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Abstract: In this article, we present a one-parameter fractional multiplicative integral identity and use it to
derive a set of inequalities for multiplicatively s-convex mappings. These inequalities include new discoveries
and improvements upon some well-known results. Finally, we provide an illustrative example with graphical
representations, along with some applications to special means of real numbers within the domain of multi-
plicative calculus.
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1 Introduction

Multiplicative calculus, first introduced by Grosman and Katz in 1967, emerged as a novel approach to classical
calculus, addressing issues related to rates of change and multiplicative processes [1]. This calculus, primarily
applied to positive functions, was formalized by Bashirov et al. in their comprehensive work in 2008, as
outlined in [2]. Its significance lies in its enhanced ability to handle phenomena involving growth, decay,
and proportional relationships more effectively. Over time, it has found relevance in various domains,
including finance [3], biology [4], and physics [5], offering a fresh perspective on modeling and analysis for
scenarios where traditional calculus may prove inadequate.

On the flip side, convexity stands as a fundamental mathematical concept with a crucial role in diverse
scientific fields. Its significance comes from its ability to capture the essential characteristics of numerous real-
world phenomena, making it a powerful tool for modeling and analysis. In particular, convex functions exhibit
remarkable properties that simplify optimization, economics, and even the understanding of physical systems.
A function Z is considered convex over the interval [a, b] if, for all y, and y, within this interval, the following
inequality holds for any 5 in the range [0,1]:

Zyy, + A= ny,) <nZOy) + A - mMZY,).
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One of the key inequalities linked to convexity is the Hermite-Hadamard inequality, which asserts that for
a convex function Z defined on an interval [a, b], the following inequalities hold:

a+b
2

b
1
<= a{Z(y)dy <

Z(@) + Z(b)
> .

In the literature, various extensions and variations of the concept of convexity have emerged and have
been employed to estimate the error of certain quadrature formulas. However, the most suitable variant in
conjunction with multiplicative calculus is logarithmic convexity, also known as multiplicative convexity,
which can be formulated as follows:

Definition 1.1. [6] A function Z : I » R* is considered multiplicatively convex if, for all y,,y, € I, the fol-
lowing inequality

Zny, + A= ny,) < [ZO)Pf Q)N
holds true for all n € [0, 1].

In [7], Ali et al. incorporated the Hermite-Hadamard inequality into the multiplicative calculus framework.

Theorem 1.2. Let Z be a positive multiplicatively convex function on the interval [a, b]. Then, the following
inequalities hold:

1
b-a

< JZ@Z®). M

Z

a+b]
<
2

b
[z

Significant research has been conducted in the field of multiplicative integrals. In [8], the authors estab-
lished midpoint and trapezoid-type inequalities for multiplicatively convex functions. Ali et al. [9] conducted
an examination of Ostrowski- and Simpson-type inequalities in the context of multiplicatively convex func-
tions. Furthermore, another investigation detailed Maclaurin inequalities [10], while Meftah and Lakhdari [11]
delved into dual Simpson-type inequalities. For additional resources on multiplicative integral inequalities, we
encourage the reader to refer [10,12-16].

In [17], Abdeljawad and Grossman presented the multiplicative Riemann-Liouville fractional integrals in
the following manner:

Definition 1.3. [17] The operators defining the multiplicative left- and right-sided Riemann-Liouville fractional
integrals of order a € C, where Re(a) > 0, are as follows:

(a Iftz)(y) = eUk(n- Z))(y), a<y @
and
(L)) = i D,y <, ©

where J* and J? denote the left- and right-sided Riemann-Liouville fractional integral operators, see [18].

The fractional Hermite-Hadamard inequalities in the context of multiplicative Riemann-Liouville frac-
tional integrals was established by Budak and Ozcelik in [19].
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Theorem 1.4. Let Z be a positive multiplicatively convex function on the interval [a, b). Then, the following
inequalities hold:

Zaflq(m-l)
b-a)®

*I‘;H,Z(a)MI:Z(b)] B JZ@ZD). @
2 2

Z

a+b]
<
2

In their work presented in [20], Fu et al. explored multiplicative tempered fractional integrals, extending
the findings of Ali et al. [7] and Budak and Ozcelik [19]. Furthermore, within the realm of fractional multi-
plicative integrals, Moumen et al. [21] established Simpson inequalities, while Boulares et al. [22] demonstrated
Bullen-type inequalities. Additionally, Peng and Du contributed to the field with their work on fractional
multiplicative Maclaurin-type inequalities in [23]. For further pertinent results, readers can refer to [24-29]
and references mentioned therein.

Drawing upon the insights gleaned from the aforementioned works, this study begins by introducing a
parameterized identity integral specifically designed for multiplicative differentiable functions. Building upon
this foundational equality, we then proceed to derive a set of three-point Newton-Cotes-type inequalities,
specifically tailored for multiplicative s-convex functions. To wrap up our investigation, we provide practical
applications that vividly illustrate the usefulness and significance of the results we have established.

2 Preliminaries

In this section, we provide a review of fundamental concepts associated with multiplicative calculus essential
for the subsequent development of our study.

Definition 2.1. [2] The multiplicative derivative of a positive function Z, denoted as Z* is defined as follows:

1
h

Zy+h
<

oz
dy _Z(Y)_}g%

Remark 2.2. Each positive and differentiable function Z inherently exhibits multiplicative differentiability,
with the interconnection between Z’ and Z* governed by the following relationship:

Z') = eMZOV = %0,

Proposition 2.3. [2] Let Z and X be two multiplicatively differentiable functions, and Q is differentiable. Let ¢ be
an arbitrary positive constant, then functions ¢cZ, ZX, Z + X, Z/X, Z9 and Z ° Q are multiplicatively
differentiable and we have

- €y =",

- ZX)(y) = Z X" (),

ZW) X(y)
- (Z + X)'(Y) = Z' )z X (y)zo+x0,
Z

X

o ZW
W)= %o

- (ZY'(y) = Z()VZ ()W,
- (Z - Q') = Z Q).

Definition 2.4. [2] The multiplicative integral of a positive function Z is defined as follows:

b b
J@® = e} [ mzmay
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Proposition 2.5. [2] Consider positive and Riemann integrable functions Z and X, then Z and X are multi-
plicative integrable and the following properties hold true.

12
- [lzmw = [Jf(zu))dy] , DER,

- [ b(Z(y)X(y))dy = L@@ @,
J )y
- I Pxomy’

- o = [ @ @o®.a<c<b,

-1

Z(y)
X(y)

- [(ZO)Y =1, and [(Z(@)® = [J,j‘ Z)Hv

Theorem 2.6. [2] Let Z : [a, b] —» R be multiplicative differentiable, and let Q : [a, b] —» R be differentiable, so
the function Z9 is multiplicative integrable. Then

Zor® 1
Z(a)X@ J':(z(y)/\”()’))dy .

b
[y -

Lemma 2.7. [9] Let Z : [a, b] » R* be multiplicative differentiable, let X : [a,b] - R,and letQ : J CR — R be
two differentiable functions. Then we have

Z@m)*® !
2@ flz@un

[z @y -

3 Main results
First, let us revisit the definition of multiplicatively s-convex functions.

Definition 3.1. [30] A function Z : I C R —» R* is considered multiplicatively s-convex for some fixed s € (0, 1]
if for all y,,y, € I the following inequality

Zy, + A= ny,) < [ZONI[Z ()1
holds true for all n € [0, 1].

Now, we introduce a lemma that will serve as the main tool for establishing the key results.

Lemma 3.2. Let Z{a, b] » R* be a multiplicative differentiable mapping on [a, b] with a < b. If Z* is multi-
plicative integrable on [a, b], then we have the following identity for multiplicative integrals:

(Z(@):

a+ b)) ) e
Z[T]] (Z(b))Z](j(a’ b; Z; a)) w-a"

1 1-v-(1-n)* dn
feome2] ™
0

b-a
411

| [[z*[(l -

0

b-a
a_c_~\dn) 4
b n“-(1-v)
+ qbl] R
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where v belongs to the interval [0, 1], and J is defined as

b 211*1 b 211*1
I@b; 70 = (12| ]] l(J,‘,‘Z) - ]] .
Proof. Let
1 1-v--n?\ O
. a+b
Ilzﬂ[Z[(l—r))a+q . ]] ]]
and
1 a_q_ dl]hTTa
. a+b n'-(1-v)
L= _O[[Z[(l-n) 2 +nb]]

Using Theorem 2.6, then from 7; we have

1-v-(1-n)°* dn
et

b- @47
o[ ]

b-a
4

I1=

© b

Il
[y ——

[z*[(l -ma+n 5

) 1
Z@y: e
J; [Z[(l -na+ nT]]

1-v

(Z(a»%[z[“i”]] Z

dn

1
exp %JO 1 -np*tlin|zZ

(1-ma+ n“%”]]dn]

1-v

o

(Z(@)):

a+b a-1
Ip(q + a+
exp[z(,ffa)f’[r;)[l ’ [ 2 -y| Iz e)dy
1-v _2" Mm@
v + bl ? +b b-a)*
= (Z(@)) z[“T]] [(alf'z> - ] .

(6)]

(6)
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Similarly,
b-a
4

1 n'-a-o)|
1= j[lz*[(l -t nb]] ] ’
0

dn

[Z*[(l - n)a ; b nb

]]”;“(n“—(l—v))

1
-
(Z(b)): 1
a al,dn

[Z[a;b”lg“ ‘[01“2[(1 - nb] !

™

2

”]] (zmy

[z

Zla-mpst+ nb]]dn]

1
%J:) n*'In

exp

z[‘””]] oy

2

(P, - axe
@) %u 2

.
- ]] <z(b)>z[(,,1;;z>

2% Yya-1)
-t

a-1
In(Z(y)dy

[exp

227 Ip(a+1)

a+ b] T (-af
2 .

Z

Multiplying equalities (6) and (7) yields the desired result, thus concluding the proof. O

Theorem 3.3. Let Z : [a, b] » R* be an increasing and multiplicative differentiable mapping on[a, b]. If Z* is
multiplicative s-convex on [a, b), then for allv € [0, 1] we have

b-a a+b
< (Z(@)Z b))+ VeI Z* 2 ,

]b'za’W(v,a,s)

1-v

b zmy

(@, b; Z; @) ot

Zz

(Z()):

where J is defined by (5), while V and ‘W are expressed as (8) and (9), respectively.

Proof. From Lemma 3.2 and the properties of multiplicative integral, we have

(@, b; Z; Q) oo

Z

b)Y ,
= ]] by

‘ ‘(Z (@)

a+b
A-ma+n—; ]dn

1
b_
2n-v-a-mpomz
0

< exp|—,

a+b
a-m— +nb]dn

1
X exp —b ; a Ima -(1-v)|InZy
0
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Using the multiplicative s-convexity of Z*, we obtain

(Z(@))|Z (J(a,b; Z; a))'<rb%l‘i

1-v
—b]] (Z()):

IA

exp

—j|1 —v-(1-n)A [(1 - pfInZ*@) + n* InZ"

e

b] +ns an*(b)]dr]

X exp

b -
0 jm“ - (- v>|[(1 -z
0

b 255 W(v,a,s)
(Z(@Z ) Vo z| L ]

>

where we have used

V,a,9)= [11-v - @~ - prdy
0

1
= _[Il - v - nnidn ®
0
(a+s+1)v—a+2a(1—v)
(s+D@a+s+1)

a+s+]

and
W, a,9)= I - @ - v)Ia - nedy
= [1-v-a- ®
0
s+1
1[1 2[1 -(1- v)a] S, i@+ Ls+),
with

Dy(u, v) = By(u, v) = Bix(v,y),

where B,(.,.) is the incomplete beta function.
This completes the proof. O

Corollary 3.4. From Theorem 3.3, we deduce that for any positive function Z that is increasing and multi-
plicative differentiable on [a, D), if Z* is multiplicatively convex on [a, b], then for all v € [0, 1], the following
inequalities hold for fractional multiplicative integrals.

(Z(a)):

a+b 1 v _I(a+)
z[ . ] (z<b>>z](J(a, b; Z: @) or

a+b
2

’

]” 2 W(a,v,1)

< (Z(@)Z (b)) Ve z [

where

(a+2v-a+2a(- U)aT+Z

(10)
2(a + 2)

VY(@,a,1) =
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and

a+l a+2

v +3a+2)+4a(a+2)1-v)e -2a(a+ DA -v)« - (a® + 3a)
2(a + D(a + 2) '

W(a,v,1) = (1

Remark 3.5. In Corollary 3.4, if we take
1jv = % then we obtain Theorem 10 from [21].

2/v = % then we obtain Theorem 5 from [22].
Corollary 3.6. From Theorem 3.3, we deduce that for any positive function Z that is increasing and multi-

plicative differentiable on [a, b, if Z* is multiplicatively s-convex on [a, b], then for all v € [0, 1], the following
inequalities hold for multiplicative integrals.

1-v
= b]] <Z(b))3’

(Z(@)): z[

b a-b
j(z@))dy]

s+1fu(s+2)+2v“2(b_ )
s+2)v-1+2(1-0)5* a+ b] As+1)(s+2) a

< (Z(@Z®) e 2“"“)2*[7

Corollary 3.7. From Theorem 3.3, we deduce that for any positive function Z that is increasing and multi-
plicative differentiable on [a, b], if Z* is multiplicatively convex on [a, b], then for all v € [0, 1], the following
inequalities hold for multiplicative integrals.

b =3
2 j(z@))dY'

1-v
[(zm»?[z[“ b ]] (Z(b»?]

(2-3v+20%)(b-a)
a+b 12

2

(1—3v+6u2—2u3)(b—[1) N

< (Z'(@Z'(b)) = Z [

Remark 3.8. In Corollary 3.7, if we take
1/v = 1, then using the multiplicative convexity of Z* we obtain Theorem 3.6 from [8].

2/v = %, then we obtain Corollary 3 from [21].

3v = % then we obtain Corollary 3 from [22].

Theorem 3.9. Let Z : [a, b] = R* be an increasing multiplicative differentiable function on[a, b]. If InZ*)? is s-

convex on [a, b], where q > 1 with% + 5 =1, then for allv € [0, 1] we have

1-v

(Z(b)):

T'(a+1)

(J(a, b; Z; a)) o-o"

(Z(@a)|z

a+b]

2+ b0 ve( L) wapoyp
< | Z%(a) Z[T] Z(b) ,
where J is defined as (5), and

1- p)Pre
lp(ax D, U) = %B

1 +1]+Lﬂ F[l—ll +2;0 (12)
a:p a(p+1)2 1 a: ’p ) ’

with B and , F; are beta and hypergeometric functions, respectively.



DE GRUYTER On parameterized inequalities for fractional multiplicative integrals == 9

Proof. From Lemma 3.2, properties of multiplicative integral, and Hélder’s inequality, we have

1-v "
‘ [(z<a>>?[z[¥]] (Z(b»?](ﬂa, b; Z: @) oot

S

1
r

1 1
b-a . a+b)|
< expl—, [_!Il-v—(l-n)“lpdn _([lnz A-ma+n 5 ] dn
1 1111 111
b-a . a+b 1
x exp|— ‘{In“-(l—v)lpdn { InZ 1A -n 5 +nb] dn

Using the s-convexity of (InZ*)?, we obtain

(Z(a): (T(a,b; Z; @) oot

1-v
752 on

1
1 q

q
< exp| = (¥(a p, )| [<1— DWZ (@) + 7| InZ* %b]] ]d"
0
b-a t a+b)| ‘
x exp| > —(¥(a, p, V) I[(l—n)s Inz* T]] +rf(1nz*<b>)q]dn
0
_ a "
- exp) 4@ b o) | Jnz @y 4 lnz*¥] ] ’
B L q 7
 exp| W@ p v))%[s : 1] [[mz*[“ L ]] + <1nz*<b>>q] ’
where we have used
1 (1—v)% 1
Jine-a-vpdn= [ @-v)-nopan+ [ (- @- vy = ¥ p,v).
0 0 (1_0)411

Using the fact that A7+ B89 < (A + B)1 for A 2 0, B = 0 with g > 1, (13) gives

(J(a, b; Z; a))'%

1-v
] (Z(b))?

‘ [(zm))%[z[“—;b

1
q

4

< exp a(‘P(a, p, v))zli InZ*a) + InZ*

s+1

=)

+InZ *(b)]]

b-a
4

X exp

@@, l]q[mz*[“ -2

a+b
2

1
q
]”4[311] (apo))P

= IZ *(a)[Z [ ]]ZZ “(b)

The proof is completed.

13
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Corollary 3.10. From Theorem 3.9, it follows that for any positive function Z that is increasing and multi-
plicative differentiable on [a, b], if InZ*)? is convex on [a, b], where q > 1 Wl'th% + % =1, then the subsequent
inequalities apply for fractional multiplicative integrals across all v € [0, 1].

(I b; Z; @) ook

1-v
] (Z(b)):

(Z(a))?[z[%

1

]”4“(§)"(W<a,p,v>>§

b 2
< ‘z*(a)[z*[%]] ) :
where J and ¥ are defined as (5) and (12), respectively.

Corollary 3.11. From Theorem 3.9, if InZ*)? is s-convex on|[a, b], whereq > 1 with% + é = 1, then the following
inequalities hold for multiplicative integrals across all v € [0, 1].

a+

b 1-v .
; ]] (Z®)):

Z

b a-b
I(Z(y))dy]

I(Z(a))g

[

1
p+1

1
(o)’
s+1

Lepp G
< | Z%@) 1= Z'(b)

Corollary 3.12. From Theorem 3.9, if In.Z*) is convex on [a, b}, where q > 1 with% + % = 1, then the following
inequalities hold for multiplicative integrals across allv € [0, 1].

1-v
= b]] (z<b>)?]

(Z(a)): z[

b a-b
j(z@))dYI

1

1
b-a cq _.\p+1, ., p+1\y
e e

1 1
G
2

<

2

2
z*(a)[z*[“ b ]] z*<b>]

Theorem 3.13. Let Z : [a, b] = R* be an increasing multiplicative differentiable function on[a, b]. If InZ*)? is
s-convex on [a, b] for q > 1, then for allv € [0, 1] we have

(Z@@)y|z [

1-v
= b ]] (z<b))¥](3'<a, b; Z; @) oot

.

b-a

< (Z@WZ'B)

[

((V(U,a,s))%

a1\
v-a(l-v)+2a(1l-v) @
a+l

a1 "
b_zalv—a(l—v);fla(l—v) a’ (’W(v,a,s))%

>

where J is defined by (5), while V and ‘W are expressed as (8) and (9), respectively.
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Proof. From Lemma 3.2, modulus, and power mean inequality, we have

a+p)Y , e
Z[T]] (Z(b))z](j (a,b; Z; a)) -0

| (Z@):
b-a 1 1-4(1 a+p L @
< exp|—, Mll-v—(l—n)“ldn {Il—v-(l-n)“l InZ’ A -ma+n—; ] dn
b-a 1 1-4(1 a+b q i
x expl—, {In“ - (1 -v)ldy ‘{In“ -A-olnZ|A-m——+ nb] dn
Utilizing s-convexity of (InZ*)?, we obtain
Ul a+b v v _ M+
(Z(a)) Z[T] (Z)|(J(a, b; Z; a)) o-o*
b-afv-al-v) 2 a;rll_%
e e B TR, U)“]
1 0+ Bl @
x _[Il —v-(1- n)“l[(l - (InZ (@) + 0| InZ* T]] Idn
0
b-alv-al-v) 2a _ Lﬂl"‘ll
R a1 g+l U>a]
1 R 7
x”M“—ﬂ—v»ﬂ—nfanhjfﬁ]+n%mzxmwkn 14
0
_ b-afv-al-v) 2a @)l
a4 U)a]
1 1 1 a+ b))
x [((V(v, a, s))a an*(a)] + (W, a, ) InZ" 3 ]
b-afv-al-v) 2a a1 )l
R a1 T a+il U)“]
1 a+b)| 1 as
x [[((W(v, a, s))dInZ* T] + [((V(v, a, s))d an*(b)] ,
where we have used (8), (9), and
v-a(l-v) . 2a - U)agl'

1 1
{u—v—a—nVMn=91—v—WMn= et ar
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Using the fact that A7+ B1< (A + B)l for A 2 0, B =2 0 with q = 1, (14) gives

(Z(@)):

a+ b , e
Z[T]] (Z(b))z](j (a,b; Z; a)) -0

1

ar1)' 74
1(1—U)a]

)

b—a[v—oz(l—v)+ 2a
4 | a+1 a+

< exp

x [(q/(u, a, $))1InZ*(@) + (W, a,s))iInZ*

b-a
4

v—a(l—v)+ 2a
a+1 a+

X exp 1(1 - v)agll

a+b
2

] +(V(v, a, $)) 1nz*(b>]]

1

x [(W(v, a,8))InZ’

1-

a+l
b?Ta W (V(U,a,s))'ll
= (Z(@Z(b))
a+l
1+ b b_Tﬂ v—a(l—v)a++21a(1—v) ’ (’W(v,a,s))%
7] -
2

The proof is completed. O

Corollary 3.14. From Theorem 3.13, it follows that for any positive function Z that is increasing and multi-
plicative differentiable on [a, D], if An.Z*)? is convex on [a, b], where q > 1 with% + % = 1, then the subsequent

inequalities apply for fractional multiplicative integrals across allv € [0, 1].

T(a+1)

(J(a, b; Z; a)) e-a"

(Z(@) z[%”

1-v
] (Z(b)):

1
b-a
4

< (Z(@Z (b))

(ﬂ/(u,a,l))fll

a+1)”
v-a(l-v)+2a(1l-v) @
a+l

1
at1)7q
a+b ”E“‘U—a(l_v);ff - ’ (WD)

x|\Z 5

E

where J,V, and ‘W are defined as (5), (10), and (11), respectively.

Corollary 3.15. From Theorem 3.13, if (InZ*)? is s-convex on [a, b], where q > 1 with % + % =1, then the
following inequalities hold for multiplicative integrals across all v € [0, 1].

. A\ -
(Z@) z[%]] (Z(b))Z][J(Z(y))dy’

1
g

u[l—lwlvz

< (Z(@Zh) 'l 2

1 1
b—a[l—ZLHZuZ]1 q[8+1-(8+2)v+205*2r
2

x [Z*[a er b]] 2 (+(s+2)

1
(s+2)u-1+2(1-v)**2 )¢
(s+1)(s+2)
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Corollary 3.16. From Theorem 3.9, if (InZ*)? is convex on[a, b], where q > 1 with % + % =1, then the following

inequalities hold for multiplicative integrals across allv € [0, 1].

1
a-b

, A\
1(Z(a))z[z[%]] (Z(b))Z’ Jzom

1 1

-1 1

b-a 1—2U+2U2] q[1—3U+6U2—2U3]q
6

< (Z(@Zby ' 2
o] o]

xz*_a;b]]z

4 Illustrative examples and applications

In this section, we provide a practical example and visual representations to validate our study’s results, along
with some applications.

4.1 Graphical illustration

Example 4.1. Let us consider the function Z(y) = e for s € (0, 1] with a = 0 and b = 1, the multiplicative

derivative of this function is Z*(y) = e¢*D0*D’ which is multiplicatively s-convex on [0, 1]. Then, from
Theorem 3.3, we have for 0 < a < 1:

33+1 % 1 a-1 1 1uf1
5| av-a|f; (Y+1)s+1[§‘Y] dy+I%(y+1>S”Lv—§] dy

(1+25+1)%+

a+2)vwas) | 3Ww.as)
4 2s+1

e <

3

where V and ‘W are defined as (8) and (9), respectively.

Given that the aforementioned outcome is contingent on three parameters, we will explore two scenarios
where one parameter is held constant. We will then illustrate the outcome in relation to the remaining two
parameters.

Case 1: By setting a = 1, we achieve from Corollary 3.6 the following result, represented graphically in
Figure 1:

s+1
(1+23+1)%+l%] (1—U)—% i(1+25)[(s+2)u—1+2(1—u)“zj+35[s+1—u(s+2)+2v5+2]
< 5+2 4 2s+1

e

Case 2: When setting s = 1, we obtain the following result from Corollary 3.4, which is depicted graphically
in Figure 2.

4(a+2) - 4(a+1)(a+2)

ar2 2 a*l a*z
5(a+2)v-a+2a(1-v) @ 3u(a“+3a+2)+4a(a+2)(1-v) @ -2a(a+1)(1-v) @ -(a“+3a)

100+9(1-v) _a2a71 (a+2)(5a+4)+1
e 4 La@@ )| < @

Leveraging the insights gleaned from Figures 1 and 2, it becomes evident that the right-hand term consistently
surpasses the left-hand term. This observation holds consistent across the two cases under consideration,
offering substantial evidence to validate our findings.
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I Right hand side
I Left hand side

0.5
0.5

parameter s 00 parameter v

(@

Figure 1:a =1, v € [0,1], and s € (0, 1]. (a) View no. 1 and (b) view no. 2.

4.2 Some applications

Let us consider the following special means for arbitrary real numbers a, b.

(1) The arithmetic mean: A(a, b) = a;b.
(2) The harmonic mean: H(a, b) = aszb, a,b > 0.

(3) The geometric mean: G(a, b) = Jab ,a,b>0.
a,b>0

b-a
Inb -Ina’

(4) The logarithmic mean: L(a, b) =

(5) The p-Logarithmic mean: L,(a, b) = [ (

bp+1 - ap+1
p+Db-a)

(b)

and a # b.

0.5

parameter v

DE GRUYTER

I Right hand side
I Lcft hand side

parameter s

1
7
,a,b>0,a#b,and p € RY{-1, 0}.

Proposition 4.2. Let a and b be two positive real numbers with a < b and let v € [0, 1], then we have

eUH (@, bP)+(1-v)H P(a,b)-G *(a,b)LY(a,)

-1
1 ]p

< |e

I Right hand side
I Left hand side

0.5

parameter o 00 parameter v

(a)

Figure 2: s =1,v € [0,1], and a € (0, 1]. (a) View no. 1 and (b) view no. 2.

p-1
p(l—3u+6u2—2v3)“%] +[

2(2-3v+20°
o ( )

2ab

a+b]

0.5

parameter v

I Right hand side
I Left hand side

parameter o
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Proof. Using Corollary 3.7 on [ ] we obtain

)

1-

||
(S

Zﬁ [z[ ]] _[(Z(y))dy

_ 3 (1 21 )
a-soeei?-2%(3-3) G2 Nay)

b-a

1)_ (1 Z stel "
< *| * — *| b a
[Z [b < a Z 2
1 2 b 1 1 b
Clearly we have ” @ = aZ::b =HYa,b),: -5 =21
__1 _ab
1 11 1 b-a
a ab a
I(Z(Y))dy = [exp _[ln(ey”)dt
% ;
1
b a
= exp|- a I P dt
1
b

exol- ab 1 [l]pﬂ ~ [l]p+1
P b-alp+1{la b

— expl- ab 1 1 1 ]
P™p-a p +1lar*t  prt

- expl- ab | 1 (b*1 -t
- p b -a p + 1 ap+1bp+1

_ pptl — gptl
- ap*lbp*1 P+ D0 -a)

1 [ bt gt
arb? | (p + 1)(b - a)

= exp|-

11
= exp _‘E’ Ll(a, b)

= exp|- L)(a, b)

1)
[
= exp(-{~/ab} L} (a, b))
=exp(-G™%(a, b)L}(a, b)).
On the other hand, we have

zn @y obre’ , :
Z(y) = eMZOV = eZp) e e o =) = ep"

Let us substitute (16) and (17) into (15), and using the fact that

-] e

2aP? |
aP+bP

-1
=lea | =elunt = e = gvH (@b

and

15

15)

(16)

17
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1-v
1.1 _ 1-
bt a+ b)) [ fe]] -
Z a = Z b =|e 2ab = e(l‘l})H (a,b)’
2 2a
we obtain
|eVH (@ b)) +(1-0)H " (a.b)-G (@ b)L (b))
p(1—3u+602—203)[u] [l p—l+ 1 P +p(2—3u+2u3)[m a+b p
< e 2% a ||| b 12 ab || 2ab
b-a
p-1 p-1 p-1)P24ab
) e(1—30+602—2v3)[[% + %] +2(2-30+20%) %]
b
which is the required result. O

Proposition 4.3. Let a and b be two positive real numbers with a < b, then we have

-1 -1 -1 1 8 1 |b-a
H (a,b)+A™ (a,b)-2L(a,b) {14 +.1 [b-a
2 f<e [a2 (a+h)? b2]3\/6_

e
Proof. The assertion follows from Corollary 3.12 with p =g =2 and v = %, applied to the function Z(y) = e

¥ Z(y)dY]n = exp{~L'\(a, b)}. O

where Z*(y) = ¢’ and

5 Conclusion

In conclusion, the introduced one-parameter fractional multiplicative integral identity has proven to be a
versatile tool, allowing us to establish a diverse range of inequalities tailored for multiplicative s-convex
mappings. Our exploration not only unveiled novel findings but also refined existing results, highlighting
the significance and potential of this mathematical framework. The illustrative example accompanied by
graphical representations further enriches our understanding and serves as a visual testament to the validity
of our results. Moreover, the demonstrated applications to special means of real numbers within the realm of
multiplicative calculus underscore the practical utility and broader applicability of the derived outcomes. This
work contributes significantly to the ongoing discourse on multiplicative calculus, offering new insights and
paving the way for further research and advancements in this domain.
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