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In this paper, optimal control for a variable-order diffusion-wave equation with a reaction term is numerically
studied, where the variable-order operator is defined in the sense of Caputo proportional constant. Necessary
optimality conditions for the control problem are derived. Existence and uniqueness for the solutions of frac-
tional optimal control problem are derived. The nonstandard weighted average finite difference method and the
nonstandard leap-frog method are developed to study numerically the proposed problem. Moreover, the stability
analysis of the methods is proved. Finally, in order to characterise the memory property of the proposed model,
three test examples are given. It is found that the nonstandard weighted average finite difference method can be
applied to study such variable-order fractional optimal control problems simply and effectively.

1. Introduction

Partial differential equations (PDEs) are frequently used in many
areas of the natural and social sciences to mathematically model phe-
nomena and processes. The wave differential equation displays a sample
partial differential model for describing the communication between
reaction apparatuses, acoustic waves, chemical waves, convection ef-
fects, diffusion transports, and modelling of dynamics. The analysis of
this equation is important to understanding different numerical and
analytical techniques. This model also provides the basis for a classical
wave theory. Several researchers have examined wave models for
various mechanical wave problems. In recent years, the fractional order
derivative has been used to improve the accuracy and suitability of
mathematical systems. The fractional order derivatives of systems with
the effects of historical memory, inherited properties of materials and
processes cannot be described by the integer-order derivatives of those
systems, .'>. Therefore, it is no surprise that many researchers have
dedicated their attention to the development of a new definition of the
fractional order derivative, ranging from Riemann Liouville to Caputo.”
% 5 Generally, the difference between various definitions is chosen
special kernels and the form of a differential operator. More recently,

* Corresponding author.
E-mail address: nsweilam@sci.cu.edu.eg (N.H. Sweilam).

https://doi.org/10.1016/j.padiff.2024.100658

Baleanu et al., in® introduced a new type of derivative known as a hybrid
fractional operator, which can be expressed as a linear combination of
the Caputo fractional derivative and the Riemann-Liouville fractional
integral. In recent years, the theory of fractional optimal control of PDEs
has been widely applied in various areas such as science, engineering,
and economics. In’ and,® Agrawal suggested a generalized formulation
and approach for solving the fractional scheme of optimal control
problems using the Lagrange multiplier technique and the fractional
variation principle. Several studies have analysed many optimal control
of integer-order PDEs problems, but there have been few studies on the
fractional order optimal control of PDEs, 218 1! and,'? Mophou has
studied the fractional optimal control diffusion equation with and
without state constraints. In,'> Mophou and Joseph focused on the
controlled  fractional diffusion wave equation involving
Riemann-Liouville fractional derivative with a final observation. In,"”
they investigated the fractional optimal control wave equation, which
also has missing initial conditions and includes the fractional
Riemann-Liouville derivative. The optimal control for fractional order
wave equation has been discussed in a few publications. In general in
this work, we study the optimal control of the source function (i.e.,
external forces) for the variable-order diffusion-wave equation
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(VOD-wave) with a reaction term. Specifically, optimal control is used to
determine the minimum effects of the source of waves on the medium
carrying them that must be delivered to minimize the wave function. In
addition, we discuss the formulation and theoretical studies for a frac-
tional optimal control of the VOD-wave with a reaction term. Therefore,
we focus on the optimal control of variable-order partial differential
equations (OCVPDESs), which are the fractional operators that consider
the order as a function of time and space. The variable order calculus is a
natural extension of the constant order calculus, i.e., integer or frac-
tional. In this sense, the orders are functions of any variable, i.e., space
variable, time variable, or any other variable, .19-2% The variable order
fractional derivatives can capture the fading memory and crossover
behaviour found in many PDEs problems. Therefore, the memory effect
appears in these problems that were using variable-order fractional
derivatives instead of integer-order derivatives to provide better
appropriate exact solutions. In,'? Samko and Ross suggested the idea of a
variable order operator and investigated the properties of integration
and differentiation of the variable-order Riemann-Liouville type. There
are various definitions of variable order differential operators in the
literature, each with a specific meaning to suit desired goals; the ma-
jority of these definitions are extensions of fractional calculus defini-
tions, as Riemann-Liouville, Caputo, and Riesz, .'° This paper’s major
goal is to extend VOD-wave with a reaction term given in'> by applying
the new hybrid fractional operator derivative. This operator has two
cases, there are the (PC) stands for Proportional-Caputo and the (CPC)
stands for Constant-Proportional-Caputo. The new hybrid variable order
fractional (CPC) operator is a general case of the variable order frac-
tional Caputo operator. We will introduce a control variable to minimize
the objective cost. To approximate the obtained fractional optimality
system, two numerical approaches will be constructed. These methods
are: the nonstandard leap-frog method (NLFM) and the nonstandard
weighted average finite difference method (NWAFDM). The stability
analysis of the NWAFDM will be proved. Non-standard finite-difference
methods have been applied to numerically solve ordinary differential
equations (ODEs) and partial differential equations (PDEs),. In 25ar1d26,
Mickens has illustrated the non-standard finite difference methods to
solve PDE applications such as wave propagation, scattering and Max-
well’s Equations.

Therefore, we use the NWAFDM to study numerically one and two-
dimensional VOD-wave with a reaction term. Based on the weight fac-
tor value, we have three different cases of the NWAFDM, which are an
explicit, an implicit and Crank-Nicholson method 2/-%%,

In this work, we developed a new numerical scheme NWAFDM for
solving the optimal control for VOD-wave with reaction term (OCVOD-
wave).

This paper is consisted of six sections. In Section 2, we reviewed
fundamental fractional calculus definitions. In Section 3, optimal con-
trol for variable-order diffusion-wave with a reaction term equation is
introduced. Additionally, necessary and sufficient optimality conditions
are derived, as are the existence and uniqueness of the optimal solution.
In Section 4, the nonstandard weighted average finite difference method
of the OCVOD-wave equation is proposed. Numerical simulations of the
proposed optimal control diffusion-wave with a reaction term problem
are given in Section 5. In Section 6, the conclusions are given. An ap-
pendix is shown in the final section in order to give the details of the
construction of NLFM using variable-order of CPC derivative.

2. Preliminaries and notations

In this section, we review some fundamental fractional calculus
definitions employed in the remaining sections of this paper.

2.1. Fractional calculus definitions

The left and right variable-order of Caputo fractional derivative of
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W(.,t) defined on [a,b] at d* dimensions is defined as follows,’:

t

fD{’("’)W(,t):rim_lﬁ(”[)) / =0y PB4, Loy Caputo,
a @1
n b n
CDIW(1) = % / (=) P! dv;—y(,;’”) dv, (Right Caputo),

(2.2)

where, n— 1 < (.,t) <n, n € N, and I'(.) is the gamma function.
For an integrable function W(.,t) defined on an interval [a,b] and n —
1 < B(.,t) <n, n € N, then the left and right variable-order of Riemann-

Liouville fractional integrals of order f(.,t) are defined as follows,:

t

RLIPCOW (., 1) = m / (t— )" " W(.,0)dv, (Left RL), 2.3)
b
RLpOW (1) =G0 / (v—1“"'W(.,v)dv, (Right RL). (2.4)

t

For the left and right variable-order of Riemann-Liouville fractional
derivatives of order 4(.,t) are defined as follows,’:

dn

RLpl-Ow(., 1) = I RLp=POw(.,1), (Left RL), (2.5)
RpPOw(, 0 = (=1)" % ROy (1), (Right RL). (2.6)

The relation between the variable-order of Riemann-Liouville and
Caputo fractional derivatives,?>*%:

n—

wk (a

1
RL (1) _ Cpp) ) _ NK=BLD)
a D{ W(‘ft) - aD{ W(‘?’) + v F(k 7ﬂ(‘,t) 4 l) (I a) ’
2.7)
n—1 (k)
RL ) _ cppd W (a) )
oW, = ot W) +;F(k—/3(.,z)+l) (b-1
(2.8)
Therefore,
if W(a)=W (a)=-=W""(a)=0, then, "D'"OW(. )= SD') W(.,1),
(2.9)
and
IF WD) =W (b) = = W' (b)=0, then, "DI"W(.,1)= DI w(.,0).
(2.10)

The new type of variable-order is defined as a variable-order of
hybrid fractional derivative by combining the definitions of the pro-
portional and Caputo derivatives,®:

In the left case, as follows:

DIIW(.,1) =

KB 1)) ”Z—i”)) dv.

In the right case, as follows:
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(K, (/3(47t)71/)W(.,u)+K0(ﬂ(.,t),u)dnw("y))dv, (2.12)
dv'
where KO(ﬂ('vt)vt) = (ﬂ(vt) - l)t(z_m“t)) and K (ﬂ(a t)vt) = (2 b

(., £))t#00-1) are functions of the variable t and the parameter §(.,t) € [1,
2], which satisfy the following conditions for all t € R,° :

M Ko(f(0).0) = 0. TmKo(f(0).0) = 1, KalB(0).0) £0, f& (1.2,
KB ),0) = 1, Em K (B(.0.0) =0, Ki(B(0).0) £0. f € [1.2)

In a specific case where K, and K; depend only on f(.,t) only, at 1 <
p,t) <2.

The variable-order of constant-proportional-Caputo hybrid frac-
tional operator is defined on an [a, b] as,’:

In the left case, as follows:

SDIIW) = Ki(Bn) ST W) + Ko(B(an) (D

(2.13)

In the right case, as follows:

L)) W) = Ki(B(0) FL W) + Ko(B(ar) CDYIW(L).

(2.14)

Additionally, in this study, we consider the kernels in this study as
follows:

Ko(ﬁ(.,t)) _]) M0 2Bl ,

Ki (B, 1))

I
=
=
=
>

where w and C are constants. The variable-order of CPC fractional in-
tegrals are defined on an [a,b], as®
In the left case, as follows:

t

CPC () _ 1 ox Ki(p(.,1)) -~ RL2—B(.)
W = ey [ e[ Ry ) W d

a

(2.15)
In the right case, as follows:

b

cre Bl.t) 1 ox —Ki(B(,1)) -~ RL y2—B(.1)
B0 = g [ o i 0] EOE W @

t

(2.16)

Where R.D?>~#(-1) refers to the variable-order of Riemann-Liouville at

order (2 — f(.,t)).
31 For any functions W and H defined on [a,b] and j(.,t) >

b
H(t) dt = / H(t) B w(e) dt.
a

Lemma 2.1.

b
0, we have: /W(t) RLpf-8)

Lemma 2.2. '® For any functions W and H defined on [a,b] and 1 <
B(.,t) < 2, we have:

W(.,1).
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b b

/W(z) RLpP- H(1) d

By, (2.10),

b b
W(r) 2D H(r) dr = / H(t) ®Di“" w(r) dr
And

b b

/ W) SO H(r) di — / H() D) W) d.
By, (2.10),

b b

/W(t) CpAt) H(r) dt:/ H(t) DI W(t) dt

Lemma 2.3. For any functions W and H defined on [a,b] and 1 <
A, t) <2, we have:

/ W(r) SPCpitn / W(t) Ky (B(., 7)) BP0 H(r) dr
" / W) KolB(o1)) SDIOH(1) ai,

By lemme (2.1) and (2.2),
/ W(r) SPCpHed / H() K (B(,0) *L7" Wt de

b

+ [H0) Ko(p(.)) €D

a

Wi d = / H(e) P W) di

Lemma 2.4. For any functions W and H defined on [a,b] and 1 <
B(.,t) <2, we have:

b

/ W) PP H(r) de

a

b
- / H() PP OW () dr.

Proof. By using (2.15), we have:

—v)| BDXIH() du.

From lemme (2.2), and by changing the order of integrals, we have:

b
we obtain: / W(e) P Hiy de — / H) L 9W() dv O
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3. Optimal control of the VOD-wave equation

Assuming that, the spatial domain is Q = (0,L)%, d > 1, with
boundary I := 0Q. Define Q = Q x (0,T) and X =T x (0,T)over a finite
period of time T > 0. Moreover, we consider the standard optimal
control problem,>” to minimize a quadratic tracking cost functional,

1 Y
J(w,u) = 5” w—g ”22(@ +5” u Hil(g) G
subject to the OCVOD-Wave with reaction term,'” :
CPE DIy — Aw+aw=f+u, inQ,
=0on X
w on X, (3.2)

w(x,0) = wy in Q,
CPEPIED=11p(x,0) = wy in Q,

where 1 < (x,t) < 2, a > 0 is the reaction coefficient, g € L2(Q) is the
desired tracking trajectory, y > O represents the weight parameter, f €
L2(Q) denotes the source function, u € U := L?(Q) is the optimal control
function to minimize the effects of f on a wave at the medium, and the
initial conditions wo € H}(Q) and w; € L%(Q) for more details

as 1t a-
See’\%z.l 1-15,33

3.1. The formal variable-order Lagrange method

We reformulate the optimization problem (3.1)-(3.2). Using a kind of
6

T . . . 32.35.3
Lagrange multiplier function given in,*" see also.***>3°

Theorem 3.1. Let (w,u) be the optimal solution to the optimal control
problem (3.1)-(3.2). According to,‘% there is an P, satisfying (in the weak
sense) the adjoint equation, it is given below. Moreover, the following system
of partial differential equations and inequalities must be satisfied:

//(gPCD{i(m)w —Aw) Py dx dt =
Q

—/QP1 (x,0%)

o

cpC

SPCP Py (x,07) dx+/ I w(x,07)

Qo

+ / / (PeDf Py — APy ) w dx dr.
Qo

S

State equation:
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d
P (x,T) ag”CI,Z*ﬂW(X, T) — PP w(x, T)

SPEDPED vy — Awtaw=f+uinQ, w=0onZx,

§ (3.3)
w(x,0) = wy in Q, C(fCD/i,(“)’]w(x, 0)= w in Q.
Adjoint equation:
,CPCD/;(”) P—-AP+aP=w—ginQ, P=0onXx,
PR (3.4)
P(x,T) =0in Q, b CPEPPOP(x, TY = 0 in Q.
Maximum conditions:
—P
u=—-: (3.5)
4

36

Proof. According to® and.>* We define the Lagrangian function as

follows:

L(w, P,u) = J(w,u) —//(SPCD{}(”) w—Aw+aw—f—u)P dxdt
Qo

7//wP2dsdt

z

(3.6)

where P;, P, are the Lagrange multipliers functions defined on Q and .
The state variable w vanishes on X, since the boundary conditions on
w |y = 0 is already accounted for space w € H'(Q). By using fractional
Green’s formula, %/

Let w(x, t) is the solution of the (3.1)-(3.2). Following that, for each
Pi(x,t) € C*(Q) such that P;(x,T) = 0 in Q and P; = 0 on X we have:

We can obtain from (3.6) and lemma (2.4):

aPl (X7 T) dx
ot
OP(x,0")

d
ot *

We can derive the following necessary optimality conditions:
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a a
Liw,P,u) = J(w,u) — / Pi(x,T)= STI* Pw(x, T)dx + / Pi(x,0") = §PI Pw(x,0")dx
Q

ot ot

Q

OP(x,T
+/ CPCP Py (x, T)%dx 7/fpclf’/’w(x,0+)

Q Q

0P, (x,0")

dx 3.7)

_ PC D) p _ e _
/Q/<,“’CD/; P, AP,)wdxdt /Q/(aw f—w)P, dxdt

P (x,
Lw,Pu) = J(w,u)+ /Pl(x., O+)% SPCIIZ—/iw(x, 0)dx + /w(x, T) FPC];*/’#M
a Q
oP +
- / CPeP Py, 0*)‘(+O>dx - / / (PDyPy — AP )w dx dt (3.8)
Q Q
,//(aw—f—u)Pl dx dr.
Q

First condition:

D,L(w,P,u) h=0,Yh € H'(Q), 1(0) =0,

where h = w — W. The variable-order adjoint system resulted from D,,L,
which it is the first derivative of the Lagrangian with respect to w, we

note that for all h € C*(Q) so that h = dyh = 0 vanish on Q and =. We
denote the element of surface area by ds and the outward unit normal to
I'at x € I' by V(x).

D,L(w,P,u) h= // (W*g* rCPCD{;'(mpl + AP — a Pl) I dx dt
Q

0 _
+ / PP, T) hdx =0
o ot
First, we obtain that:

/ / (w —g— CfCD’;‘<"-’>P1 + AP, — aPl)E dx di =0, Vh € C*(Q),
Qo

implies that:
tcPCD{I{(X-’)P —AP+aP=w-—g, in Q

Also,

4 0 - .
/Q,CPCI;/’ S T) hodx = 0.in Q

we deduce that:
creph gP1 (x,T) =0,
t T at ’ ’

The adjoint system resulted as (3.4).
Second condition: The variational inequality:
DLW, P, u)(u—u) >0, u€ uy.

where DL is the first derivative of the Lagrangian with respect to u. And
Ugq is admissible control, ugg = {u € L2(Z) : ug(x,t) < u(x,t) < up(x,t)}.

J[e+pu-n =0
[

It reducestou = ’7”, if there are no constraints on the control u € uyg.

3.2. Existence and uniqueness of the optimal solution
For study the existence and uniqueness of the optimal solution for the
considered fractional optimal control problem, see,”'® and.*

Theorem 3.2. Assume that the state w = w(u, x, t)is solution of the
system (3.3). Then there exists a unique optimal control u in u,q. such that

J(u) = inf J(v).

Vel

Proof. According to0.>? Let v € 1. be a minimizing sequence such
that,

limJ(v,) = inf J(v). 3.9

n—>co vt
Then there exists C > 0 such that
J(v,) <C.

It then follows from the structure of J given by (3.1) that

Il “nHil(@ <C, (3.10)
2
| wa—g llz20) < C. (3.11)
Moreover w, = w(v,, X, t) being solution of (3.3), w, satisfies:
CPEDIDyg, — A wy+aw, =f+uy, inQ,
w,=0o0nX
" ’ 3.12
Wy (x,0) = wy in Q, ( )
PPy, (x,0) = wy in Q,
Let
wy— w weakly in L*(Q) (3.13)
SPEPIEN=1 s k weakly in L*(Q). (3.14)
By using (3.10) and (3.12), we deduce that,
|| EPC DIy, — Aw, + a w,||< C. (3.15)
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Hence, from (3.10) and (3.15), we can extract subsequences of v, and
w, such that

v,— u weakly in L*(Q), (3.16)
gPCDf("")wn — Aw, + a w,— & weakly in L*(Q). (3.17)
Since uy is a convex closed subset of L?(Q) we have,
UE Uyq-
Set D(Q) = {¢ € C(Q) such that | , ¢(x, 0) = ¢(x, T)

in Q } and we denote by D' (Q)its dual. Then multiplying (3.12) by ¢ €
D(Q) and integrating by part over Q, we obtain

T
//((SPCD{K”)WH —Aw, +a w,,)(p(x, t) dx dt
0 Q

T

- //(f+ va) @(x, 1) dx dt, Yo € D(Q)

0 Q

(3.18)

Therefore using fractional Green’s formula,®” and Passing this latter
identity when n — oo while using (3.13) and (3.16), we obtain that

T
//(gPCD{}(X”)W—AW-‘r(l w)g(x, 1) dx dt
0 @

T

= //(f+ u) ¢(x, t) dx dt, Vo € D(Q) (3.19)
0 o
This implies that
SPCDIED vy Awtaw=f+u, (x,f) € Q (3.20)

On the other hand, we have

T

T T
//(gPCDf("")’I w,,)(p(x, 1) dt dx = —// W, (/ g‘DCDf(X")’l @(x, 1)
Q 0 K

Q

0

Passing this latter identity when n — oo while using lemme (2.3),
(3.13) and (3.14), we get

CPCl)f(x.r)—l Wy— CPCD{J(XJ)—I w weakly in LZ(Q) (3.22)

We have f € L*(Q) and w € L*((0, T);Hj (Q)), be such that
et w e H2((0, T);H) (Q))c H2((0, T);L*(Q)). We get Aw €
12(Q) because Aw = §P°D/*"w 4+ a w— f— u. Then we have w|. and
% exist and belong respectively to H%(T") and H-3(I"), for more details

see'’
In the following, we will verify that,'*

w(x, 0) = wo, D/ wix, 0) = wy in Q.

For any function ¢ € C®(Q) with ¢|., ¢(x, 0) = ¢(x, T) = 0in
Q, we obtain

/( Wy (x,0) —w(x,0)) @(x) dx = /( wa(x,1) — w(x, 1)) @(x) dx

t
,//( (C’PCD{{(x,r)—l Wy — ((;“PCDf(x.z)—l w) o(x) dx ds,
0 Q

dt ) ds dx, Yo € D(Q)
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which implies

//(w,,(x,O)—w(x,O))(p(x)dxdt://(wn(x,t)—w(x,t))(p(x)dxdt

_ ( (()JPCDf(x./)—l W, —

0o 0 Q

chDf(xJ)fl w) @(x) dx ds dt,

From (3.13) and (3.22) and for any t € [0, T]

,
/ /(wn()c7 0) —w(x,0)) p(x) dxdt —0, (3.23)
o Ja
Tt
/ //( gPCD/:(x.r)*l W, — gPCD[;(x.r)—l w) (p(x) dx ds di— 0. (3.24)
o 0o
For any ¢ € L%*(Q), we get
/ (1 (6,0) — w(x,0)) p(x) dx =0, (3.25)
Q
As wy(x, 0) = wyy — W in L2([0, T],H} (Q)), we get
w(x, 0) = wy, in Q. (3.26)
Similarly, we could verify that
SPEDIEN=1 yy(x, 0) = wy in Q. 3.27)

From (3.20), (3.26) and (3.27), we have w = w(u, X, t) is solution of
the system (3.3). It then follows from the lower semi-continuity of the
functional J and J(u) < liminfJ(vy).

Hence in view of (3.9), we get

(3.21)

limJ(v,) = inf J(v).

n—oo V€U
From the strict convexity of J, we obtain the uniqueness of the
optimal control u.

4. NWAFDM for OCVOD-wave equation

This section aims to study the OCVOD-wave with reaction term
numerically. The numerical method that will be considered here is
NWAFDM.2728,38.39

4.1. NWAFDM

According to,"” the numerical scheme is known as NSFDM, if at least

one of the following conditions is satisfied:

e The nonlocal approximation is used,
e The discretization of a derivative is non-traditional and use positive
function.

w(t) =74+ 0(7%), 0<w(7) <1, forall 7> 0,
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where y/(7) is the continuous function of step size.

In the following, we construct NWAFDM with variable-order of CPC
derivative to discretize of VFPDEs. Considering that:

n,l,m € N and the points of the mesh

xi=isx, i=0,1,2,...,n
Vi :jAy7 j:071727"'7l7
t,=rat, r=0,1,2,....m

where ax, Ay and At space-step length and time-step length, respec-

tively:

aox — (X 7x0)7 Ay = 6% *yo)7 ar— (t — tu).
n i P

The W; is the numerical value of u at the grid point (x;,y;,t;) = (iax,
jAy,rat). For the VFPDEs, the NWAFDM is given as follows:

W(x,-,y/-,t,) =

Approximation of second-order derivatives:

r+1 r—1
(1 fG))Wl.J +G)Wi_j .

—(1-0) Wi, — 2wt + Wiy, 10 Wi, = 2w+ Wi

Wn (xi7yj7 tr)

y(ax)’ wary
+0(w(ax)’),
Wr+l _zw_rj»l +Wr+l Wr 1 2wrf1 +WV 1
Wyy(ﬂ,)‘j,b) _ (1 7@) ij+1 ( IJ)Z ij—1 ® ij+1 ( l,/)z ij—1
w(ay w(ay
+0(w(ay)).

and the discrete Laplacian in two dimensions:

AW(-xiaijtr) = (1 - ®)(Wrx(xi7yjatr+l) + M'y(x17Yj7tr+l))+
G(Wn (xi7yj7tr—1) + va(-xhyj?tr*l)) + O(W(AX)ZyW(Ay)Z)

—r =B —r —r —1-r
(KBt = Ko (Bl (a0) P (Wit = 2wyt ) |d,
r=0
Pkt Pkt
—(1-0) Awf.‘jlfawf.‘jlf—'; +f,’_‘f' -0 Awf:/.’lfawf."/-’lf—l; Jrf[’ffl

:le.7
ij
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DIy — Ky (B1)) SN wixoyit) + Ko(B(an) DI wlxy),
“4.1)
CPC (1) K(B k+1 —r
0 | Z 4.2)
R 0) drpan) P (w7 2l i),
where

(I’+ 1)2 plrt) (r)z—/i(.,r)
TG —p(.1)

The right case:

d, =

DFIP = Ky (B 0) T Pley,n) 4+ Ko(B(o1) D7P( 1),

t

4.3)
CPCDI;(«) ZKI b Pk+1 "oy Ko(ﬁ( )) W(At)*ﬂ(»,f)
(Pfj‘*" —2P " + Pf;‘*") by, (4.4)
where
b — (r)Z—/i(.,z) _ (r + l)Z—ﬁ(.J)
rG-p(.1)
Where
Ko(B(.,t)) = (1 =p(., 1)) CH#LO 20 Ky (B(., 1) = (2—=p(.,t)) 700,

and C is a constant.

4.2.1. Construction of NWAFDM with variable-order CPC derivative

The discretization form of the variable-order optimal control of
diffusion-wave with a reaction term system (3.3)-(3.5) using definition
(4.3) is given as follows:

[KiBCo0) P+ Ko(Ba) wian) ™ (Pt 2P+ P | o,

~(1-0) [Pl —aPif +wl = gl1] 0 [aP! - aPl 4wl

4.2. Numerical approximate with variable-order CPC derivative

To discretize of the OCVOD-wave equation, we construct NWAFDM
with a constant-proportional-Caputo variable-order derivative f(.,t)
stand for the function in space x,y and time t. By definition (2.13) and
GL-approximation to approximate the CPC variable-order derivatives at
one dimensional, we have the approximate for the OCVOD-wave
equation given as follows:

The left case:

k-1
— 8y ] = sz‘_j'

Where R« and Ry are the truncation error.
i y

If the truncation errors are neglected, the resulting difference scheme
is as follows:
The state equation:
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Fig. 2. For problem1, the behaviour of the numerical solutions using different methods at y = 1 and (x,t) = 1.99 —
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Fig. 3. For problem1, the behaviour of the cost functional J(w,u)of problem 1,
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=~
|

(KB )+ Ko (B wlan) 70 ('

\
I
=)

k+1 ph-1
k1 k1 i k+1 k—1 —1 i
—(1-0)|aw;" —aw;; fTJrfiJ. —0|aw; 7awf_j -

The adjoint equation:

~
|

(KL (B P + Ko (B )p(an)

~(1-©)[ar! -

4.2.2. Stability analysis and convergence of NWAFDM with variable-order
CPC derivative

In order to investigate the stability, a kind of von Neumann
approach'*® will be applied to the proposed scheme (4.6)-(4.7), with
considering the absence of the control source force. Assume that w{‘] =
Kelrnoxeraaisy and Pl = gkelop1oxglP22Y where

=+/—1 and q,p is a real spatial wave number, so that the

requirement |§1$2| < 1. Therefore, the scheme (4.6)-(4.7) can be
expressed in the following form:

The state equation:

k—1

> [Kiplmg " +

r=0

Kol )80 (@7 260 et

ePlig1Axtjgr Ay) d,

,(1 _ @)ﬁﬂ [ei”’”Ayy/(Ax) 2( (+1)pgiAx _ 9 5ipgi Ax +e pqlAX)
+ ei[l(llAXW(Ay)’2 (e(/‘H)ﬂqu,v

Partial Differential Equations in Applied Mathematics 10 (2024) 100658

—Delrby 1 e(ifl)pquy) _ aeﬂ(iqlAquzA)‘)}

_ @5/{71 [e/pquvl//(Ax) ( (i+1)pg) Ax 2ei/)q| Ax

+e(i*1)ﬂ41 AX) L A"l[/(Ay)J (e(i+l)ﬂqu}' _Delrn Ay +e(/*1)ﬂquy) — aqelin Aerjqu,V)}
:()7

The adjoint equation:

k—1

> [KiBl )+ Ko B, w807

r=0

(§k+l r 25; r+él; - r)}

ePli Axtjga ) b,

—(1 _@)é’;rl [e"”qu}'l//(Ax)fz( (+1par Ay _ 9 pipaiAx 4 (i pq|A)L)
+ ei""‘AXI//(Ay)72 (e(i+1>/'qu.v
— ey | eU*l)ﬂqu}') _ aeﬂ(iqlew‘quy)}

_@‘f’;l[e/ﬂquy (Ax) 2( (F+D)paiAx _ 7 ipgi Ax

k—r k—1-r
— 2wi_j +wy; )]d,

(4.5)

B(t) (P?'jl—r _ zpﬁc‘/—r T Pi;‘/—l—r)]b’

(4.6)

k+1 k+1 k+1 k—1 k—1 k—1 k=11 __
aPit i = g - eaPt —aPl el - g =0,

+e("’l)”‘“m)+ei”"'AXy/(Ay) ((/H)Msz ze/ﬁqvAv+e(r /!quw) ae”(i"'AX*j"zA”)]
=()7

: . +1
Diving by rf'l‘le‘”q’“e”’qﬂy, put n= %, A= ik , and using the Euler

formula:
e” = cos(#) + p sin(8),

we have:

k—1

S (K n+ Ko Bw(an ™ (o (n=2-417")) )d,

r=0
_s cos(qiAx) — 1 cos(gaAy) — 1
w(Ax)® w(Ay)®
-Al1-0y+6n']=0.
Assume Ay = 0K (B, ) 7d, Ay = SKo(B(,
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)y (at) "y rd,.
We have:

(A1 + A = B(1— @) — 24 + (A, —BO) = 0, || < 1,

_ cos(qrax)—1 cos(qzay)—1
where B = 2[5 ¢ st pl.

'2A2 + \/(2A2)2 —4(A; +A, — B(1 — ©))(A, — BO) ‘

|’71‘2} = <1

)

[2(A1 + Az — B(1 - 9))]

‘2A2 + \/(ZAZ)Z —4(A, + A, — B(1 — ©))(A, — BO)) ‘
< |2(A, +A, — B(1-0))].

With the adjoint equation:

k=1

S (Ki@a 2+ Kapwan (1 (1 -2+47))d,

r=

—1 —1
_Z[COS(‘IIAX)Z COS(QZA)’)Z | [(1 o)+ @lrl} —o.
y(ax) w(ay)

Assume As = 350K (B(£)4 by, Aq = Yo Ko(B(.,
) (at) Y1 "b,.

We have:
(As+As— C(1—O)A* — 24,4+ (A, — CO) =0, || <1,

_ cos(q1ax)—1 cos(qaay)-1
where C = 2{ v (o + oy Bl.
24, + /(245 — 4(As + A, — B(1 - ©))(4, - CO) '

[A12] = <1

[2(A5 +As = C(1 - ©))] Y

‘2A4 + \/(2A4)2 —4(A; 4+ Ay — C(1 — ©)) (A4 — CO)) ‘

< 2(43 + 44 — C(1 - 0))].
5. Applications of the NWAFDM to OCVOD-wave

In this section, the three test problems of optimal control for VOD-
Wave are examined to determine the viability and efficacy of the pro-
posed method. To justify the efficiency and accuracy of the NWAFDM
are checked by calculating the error norm L, is given as follows:

Ew ('xvyv t) :H Wexact — WNum H

) Vl]a r, (51)

=~ max! Wexact (X,', Yis tr) — Wium ()C,’, Yis tr)

where the analytical state solution of the considered problems is
Wexact (X, Yj, tr), and the numerical state solution of is Wyum (i, Y;, t)-
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Fig. 4. For problem 1, the effect of variable order f(x,t) on the cost functional
J(w,u) when y = £.

€P(X-,y7 t) :H Pe,mfl 7PNum H =~ max|Pemcl (x[;y_/'ytr) 7PNum (X;,)’_/‘7tr)|7 Viaj7 r,
(5.2)

where the analytical adjoint solution of the considered problems is
Pexact(Xi,yj, t-) and the numerical adjoint solution is Pum(x;,Yj, tr). For
problem 1, Fig. 1, clarifies the behaviour of the numerical solutions of
the state variable w and the adjoint variable P at §(x, t) = 1.99 — ;{5 and
the exact solutions, we observed that the proposed method NWAFDM
® = %) provides excellent agreement between the numerical solutions
and exact solutions. For problem 1, Fig. 2, the behaviour levels of the
numerical solution w using WANFDM at various cases of ® and NLFM. It
observed that the explicit method (@ = 1) is less effective than the
implicit (® = 0), Crank-Nicholson (6 = %) and NLFM methods for
approximating solutions. Fig. 3:For probleml, the behaviour of the
numerical solutions when ® = %, y = 1 and, depicts the cost functional
J(w,u) (3.1) solutions for problem 1, using NWANFDM (0 = %) at f(x,
t) = 1.99 — 1{5 , we observe that the J(w,u) solution obtained by the
Crank-Niclson case (i.e., ® = %) is less valuable than the J(w, u) solution
obtained by implicit and NLFM.

/ry=10"1 a=0 w(At) =sinh(At) Table 1, illustrates that the
maximum error at f(x, t) = 1.9 — t /100 using WANFDM at various
values of ® and NLFM for problem 1, illustrates that the maximum error
at f(x,t) = 1.9 — 155 using WANFDM at various values of ® and NLFM
for problem 1, with various values of a final space X and a final time T.
For problem 1, the behaviour of the cost functional J(w,u) solutions
(3.1) at various values of linear and nonlinear $(x, t) using NWANFDM
(® = 1) is shown in Fig. 4.

For problem 2, the identical behaviour of the exact and numerical
solutions of the state variable w, adjoint variable P, and optimal control
variable u obtained using the suggested method NWAFDM (© = 1) at

Table 1
For problem 1, error norms (5.1-5.2) for whenn = 9,m =10,y = 107}, @ = 0, w(Ax) = sinh(Ax), and y(At) = sinh(At) at different space and time levels.
Xy, T) NWAFDM NLFM
1 © =0)
©=3)
eu(x; 1) ep(x,t) eu(x,t) ep(x,1) eu(x,t) ep(x 1)
(0.2,0.2) 2.037e-06 9.4458e-06 2.7817e-07 8.398e-06 6.336e-06 1.5223e-05
(0.2,0.5) 3.6865e-06 5.617e-05 1.758e-06 5.3056e-05 4.1820e-05 9.543e-05
(0.5,0.2) 2.904e-05 8.8512e-05 2.2013e-05 1.0668e-04 4.836e-05 2.1417e-04
(0.5,0.5) 1.7205e-04 6.7642e-04 1.4013e-04 5.3056e-05 7.71e-04 1.3 e-03
(0.5,1) 6.5369¢-04 3.1e-03 5.625e-04 2.7e-03 2.9e-03 5e-03
1,1) 1.86e-02 1.37e-02 1.13 e-02 1.36 e-02 3.47e-02 2.16e-02
1,2) 6.54e-02 8.04e-02 4.51e-02 5.43e-02 1.417e-02 5.43e-02
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Fig. 6. For problem 2, the behaviour of the numerical solutions using different methods at y = {5 and f(x,t) = 1.9 — ;&; sin(zx) (a) Exact solution w (b) Numerical
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NWAFDM when © = 1.
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Fig. 7. The behaviour of the cost functional J(w,u) of problem 2, using
different methods at y = & and (x,t) = 1.9 — 0.02sin(xt).

Table 2
For problem 2, error norms (5.1-5.2) whenn = 9,m = 10,y =101, a =1,
y(Ax) = sinh(Ax) and y(At) = sinh(At) at different space and time levels.

;1) NWAFDM NLFM
1 © =0)
©=3
eu(x;t) ep(x,t) eu(x.t) ep(x,t) eu(x.t) ep(x,t)
0.2,0.2) 2.004e-  3.364e-  1.172e-  2.59le-  7.11le-  3.2605e-
05 05 05 05 05 05
0.2,0.5) 1.544e-  4.294e-  2.325e-  4.277e-  1.196e-  4.154e-
05 04 05 04 04 04
0.50.2) 9.173e-  1.724e-  6.010e-  1.09%-  2.916e-  1.677e-
05 04 05 04 04 04
0.5,0.5) 4.177e-  1.90e- 5.246e-  1.90e- 8.862e-  1.8¢-03
04 03 04 03 04
(0.5,1) 2.7e-03  1.52- 6.00e- 1.51e- 1.05e- 1.46e-02
03 03 02 02
a,n 4.30e- 1.58e- 6.90 e- 1.53 e- 1.35e- 1.60e-02
03 02 03 02 02
1,2) 3.75e- 1.219-  4.43e- 1.216e-  5.244e-  1.228e-
02 01 02 01 02 01
0.12 : . .
= 3(x,1)=1.9-(0.01) t
-~ AxY=1.7-002sin(=t) a==a
01k - A(x,1)=1.8-0.01 x t =N
- 3(x,t)=1.6-0.05 e™
) *~ [(x,1)=1.4-0.01 '
= 0.08 1
\ﬁ/
©
c
£ 0.06 1
&)
c
2
2 0.04 1
(&)
0.02 1
[
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Fig. 8. For problem 2, the effect of variable order $(x, t) on the cost functional y

-1 -1
= 1o When y = g
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p(x, t) = 1.9 — g{gsin(ax), is shown in Fig. 5. In Fig. 6, depicts the
behaviour of the approximate solution levels of w using WANFDM at
various cases of 6 and NLFM for problem 2. Also it observed that the
behaviour of the solutions in the implicit, Crank-Nicholson cases (i.e., ®
= 0 and ©® = 0.5) and NLFM are preferable to that of the solutions ob-
tained by the explicit method at (® = 1). For problem 2, Fig. 7, illustrates
a lower value for the cost functional J(w,u) (3.1) solution, using
NWANFDM (© = 1) at (x,t) = 1.9 — 0.02 sin(st) than the J(w,u) so-
lutions obtained by implicit and NLFM. Table 2, illustrates that the
maximum error at #(x,t) = 1.9 — 0.02sin(zt) using WANFDM at various
values of ® and NLFM for problem 2, with various values of a final space
Xr and a final time T. The behaviour of the numerical solutions of the
cost functional J(w, u) (3.1) for problem 2, at different values of linear
and nonlinear §(x,t) using NWANFDM (® = 1) is shown in Fig. 8. For
problem 3, Fig. 9, illustrates the identical behaviour of the exact and
numerical solutions of the state variable w, adjoint variable P, and
optimal control variable u obtained using the suggested method
NWAFDM (@ =1) at g(x,t) = 1.99 — ;5;, for problem 3. In Fig. 10, de-
picts the behaviour of the numerical solution levels of w using WANFDM
at various cases of © and NLFM for problem 3, at f(x,t) =1.99 — 1. In
Fig. 11, illustrates a lower value for the cost functional J(w,u) (3.1)
solution, using NWANFDM (© = 1) at p(x,y,t) =1.8 — % than the
J(w, u) solutions obtained by implicit and NLFM. Table 3, illustrates that

the maximum error at g(x,y.t) =1.8 — %)[ using WANFDM at various
values of ® and NLFM for problem 3, with various values of a final space
(Xf, Yy) and a final time T. The behaviour of the numerical solutions of
the cost functional J(w,u) (3.1) for problem 3, at different values of
linear and nonlinear f(x,y, t) using NWANFDM (© =1 /2 ) is shown in
Fig. 12.

Problem 1

Leta =0,Q=(0,1)and T =2, wy = 0,w;(x) =0,

B K70 x(1 — x) 1 B 2 1
f= T2 - px,1) {4 —Fn 3-pn) 2 A, f)]
2K, 2B (] — x 2 1 sin(zx)(t — T)?
NERyE) (et (7+a> =1
and
e —Kysin(nx) (T — )79 _ 2Kosin(mx) oo
S0 =G pron) 4 pwn TG -pwm) "

—a* sin(mx)(t — T)* + £x(1 — x),

such that the exact solutions are: w(x,t) = t2x(1—x) and P(x, t) =
sin(zx)(t — T)?.
Problem 2

Leta =1,Q=(0,1)and T =1, wy = 0,w;(x) =0,

6 Ky £ cos(nx) 6 Ky cos(mx) 5 p.y

/= r6-pxn) T@-pxn) (a+ %) 7 cos(nx)
R
4
and
K  (T-0*" 2K

2—p(x.t)
(T—1)

g(x,t) =1 cos(nx) —

T2—px,1) 4—pxr)  T(GB—px,1))
+(1—a) e (T—1),

such that the exact solutions are: w(x,t) = t3cos(zx) and P(x, t) =
(T — 1),

Problem 3

Leta =0, Q= (0,1)% and T = 2, wy = sin(zx) sin(zy), wy(x,y) =
sin(zx) sin(zmy),
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Fig. 10. For problem 3, the behaviour of the numerical solution using different methods at y = 15 and f(x,t) = 1.99 —

ﬁ (a) Exact solution w (b) Numerical solution
w using NLFM, (c) Numerical solution w using NWAFDM when © = %, (d) Numerical solution w using NWAFDM when © = 0, (f) Numerical solution w using
NWAFDM when © = 1.

flx,y,1) = (1427%)e" sin(nx) sin(my) +% sin(zx) sin(zy)(t — T)?, such that the exact solution is
w(x,y, 1) = €'sin(nx) sin(xy)
and
and
g, y,0) = (¢ —2—22%(t — T)*) sin(mx) sin(my),
P(x,y, 1) = sin(zx) sin(zy) (t — T)*.

13
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Fig. 11. For problem 3, the behaviour of the cost functional J(w,u) using
different methods at y = & and f(x,y,t) = 1.8 — 0.05(xy)".

Table 3

For problem 3, error norms (5.1-5.2) whenn =1 =6,m =7,y =107}, y(Ax) =

sinh(Ax), w(Ay) = sinh(Ay), and y(At) = sinh(At) at different space and time

levels.
X5, Y7, NWAFDM NLFM
1 © =0)
© = 2)
el(xy, ep(xyt) elxy er(xy,  elxy,  er(xy,
t) t) t) t) t)
0.2,0.2,0.2) 2.5e-03  1.3e-03 1.0e- 6.555e-  1.10e- 4.91e-
03 04 03 02
0.2,0.2,0.5)  2.80e- 1.7985e-  3.10e-  6.166e-  1.10e- 1.28e-
03 04 03 05 03 03
(0.5,0.5,0.2)  4.51e- 2.56e-02  8.54e-  4.90e- 7.11e- 7.460e-
02 02 03 02 01
(0.5,0.5,0.5)  4.6%- 6.8e-03 8.45e-  3.3e-03  4.9%- 3.004 e-
02 02 02 01
(0.5,0.5,1) 5.95e- 5.9¢-03 8.20e-  3.6e-03  2.26e- 1.246¢-
02 02 02 01
(1,1,1) 2.491e-  8.52e-02  3.504 3.15e-  2.436e-  3.852e-
01 e-02 02 01 01
1,1,2) 5.445e-  1.077e- 1.3e- 8.0le- 1.657e-  3.32le-
01 01 01 01 01 01
- - B(x,y.h)=1.9-0.01t
20 T T = 3(x,y.)=1.6-0.05 e™
- (x,y,t)=1.8- 0.05 (xy)"
- N ====3(x,y,t)=1.7-0.03 t sin(7 y)
. S~ [0 Ak h=1.5-0.02 e - 0.1 xy
515} ’ 'y
2 'l \\
(0] 4 AN
g 1' o e s
5101 A7 SRS 5 1
. & NN\ \
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Fig. 12. For problem 3, the effect of variable order f(x,y,t) on the cost func-
tional J(w,u) when y = .
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6. Conclusions

In this paper, the necessary optimality conditions for the optimal
solution of the fractional diffusion wave equation with a reaction term
are derived, where the control function is the source function. The aim
was to find the source function with the lowest cost functional. We
demonstrated the existence and uniqueness of the optimal solution. The
definitions of proportional-Caputo variable order derivatives are used.
NWAFDM is constructed to study numerically the linear variable order
control diffusion wave equation. Comparisons between NWAFDM and
NLFM for the proposed problems are done. Furthermore, one of the
advantages of NWAFDM is that we can get a lower value for the cost
functional at (©@ = %). Several figures have depicted the simulation of
numerical solutions where the variable-order derivatives change with
time and space. Furthermore, we claimed that NWAFDM can be applied
to solve the variable-order optimal control problem. All the results in
this paper were obtained using MATLAB (R2020a).
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Appendix. Construction of NLFM using variable-order CPC
derivative

The discretization form of the variable-order optimal control of
diffusion-wave with a reaction term system (3.3)-(3.5) using definition
(4.3) is given as follows:

Consider n,I,m € N and the mesh points x; =iax, i=0,1,2,...,n,
t-=rat, r=0,1,2,...,m. Where ax and At space and time step lengths,
respectively.

The state equation:
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The adjoint equation:
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where A, be the second order approximation of the Laplacian operator A by using the finite difference method (e.g., central difference).
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