with 0 < dk < +∞ for k = 1, 2, . . . . Without
loss of generality, we may assume that {δk} follows an Erlang distribution. δi, δj are mutually
independent with i �= j for i, j = 1, 2, . . . . h is a function of k, ςk = ςk–1 + δk , where {ςk} forms
a strictly increasing process with independent increments and t0 ∈ [0,T] is an arbitrary
real number.

Let A be an operator on X by Az = ∂2z
∂ϑ

,

D(A) = {z ∈ X : z and zϑ are absolutely continuous, zϑϑ ∈ X , z = 0 on ∂�}.

Also, let the map B : D(A) ⊂ X → X be the operator defined by

B(t)(z) = α(t)Az for t ≥ 0 and z ∈ DA.
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The operator A can be expressed as

Az =
∞∑

n=1

n
2〈z, zn〉zn, z ∈ DA,

where zn(� ) = ( 2
π

) 1
2 are the corresponding eigenvectors of A. Obviously, zn(� ) form an

orthonormal system in X. Moreover, A is the infinitesimal generator of an analytic semi-
group (R(t))t≥0 in X, satisfying

∥∥R(t)
∥∥ ≤ exp

{
–π2(t – t0)

}
, t ≥ t0.

Also, we have the following additional conditions:
(i)

∫ 0
–δ

κ1(θ )2 dθ < ∞,
∫ 0

–δ
κ2(θ )2 dθ < ∞,

(ii) E(maxi,k{∏k
j=i ‖h(j)(δj)‖}2) < ∞.

Using the aforementioned conditions, (5.1) can be modeled as the abstract random im-
pulsive stochastic differential equation of the form (1.1),

f(t, zt) =
∫ t

–r
κ1(θ )z(t + θ ) dθ ,

g(t, zt) =
∫ t

–r
κ2(θ )z(t + θ ) dθ ,

bk(δk) = h(k)δk .

Condition (i) implies that (A5) holds with

Ci =
∫ 0

r

κ2
i (θ ) dθ , for i = 1, 2,

along with condition (ii), implying (A3). This shows that (5.1) has a mild solution. More-
over, we achieve the stability results [continuous dependence of solution on initial condi-
tions and Hyers–Ulam stability] as in Sect. 4. Finally, if λ′ ≤ τ , i.e.,

3 max
{

1,B2}(C1 + C2)/
(
π2) ≤ π2,

then (5.1) is mean-square exponentially stable under the assumptions (A3) and (A5).

6 Outlook
In this paper, the random impulsive stochastic delay differential system with resolvent
operator (1.1) has been proposed and the existence and various stabilities including the
continuous dependence of solution on initial conditions, Hyers–Ulam stability, and mean-
square exponential stability results are carried out with the use of stochastic analysis tech-
niques and functional analysis. Significantly, this system can be further extended to neutral
problems, fractional stochastic differential systems with random impulses.
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