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Abstract: A pathological study in the definition of uncertain
numbers is carried out, and some solutions are proposed.
Fundamental theorems for uncertain discrete fractional and
integer order calculus are established. The concept of maximal
solution for obtaining a unique uncertain solution is intro-
duced. The solutions of uncertain discrete relaxation equa-
tions for the integer and the fractional order are obtained.
Various numerical examples are accompanied to clarify the
theoretical results and study of uncertain system behavior.
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1 Introduction

Physics is full of phenomena that a perturbed system tends
to return to its equilibrium point. Because the equilibrium
is a state of the lowest energy, systems tend to reach it.
Such a phenomenon is called relaxation and the relaxation
equations describe it. Examples of such phenomena are
stress relaxation in response to strain for materials and
radioactive decay [1,2]. Our motivation in this paper is to
build a comprehensive theory concerning uncertainty to
discrete relaxation equations and related linear equations.
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The complexity of natural processes increases the
dimensions of modeled dynamical systems. It is known
that high-dimensional systems can be reduced to a low-
dimensional system with some appropriate integral
operator involving fading memory [3]. Therefore, frac-
tional operators with memory are significantly crucial
for modeling such complex systems [4,5]. Solving systems
of fractional order differential equations generally is not
easy. The analytic solutions are in the form of series with
infinite terms and a slow rate of convergence. Thus, a
numerical method is used to solve them. Many of them
result in discrete difference equations. Therefore, it is
tempting to use systems of discrete difference equations
for modeling from the very beginning. On the other
hand, discrete equations directly use data. Consequently,
it is no surprise to see recent attention for discrete calculus
as well as discrete fractional calculus [6,7].

The recent progress on discrete fractional operators,
especially discrete fractional sum and discrete fractional
difference, has been reviewed in the study by Wang et al.
[8]. The core of these definitions is based on the nabla
difference operator Vp(t) = p(t) — p(t - 1) and the delta
difference operators Ap(t) = p(t +1) - p(t), for a given
function f and the time ¢ [6]. Each has its own advantages
[9]. In this article, we use the nabla-based definitions, moti-
vated by the discussion of the study by Hein et al. [9]. The
properties of nabla calculus are established in several stu-
dies [10-13]. Also, there are two fractional nabla difference
equations. We will distinguish which one is preferable by
the similarity of their behavior to nabla’s difference when
the order approaches the integer order.

Then, we studied the systems of fractional and integer
order discrete difference equations. Such systems have
interesting applications in neural networks and epidemio-
logical modeling [14-19]. For fractional order systems with
the discrete nabla fractional derivative, one can consult
previous studies by Wei et al. [20,21].

Uncertainty means a lack of exact information in mod-
eling, measurement parameters, forces, and unpredict-
ability of future events. Fuzzy theory, interval analysis,
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and stochastic analysis can be helpful to analyze uncer-
tainty. Fuzzy sets can help us to show vagueness. This is
carried out by introducing membership functions to illus-
trate the uncertainty of the belongingness of an element to
a set [22]. There are many attempts to define uncertain
numbers as a fuzzy set. On the other hand, engineers often
used intervals to show the uncertainty of a measurement.
Fortunately, the fuzzy number (FN) has parametric repre-
sentation that relates to interval analysis [23,24]. Therefore,
a unified uncertainty concept that unifies interval analysis
and fuzzy theory with diverse scalar multiplication is
introduced in the study by Shiri [25]. However, the defini-
tion of what uncertain/FN is still vague.

There exist various definitions for FNs by imposing
some restriction on membership function [26-28]. As far
as we know, Dubois and Prade [26], introduced the first
definition of an FN. Interestingly, this definition is the
mostly followed definition by researchers though it has
some drawbacks. Based on this definition, an FN is a fuzzy
set of real numbers with continuous membership function
and compact support of interval type, say it[c, d],c,d € R,
whereas it should gain the maximum value of membership
function (i.e., one) on an interval (or possibly a point) [a, b],
a, b € R, i.e, strictly increasing on [c, a] and then strictly
decreasing on [b, d].

Obviously, with this definition, a deterministic number
is not an FN. This is one of the pitfalls if we consider FNs as
an extension of real numbers. Goetschel and Voxman [28]
replaced continuity with the upper semi-continuous condi-
tion to include crisp/deterministic numbers as FNs and to
define a metric. In an interesting work, Dijkman et al [27]
categorized the FN with diverse conditions and investigated
them. For further works, we would like to take the attention
of the readers to the other available literature [29,30].

Later developments of fuzzy equations to solve fuzzy
equations enjoy a redefinition of an FN with parametric
forms. This redefinition helps to transform a fuzzy equa-
tion into a deterministic equation and then solve it. In this
respect, we will find many drawbacks that we should con-
sider it in such definitions. Our discussion in this article
highlights such drawbacks and we will try to solve this
drawback without ruining previous trends of definitions
that may include large amounts of studies. For example,
we propose to keep continuity as Dubois’s definition and
add a real number to the set of FNs as an exception.

Briefly, we try to highlight the cons and pros of additional
properties on membership function in relation to standard
and parametric definitions. These properties include con-
vexity, the existence of a deterministic part, compactness,
continuity, and strictly increasing and decreasing conditions.

Based on our discussion of drawbacks and possible solu-
tions to properties of the membership function, we modify the
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unified definition mentioned in the study by Shiri [25]. The
application of such concrete definition for the study of mea-
surement error and other uncertainty sources in modeling
with systems of equations is studied in the work by Shiri [25].
The aims of this study are twofold. As we mentioned
previously, the first aim is about the drawbacks and pro-
posed solutions to the definition of uncertain numbers. The
next aim of this study is related to constructing the calculus
of uncertain discrete numbers for fractional and integer
order operators. To do this, we follow the new scalar multi-
plication [25] for the definition of generalized Hukuhara dif-
ference. Interestingly, a complex analysis will show that the
Hukuhara difference plays an important role in well defined
systems rather than the generalized Hukuhara difference.
Our special focus on discrete operators will be fuzzy
nabla differences with the generalized Hukuhara differ-
ence, V@g, and its fractional generalization V"eg, v E(,1).
By introducing uncertain discrete sums and differences
for integer and fractional order, we provide their classical
relationship under the fundamental theorems for both frac-
tional and integer order cases. According to the funda-
mental theorem, the maximal uncertain anti-nabla function
is an uncertain discrete sum of that function. In a parallel
discussion, we obtain Leibniz’s rule for uncertain difference.
Similarly, we will build a fundamental theorem for an
uncertain fractional difference operator.
The study of linear uncertain fraction difference equa-
tion of the form

V"egP(t) =AP() +f(t), tE€ N, vE(0,1), (9

is our main contribution, whereas P is an unknown func-
tion on N+, and the source function f is a given function
on N, = {a, a + 1, ...}. Usually, some information on initial
time t = a is provided. Unlike the deterministic case, initial
value problems for uncertain cases are usually ill-posed.
Thus, we introduce the concept of maximal solution, and
we observe that the maximal solution is unique and the
corresponding problem becomes well posed with this
reforming concept.

Although Eq. (1) without concerning uncertainty and
fuzziness has received some attention these years [31,32],
as far as we know, the effect of uncertainty on these
equations is not studied yet. But continuous fractional dif-
ferential equations have received extensive attention con-
cerning fuzziness [33-36].

A subclass of Eq. (1) is relaxation equations. The fractional
relaxation equation plays an important role in the modeling of
perturbed systems in martial science [4,37]. In connection with
interval analysis, such equations have been investigated in the
study by Huang et al [38]. We investigated uncertainty for
discrete relaxation equations in separate sections.
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In Section 2, we survey and review the concept of FNs
and related operations. In Sections 3 and 6, fundamental
theorems for uncertain fractional derivatives of integer
order and fractional are constructed, respectively. In Sec-
tion 3, the uncertain relaxation equation is studied, and in
Section 6, the uncertain relaxation equation with fractional
order is investigated. Section 5 is devoted to introducing uncer-
tain fraction sum and difference. Finally, in Section 8, we pro-
vide illustrative examples with discussions, comparisons, and
clarifications of the previously stated theoretic results.

2 Uncertain number and FNs

An FN u is a fuzzy set with a membership function ¢ from
R to [0, 1], with some extra condition imposed on u. Its
r-cutr € [0,1] is defined by:

Uw={x€R :ux)=r} 2)

The boundaries of r-cut usually are used for transferring
an FN into an interval and investigating them with interval
analysis. This plays an important role in solving uncertain
systems of equations by transforming them into determi-
nistic systems [39]. Therefore, we review the imposed prop-
erties for the definition of FNs related to r-cats.

* Convexity: If y is a convex function, then r-cut is an
interval. Figure 1 shows that the 0.6-cuts of a non-convex
set are a union of two disjoint intervals U; and U,. The
advantage of this assumption is that we can connect fuzzy
theory to interval analysis. The disadvantage is that we
could not use it for quantum mechanics, for example, for
describing double-slit experiments. Thus, FNs could not be
used for describing quantum mechanics. Nevertheless,
fuzzy sets can be used.

Deterministic part: The existence of a deterministic
means that there exists an interval [a, b] (probably, a
can be b) such that u(x) =1 for each x € [a, b]. The
advantage of this definition is that r-cuts are nonempty
sets for all r € [0, 1]. Therefore, the boundaries of an
r-cut set for an FN u are well defined by:

u(r) = infy" € [~o, a] ®3)
and
a(r) = supu” € [b, «]. 4)

Usually, these boundaries are used to describe FNs by
the parametric representation [u(r), (r)], r € [0, 1].
Compactness: Emphasizing on compactness of u", forces
u(0) and it(0) become finite numbers. Thus, this condition
including the existence of a deterministic part altogether
implies that
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Figure 1: A non-convex membership function has disjoint r-cuts. For
example, for r = 0.6, u" = Uy U U,. This means that the boundaries of
r-cuts are more than two points. Furthermore, the two picks imply the
uncertainty of two numbers simultaneously (the pikes), which is intui-
tively inconsistent. Thus, this membership function can be a fuzzy set
instead of an FN. Oddly, we have such fuzzy sets in quantum physics.

u(r) € (-, a]
and
u(r) € [b, »)

are well defined. Furthermore, we can substitute max
and min with sup and inf in the definition of r-cut
boundaries. A consequence of this assumption is that
u(x) = 0 outside of the interval [c, d], where ¢ = u(0)
and d = &1(0). This property is usually used for the defi-
nition of an FN to emphasize compactness.
* In my opinion, compactness has some useful properties,
but it conceals some nice membership functions
such as Gaussian functions, which is a probability den-
sity function of normal distribution. It is permitted in
fuzzy set theory but according to the definition of
Dubois et al., it is not permitted to be an FN. Figure 2
(a) and (b) shows a fuzzy set with the Gaussian function
u(x) = exp(-(x — 1)%) and their r-cuts representation,
respectively. The boundaries of r-cuts representation
are infinite in zero. One advantage of such restriction
is that we can define at zero the related r-cuts. So the
definition of FN is fated to be closer to interval analysis
than to statistical analysis.
Continuity: Continuity can have many advantages.
However, the main problem is that we could not define a
crisp number as an FN. Our expectation is that a number
d € R with membership function
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(a)

Figure 2: (a) A membership function with Gaussian function and (b) its r-cuts boundaries. It is not an FN.

uo =1 X o8 ©)

, otherwise,

can be defined as an FN. It is evident that this number is
not continuous. Thus, Goetschel and Voxman [28] pro-
posed replacing semi-continuity conditions instead of
continuity. In this case, ¢ is right continuous in the
left-hand side (i.e.,, (e, d)) and left continuous in the
right-hand side (i.e., (d, ©)). The last updated definition
enjoys imposing such left and right continuity outside of
the deterministic part.

On the other hand, the discontinuity of boundaries of
r-cuts can lead to some problems in directly recovering
FNs from their parametric representation. Let [u, if]
be a parametric representation and a = u(1), b = (1),
¢ = u(0), and d = u(0). Then, a membership function
can be recovered by

u(x), x=|cal,
1, x = [a, b],
- 6
#0100, x = b, d), ©
0, otherwise.

But, #71(x) and u'(x) are not defined on discontinuous
point (Figure 3). However, this problem can be cured by
the recovery function

inf{r : u(r) € [x,al}, t=|[c, al,

o, x = [a, D],
HOO = ineer - () € [box]h x = [b, d), @
0, outside of [c,d].

Therefore, with this definition, the corresponding FN of
Figure 3(a) has representation deputed in Figure 3(b).
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r-cuts

(b)

* Now, let us recover parameter representation by r-cut
definition and in Figure 3(b). By Definition (2),
u% = [-1,4]. Thus, @#(0.5) =4. This is in contraction
with our original Figure 3(a), which &(0.5) = 3. This pro-
blem can be solved by pressuring left contentious con-
tinuous condition on (0, 1] for .

Strictly decreasing or increasing condition: Dubious and
Prade [26] imposed the strictly decreasing or increasing
conditions on FNs. However, to define a topology, Goetsche
and Voxman [28] just imposed the decreasing or increasing
condition. The membership function depicted in Figure 3(b)
is not an FN by the definition of the study by Dubois et al
[26]. But it is an FN by definition [28]. We note that omitting
the strictness leads to non-continuity in the parametric
form, and vice versa (Figure 3 and related discussion).

Remark 2.1. Another solution to the paradox of strictly
monotonousness conditions is keeping continuity, strictly
monotonousness behavior, and adding parametric func-
tions as constant u(r) = v(r) = const. to fuzzy parametric
numbers. This means, on the other hand, keeping the
Dubious condition and adding the FNs of Form (5) to the
set of FNs.

Continuing the discussion of the study by Shiri [25], we
have the following definition:

% = {[a,b] : a < b},
UM[a,b] ={u: [a,b] - R
: u is strictly decreasing, continuouson  (8)
[a, b] or u = 0},
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Figure 3: (a) A fuzzy set with membership function u, without strictly
monotonous condition and (b) r-cut representation of the FN depicted in
(a). It is evident from (a) that u%5 = [1, 4], u®5¢ C [1, 4], and

u®5*€ > [1, 3]. Therefore, (r) has discontinuity at 7 = 0.5. Thus, we
could not define r = @!(3.5). In this case, we may use (7) to define u(3.5),
which are not recommended.

and
UM*[a,b] = {u: [a,b] » R*: u € CM},

Definition 2.2. [25] Amap f, : [0,1] — % is called entirely
uncertain number (EUN) if

S = [f =), £+ va(r)],

where f € R is the deterministic part and v;, v, € UM*[0, 1]
are uncertain parts. Furthermore, if the condition

reo,1], 9
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Vi) =v(1) =0 (10)

holds, we say that d,, is an uncertain number. If v, v, € C™[0, 1]
(m € N U {0}), we say that d, is a C"™-smooth (entirely) uncer-
tain number.

Every EUN can be characterized by the triple
[d; Uy, u2] €R x [UM+[0) 1] x [UM+[O’ 1]

We denote the set of EUNs by Rgy and the set of uncertain num-
bers by R y. The important characterization of R is that they
have unique representation inR x UM*[0, 1] x UM*[0, 1] [25].

Pathological remark 2.3. The presentation of an EUN may
not be unique. Suppose d, = dg. Then,
[d - w(r), d + w(r)] = [d - @(r),d + &), re0,1].
Thus,

d - u(r)=d - ar).

This means that &i;(r) - u;(r) = d - d is a crisp number and
let us name it ¢. To make the definition of EUN well defined,
we can use the equivalent classes as separate elements, or
choose one particular element of a class by imposing more
conditions. We follow the latter. One such element is the
centralized EUN (CEUN). A CEUN is an EUN with the extra

condition:
(1) = uy(1). 1

We denote the set of CEUNs by R cgy.
Theorem 2.4. Every EUN has an equivalent CEUN.

Proof. Let uy be a given EUN. Set
_ W) — w(@)
2 )
andletd = d + c and &i(r) = ui(r) - (-1)ic. It is straightfor-
ward to check that ii; € UM*[0, 1]. Therefore, d; is an EUN,
while

@) — w@) _
2

Thus, dz is a CEUN. O

() = w1 + (1),

Theorem 2.5. Every CEUN has a unique presentation.

Proof. Let d; = d, be two representations of CEUNs. Then,
d+ (D) =d + (-Diy(r), i=1,2 (12)

Therefore,
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2d + wy(r) — wy(r) = 2d + W(r) - W(r). 13)
Substituting r = 1 into (13), we have

2d + uy(1) - wy(1) = 2d + (1) — W(1). (14)

Since d; and d, are CEUN, uy(1) - u;(1) = 0 as well as
i,(1) - (1) = 0. Thus, it follows from (14) that

d=d, 15)
and immediately by substituting f from (15) into (12), we
obtain uy(r) = @t;(r). This completes the proof. O

A parametric representation of an FN p = (p,, p,) has a
CEUN presentation [25] as:

d(p)y = [d(p) - w(p)(r),d(p) + w(p)(r)], (16)
where
d(p) = p:(D ;' Pz(l)’ 17)
and
w(p)(r) = (- Vd(p) - p(r), =12 (18)
We can note that
1 1 1) -p,1
w(p)(1) = py(D ; p,(» p(1) = p,(» _ p(D
19)
1 1
-py - BE2ED - iy

Let p and g be two CEUNSs. Then, the addition is defined by:

dip+q@)=d(p) +d(q)

20
w(p + Q)= (p)r) + w@), @0

i=1,2.

The new scalar multiplication has recently redefined in the
study by Shiri [25]:
¢f = [ed(p) - |clw(p)(r), cd(p) + |clu(p)(M)], ¢ € R.

Therefore, the Hukuhara difference [40] and its general-
ization [24] are defined by:

@D

pSq=hep=q+h (22)
and
p=q+h,
= 2
PO a=he | ol con (23)

Remark 2.6. Hukuhara difference is independent of the
scalar product. Thus, with both definitions of scalar product,
we have unique results. However, the generalized Hukuhara
definition depends on scalar multiplication. This definition
varies with different types of scalar products.

DE GRUYTER

Theorem 2.7. [25] Suppose p and q are two FNs. The differ-
ences () p © q and (I) p©,q exist if

(D u(p) - u(q) € UM*0,1] fori=1,2,

Un |u(p) - u(q) € CM[0,1] fori=1,2,

respectively. Furthermore, if (I) and (II) hold, then

p © q=[d(p) - d(q) - w(p)(r) - wm(g)r)),

24
d(p) - d(q) + (u(p)(r) = ux(q)(r))]

and

P S q=[d(p) - d(q) - lwu(p)(r) - w()r)l,

(25
d(p) = d(q) + |u(p)(r) = u()()I].

3 Fundamental theorem of
uncertain discrete calculus

3.1 Nabla calculus

Let p:N; = Rcgy be a fuzzy-valued discrete function.
Then,

Vo, p() =p() S p(t = 1), t ENgu, (26)

is the nabla difference operator. From Theorem 2.7, this
definition is well defined if

|ui(p)(®) - wi(p)(t - | € UM[0,1],

The continuity conditions automatically hold. However,
the monotonic conditions should be checked.

We can extent the definition for n € N by the recursive
formula:

i=1,2.

V5 p(0) = Vg, (VE PO,
fort € Ngip.
Let ¢ <d and ¢,d € N,. Then, the nabla integral is
defined by:
d d
[pewe= 3 pa,

¢ i=c+1

and ford < c,

¢ d
[pwe =1 3 pa.
d

i=c+1
where the especial product by (-1) is defined by (21). For
definitions of nabla integral in crisp values, see the study

by Kelley and Peterson [7]. The fundamental theorem for
uncertain fractional nabla integral no longer holds.
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For a given f: Ng.; = Rcgy, the simplest fuzzy discrete
difference equation is

Vegp(t) = f(t); te Na+1. 27

The solution of Eq. (27) is a fuzzy-valued function P : N; = Rcgy
such that satisfies (27). It is called the anti-nabla function in
calculus. To have a unique solution, we can add some more
information such as boundary conditions. We will use the
initial condition

P(a) = R, (28)

for a given P, € Rgy.

Remark 3.1. For a crisp function by the fundamental the-
orem of the nabla calculus [9], we have

P(t) = B, + [f(s)Vs. 29)

However, this is no longer true for fuzzy-valued equations.

Example 3.2. Let us substitute t = a + 1 into Eq. (27). Then,
d(P(a +1) - d(R) = d(f(a + 1))
and
[u(P(a + 1) - wi(R)| = u(f(a + 1)),
Therefore, the deterministic part has a unique solution:

d(P(a + 1)) = d(R) + d(f(a + 1)). (30)

i=1,2.

But, the uncertain part has two solutions. To distinguish
these two solutions, we use extra subscriptions:

wij(P(a + 1)) = wi(B) - (-D/ui(f(a + 1),

Trivially, u;1(P(a + 1)) € UM*, while we should check
that if u; o(P(a + 1)) € UM*. In this case, we have four solu-
tions of the form:

[d(P(a + D), uyk(P(a + 1)), upj(P(a + D),

Lj=12 ()

(32)

k,j = 1,2. Which solution do we choose?

The best choice is related to the biggest uncertainties.
But, we know that

uii(P(a + 1)) > uj(Pa + 1)). (33)

Therefore, Case (a) is well defined and includes other cases. It
can prevent the bifurcation problem and provides a unique
solution. We name such a solution a maximal solution.

Definition 3.3. Let {[d, uy;, Uy i]}ic; be all solutions of an
uncertain problem. Then, the solution defined by
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[d, sup;c i i, SUp; Usz,] is called a maximal solution. Here,
the sup is pointwise with respect to r, i.e., (Sup;c;us,)(r) =
sup;e(ug,i(r)).

Remark 3.4. The compensation for introducing a unique
solution (maximal solution) is losing information.

We now turn to state the fundamental theorem of dis-
crete uncertain calculus with CEUNs.

Theorem 3.5. The initial value problem for Eq. (27) has a
unique maximal solution P : Ngy1 = Negy and

t
P() = B+ [F(s)V(s). (34)

Proof. By Example 3.2, the maximal solution of (27) on
t=a+2 is given by (30) and (31). Substituting t =a +1
into Eq. (27), we obtain

Pla+2) S, Pla+1) =f(a+2). (35

This means that the maximal solution in this point is
given by:

d(P(a +2)) =dP(a+1D) +d(f(a+2)) (36)
and
u(P(a +2)) = u(P(a+ 1)) +u(fa+2), i=12 37
For t € Ng4q, with a similar argument, we obtain
d(P(t)) = d(P(t - D) + d(f (D)), 38)
and
w(P(t)) = w(P(t - D) +u(f(1)), i=12. (39

The solution of the recursive Formulas (38) and (39) is

dP@)=d®) + Y d(f()

i[=a+1 (40)
= d(R) + [d(F(s)V(s)
and
t
w(PO) = w(B) + Y w(f(s)
st 1)
=u(B) + Iui( F(HV(s),

a

for i = 1, 2, respectively. Finally, the summation property
of CEUNSs results in Eq. (34). |
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Similarly, Leibniz’s rule for fuzzy difference can be
stated as follows.

Theorem 3.6. Suppose q(t,s):Ng xN; »> Regy and
u;(q(t, s)) with respect to t is an increasing function, i.e.,

) uilq(s, ) - uiq(s, t - 1) € UM,
Then,

t €N,

t t
Vg, Jats. tyws = jveg q(s. OV + q(s,t- 1), 42)
b b

Proof. Fort € N,y and b € N,

t t
S st Y qlst-1), 43)

s=b+1 s=b+1

t
Veg Jq(s, t)Vs =
b

and hence,

Uj

t
Veg‘t‘[q(s, t)Vs
b

t t-1

2 ulq(s, D) - Y wlqls,t - 1)

s=b+1 s=b+1

(44)

t
Y luiq(s, ) - wi(q(s, t - 1))

s=b+1
+ |ui(q(s, t — 1)

Equality holds if Condition (i) of the theorem holds. In this
case, we have

IA

Uuj

t
V@gvt‘[q(s, t)Vs
b

t
Javg, a6, 09 + utas - 49
b

t

Juvg, ats, 0)7s + ugats, t - ).

b

Similarly,

d

t
Veg,[J-q(s, t)Vs
’ 46)

= J.d(veg’tq(s, Vs + d(q(s, ¢ - 1).
b

Remark 3.7. Since Condition (i) of Theorem 3.6 automatically
holds for the existence of nabla difference for Hukuhara
difference, Theorem 3.6 is also valid for nabla difference
with the Hukuhara definition.
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4 Uncertain discrete relaxation
equation
Relaxation means the return of a perturbed system to its

equilibrium. The fuzzy/uncertain discrete relaxation equa-
tion with a rate of relaxation A € R can be described by:

Vo P(t) = AP(t), L€ Ny, @7
with a fuzzy initial condition:
P(a) = B, € Rexu
Lett = a + 1. Then,
P(t) ©; P(t - 1) = AP(D). (48)
Immediately, it follows from (48) that
1
dP(a+1)= md(P(a)). (49)
The possible solutions for uncertain parts are
w(P(a + 1) = w(P(a)) + |Alu(P(a + 1)). (50)
Thus,
1
w(Pla+1) =T~ B ui(P(a)) (51
and
(P(a + 1)) = 1 i(P (52)
wlPa+1)) =17 R w(P(a)).

The choice of the solution depends on A. If|] < 1, Eq. (51) is
maximal solution since

1 1

- > .
1= 1+]|4

However, for [A| > 1, the right-hand side of Eq. (51) does not
belong to UM*[0, 1], since it is negative. Thus, in this case,
only Eq. (52) is an acceptable solution. Exactly, with similar
arguments forn € N

d(P(a + n)) = [ﬁ]nd(&), neN, (53)
and
ui(P(a + n)) = [%Ml]nui(}}), neN, (54)
for|A| <1, and
u(P(a + n)) = %w]nui@a), neN, (55)

for |A| > 1 are the maximal solutions.
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5 Uncertain fractional discrete
calculus

To define the nabla fractional difference, we need to define
the nabla fractional sum. For crisp function, there exist two
definitions [9,41]. For uncertain valued functions, we gen-
eralize those definitions.

Definition 5.1. Let f: N; = Rcgy and v € (0, 1). Then, the
Nubla fractional sum for t € N, is defined by:

t

1 _
ACRETd [G OIS IONO

¢ (56)
I'(t-s+v)

T(t-s+1)

1 t
T T(v) 2

s=a+1

f(s)

where p(s) = s - 1 and
I'tk +v)

k) °

0, kez,

undefined,

keR\z", VER,

kY =
k+veR\z,

otherwise,

and Z~ = {0, -1, ...}. However, to include the effect of s = q,
one may consider the second definition as:

N -
v O= 105 Il(t - ()7 (S)V(s)
“ 57)

1 il“(t—s+v)

T £Te-s+ 1)

s=a
Now, we can define the nabla fractional difference in
the following.

Definition 5.2. [9] Let f:N; > Rcgy and N-1<v <N,
N € N. Then,

Vo= VNegV;(N“’)f(t), tENgn.  (38)

We compare the definition of nabla difference for both
cases for a crisp function. Particularly, for v € (0, 1] from
(56), we have

Vi (t) = Vo f(6) = V.8 (e - 1)

1 "zlr(t—s—v

_ ) _
v L s SO DO

(59)

=a+l

. 1 I'(t-a-v)
I1-v) TI(t-a)

f(a).

Thus,

Discrete fuzzy fractional order calculus == 9

limVif(a + 1) = f(a).
v—1
But from (57), we have

Vof (0 = V. NF () - VN (e - 1)
1 L I(t-s+1-v
T T(1-v) sgﬂ I(t-s+1)
-f(s-1)
N 1 I(t-a+1-v)
Il-v) It-a+1)

) (£(s)

(60)

f(a@).

Thus,
limVyf(a +1) = Vf(a + 1).
v—1

It can easily be checked that for both definitions,
limVf(a+1) = f(a +1).
v—=0

Conclusively, the nabla fractional difference definition
by (57) is preferable since it acts like an integer order nabla
difference whenv - 1 and v — 0.

For uncertain functions with v € (0, 1), we have

Vz,egf ®

vegv;W V@), tE€Ngnm

V() ©p VNSt - 1)
~ 1 il"(t—s+1—v)
CTA-v L I(t-s+1)

1 YZre-s-v
s ra-v) 2 I(t - s)

(61

f(s)

JAOR

s=a

Thus,

1 il"(t—s+1—
A-v) o TE-s+1
. 1 I(t-a+1-v

Il-v) I(t-a+1)

vacs(s))
©2)

AV O) =7

D dtf(@y)
and

1 il‘(t—s+1—v
ra-v), I'(t-s+1)

1 I(t-a+1-v)
Irl-v) I(t-a+1)

(VY (0)) = D uf(s))

=a+1

(63)

w(f(@)|.

Supposing u;f(s) is an increasing function (then,
f(s) © f(s - 1) exists), we can omit the absolute value
function and we will have

1 L It-s+1-v)
I'l-v) s=§+1 T(t-s+1)
N 1 I(t-a+1-

rl-v) I(t-a+1)

ui(Vef () =

Vui(f(s))
(64)

v) u(f(a)).
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For solving the related equation, we may use the fol-
lowing formulas:

v Zrie-s-v)
(1—v)zl"(t—s+1)

s=a

d(Vef () = d(f(O) - 7 d(f(s)) (65)

and

ui(Vof (1)) = lui(f (1))
_ % t"zl I'(t-s-v)
r[A-v) S it-s+1

s=

(66
ui(f(s))I.

Remark 5.3. Equations (65) and (66) are important. They
show the effect of memory and locality for discrete fuzzy
derivatives. Let us denote the coefficients by n,, i.e.,

v T(k-v)
r(A-v) Itk +1)’

n(v) = - 67)

As depicted in Figure 4, the effect of the memory due to
these coefficients achieves its highest amount not on zero
or one but on the other points.

6 Fundamental theorem of
uncertain fractional discrete
calculus

In this section, we solve an inverse problem to find a pos-
sible inverse of an uncertain fractional discrete difference.
Indeed, we seek the solution of the following equation:

sze P(t)=f(t), tE€ Nz, VE(Q,DI, (68)

g

with initial condition P(a) = P, where f: Ngi; = Rcgp.
We solve it by recursively substituting t € N, into Eq.

(68). Setting t = a + 1, we obtain

d(P(a + 1) = d(f(a + 1)) + vd(P(a)) (69)
and
ui(P(a + 1)) = vuy(P(a)) + wi(f(a + 1)). (70)
Thus, the maximal solution is
P(a+1) =vP(a) + f(a + 1). (71)
Now, putting t = a + 2, we obtain
d(VP(a + 2)) = d(P(a + 2)) - vd(P(a + 1))
) 7
=d(f(a +2)).

Thus, the maximal solution is

DE GRUYTER

n, (V)

-0.14

v

Figure 4: Coefficient of fractional nabla difference (65) for i € N;. The
maximum effect of the memory for that coefficient achieves at the
minimum values of each curve. Such points are not zero or one. The
important implication of this figure is against the belief that in related
equations by increasing or decreasing fractional order toward integer
order, we may obtain higher memory. Also, the curves are not sym-
metric, which means that0 + e and1 & do not receive similar memories.
For € = 0.25, the coefficients of 1 & = 0.75 vanish faster than the coef-
ficients of 0 + &€ = 0.25.

P(a+2)=vP(a+1)+ v(12—' ) p(a) + fa + 2)
' (73)
X pa) +vf(a+ )+ fla+ D),
Similarly, the maximum solution satisfies
v CIt-s-v)
P(t) = ) Z TR P(s) + f(t), (74

for t € Ng.q. By defining f(a) = P(a) = P, we can suppose
t-a

P(t) = Y q)f(t - i). (75)
i=0

Substituting (75) into (74), we obtain

< . (dsa VI(t-s-v)
i:ZOCi(V)f(t =22 T - VI -5+ 1) c(Wf(s

s=ai=0

-0+ f(O

t-1

t-1-a
=) av) )
i=0

-0+ f(0).

Equating coefficient of f(a), we obtain

(76)

vI(t -s-v) £(s

TA-v)I(t-s+1)

t-1-a

Ga) = Y eyt Ay

- , (D
i=0 A-v)I(t-a-i+1)
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or equivalently,

m-1

izZO c(v) Ta

Thus, by this recursive formula, we can obtain easily beau-
tiful fading coefficients

v T@m-i-v)
-WIm-i+1)’

cn(v) = m=1. (78

(v +0) v©®

@M =1= Tora+0) - T+ 0) 79
and
_ve(n-1+v)  T(v+n) = v®
V) = nl “Torasnm  tarn Y

for n € Ny. They are related to the Pochhammer symbol,
which is defined as follows:

I'(v +n)

n) =
Y )

Therefore, the maximal exact solution is

t-a (i)
P(O)= 3 = f (= D)
i=0 b

¢ (s-a)
= Z(:_a)!f(t+a_s)
MG =1 6-a)
S att ;(s-a)!f(“ a-s)

yt-a) ¢ (t-2)

=—P+ ) £(z)

(t - a) som (= 2! (81

V(r ) ¢ YD)
o I o @
v T(v+t-
(- a)!B‘ T(v) {m +t- z)'f( vz
(t-a)
=t T,

As we expected, we can consider V,” as an inverse of V;. In
this context, we should call it the maximal inverse of V",
because it may have other inverses, which hold more infor-
mation. The maximal inverse has the highest uncertainty
among the solution. We summarize our discussion in the
fundamental theorem for fractional discrete calculus.

Theorem 6.1. The initial value problem for Eq. (68) has a
unique maximal solution P : Ngy1 = Negy and

I'v+t-a)

PO= Ty - o

B, + V(D). 82)

Discrete fuzzy fractional order calculus = 11

6.1 Uncertain discrete fractional relaxation
equation

An uncertain discrete fractional relaxation equation with a
rate of relaxation A € R can be described by:

@P(t) AP(t), t € Ngq, vE(0,1),

(83)
with a fuzzy initial condition V@gP(a) = P, € Rcgy. We use
primary recursive methods to solve this equation by sub-
stituting t € Ng.q. First, we putt = a + 1, and we obtain

A(P(@+ D) = 5 dP@) (89
and the uncertain part accepts two solutions
v
ui(P(a + 1)) = - M)ui(P(a)) (85)
and
u(P(a +1) = m ui(P(a)). (86)

If |A] < 1, we can chose both solutions (85) and (86). Trivi-
ally, in this case, the maximal solution is (85). If |A| > 1, we
have only one option, Eq. (86). Unfortunately, for A = 1, the
problem is ill-posed and we have no solution.

Now, put t = a + 2 for the deterministic part, we have

d(ViP(a + 2)) = d(P(a + 2)) - vd(P(a + 1))

v(l )d(P(a)) 87
= Ad(P(a + 2))
and hence,
dPa+ )= - ! )[vd@(a 1))
+ XD apia (5)
Y v(l-v)
a- A)] [ oo
and for the uncertain part, we have
ui(VaP(a + 2)) = [u(P(a + 2)) - vui(P(a + 1))
) (89)

= Mluz(P(a +2).

Again, we will obtain two solutions. The maximal solution
depends on the behavior of A. If |A| < 1, the maximal solu-
tion is
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I ]
+

and if |A| > 1, the maximal solution is

v : N vl -v)
@ +1AD 211 + 1A

Finally, it follows from (65)

ui(P(a +2)) = ui(P(a)), (90)

vl -v)
211 = |AD

u(P(a +2)) =

u;(P(a)). 91

v
WO TTaa-»
Sy - g - (92)
« 3 e
or equivalently,
_ v Arn-i-v)
AP@+ M) = T T 2 T 1+ 1 2@ o
+1).
Supposing
dP(a + 1)) = 2[1 ! A] VAR, iz1, (99
Eq. (93) leads to:
o 1Y v -
2 m] WO Ty & F(n—l+1) Z
j=1 i=1
j+1
[m] cij(v)
% I'(n-v)

F(l -vV)A-)T(n+1) (95)
ity In-i-v)
gzr(l—v)l"(n—wl)

j+1
[m] ¢, j(v)
% I'n-v)
" Ta- VA-HIn+D
Equating the coefficient of [1 7| » we obtain
_ v T(n-v)
T TA - T+ D)
and
v T(n-k-v)
e = ,ij DT -k 08

for n € Nj,1. we can obtain ¢, j+1 recursively. For example,
by substituting j = 1, we obtain

DE GRUYTER

”f v T-i-v) v TI@{-v)

ETA-WTm-i+DTA-v) TG +1)

Cn2 =

Similarly, for uncertain part, if |A| < 1, the maximal solu-
tion is

i 1 )

weP(a + 1)) = ) |——| c;Mu(®), =1, 97
el G A]

and if |A| > 1, the maximal solution is
i )
. 1 .

w(P(a+ 1) = ) |[——| i@, iz1 (98)

Sli+

where k =1, 2.

7 General linear case

In this section, we focus on Eq. (1), which is a general form of
the linear uncertain discrete equation. Substitutingt = a + 1
into (1), we obtain

d(P(a + 1)) = a- /1) (vd(P(a)) + d(f(a + 1)), (99)
and the uncertain part accepts two solutions
w(P(a +1) = 1z AI)(W i(P(@) + u(f(a+1)),  (100)

which the choice + for maximal solution depends on A. For
other points, assume

i

d(P(a + 1)) = Z

] eonamy +agae iy aon

for i = 1. From (65), we know that

Vi d(P(a + n))=d(P(a + n)) -

gfrarn arn r(1—v§0 102)
I'n-i-v) .
=i+ @D

and hence, by substituting (102) into Eq. (1), we obtain

d(Pa+m)=T—5f(a+ F(l Z
) i (103)
I'n-i-v) .
Tn-i+1) d(P(a + l))].

Thus, from (101), we have
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w

N

o,

oo

100

ﬂ**mﬁw*‘&
“4r ++*+++H44+++*+++
5 . . . .
0 20 40 60 80
t
(a)
0.4
20 T T T T

P(t,r)

4, w**‘“w“**u
.
+ Mgy, Hhy T T r=0.8
**H#%Hmﬂﬂ + - ., *m *‘*ﬂm 4»*** *+++ "y, e,
iy iy, oy T =0 6
iy, Ty g* by et **¢+** aa ¥
+, -+ "+
"y, * o *‘uﬂ o e o #“"’*‘”ﬁuﬂ Hy =04
H, e
-10 F o,y e u‘ i
+++++ Ra T ”w** L ++++++PHHW+++++ *t. r=0.2
+++*+++ T +++++
15 L L L L r=0
0 20 40 60 80 100
t
v=1
250 T T T T
ot r=0
200 q
#r=0.2
150 ]
et r=0.4
100 [ ot r=0.6
—~ 501 #r=0.8
=
T . r=1
" r=0.8
-50 . 1
n r=0.6
) "
-100 BT e =04
"y e
+*++++++H+ ““‘*ﬂﬁ -
-150 mﬂmﬂﬂm Hr=0.2
b,
gy,
=l
2200 L L L L r=0
0 20 40 60 80 100

Figure 5: Solution of Example 8 for (a) v = 0.1, (b)v=04,and (c)v =1
and various r on [1, 100]. The markers o,

*, and + are used for the
deterministic part, left part, and right part of uncertain numbers.

n

2l

TldC@ )+

1%
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] o j(V)A(E) + f(a+)))

I(n-v)
I(1-v)T(n+1)

F(l -V)

i=1

”le"(n -i-v)

In-i+1)

d i
z[ﬁ] ¢, (V(A(R) + fla+)))
j=1

F(l -V)

1-

Tld0@ ) +

A

Thus,

and

Cn,l(v) =

Cn,j+1(V) =

j=li=j

I'n-v)
IA-v)T(n+1)

”Zlnzl I(n-i-v)

Tn-i+1)

] ¢i,j(V)(d(R) + f(a +]))|.

v T(n-v)
ta-wtaend@) + fla+n)

dR) + fla+1)

v "fl“(n—i V)

I'a-v) = i+1)

- T(n - 6,j(v),

- 13

T 1y AP(@)

(104)

T 1y AP@)

(105)

for n € Nj,4. Interestingly, Formulas (105) and (96) are the
same. Conclusively, we obtain the following result.

v=1

v=0.9

v=0.8

v=0.7

v=0.6
v=0.5
v=0.4
v=0.1

20

100

Figure 6: Deterministic part of solution of Example 8 for various v

on [1, 100].
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0.5

-0.5

| r=0.6

r=0

r=0.4

r=0.8
r=1

r=0.8
r=0.6
r=0.4
r=0.2
r=0

v=0.9, A\=2

Figure 7: Solution of Example 8.3 for v = 0.9: (a) A = 2 and (b) A = 2 for
various t on [1, 10].

Theorem 7.1. Suppose A € R and f: Ng = Rcgy. Then, dis-
crete Eq. (1) has a unique maximal solution described by

(101) for the deterministic part:
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30 T T T

N
w
E N
4
[
~
[
©

r=0

r=0.2

r=0.4

r=0.6

r=0.8

r=0.8

r=0.6

r=0.4

r=0.2

r=0

r=0

r=0.2

r=0.4

r=0.6

r=0.8

=1

-+ r=0.8

r=0.6

r=0.4

r=0.2

r=0

Figure 8: Solution of Example 8.3 forv = 0.9:(a) A = 0.2 and (b) A = 0.2

for various t on [1, 10].

8 Examples and discussions

First, we give a comparative example of anti-derivative.

¢ j(V(d(ER) Al <1,

Example 8.1. We consider an uncertain force function with
time-independent uncertainty described by:

i 1V
1= 1Al

+d(f(a+))),
i 1 J
1+ 1A

—

d(P(a + i) = (106)

' ¢,j(V)(d(R) |A]> 1.

j=1

+d(f(a+))),

f(®) = [sin(0.1t) - wy(r), sin(0.1t) + uz(r)],
where

w(r) = uy(r) =2 - 2r.

The initial condition ata = 0is given by B, = [-uy(7), up(7)].
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We obtain the discrete anti-derivative of F by solving
Eq. (27). Of course, the solution by (82) is

P(t)= B+ [f(5)V(s)
0

t 107)
= [~wy(r), up(r)] + Z [sin(0.1s) — uy(r), sin(0.1s)

s=1

+u(r)], tEN.

For fractional order discrete Eq. (68), we will have

t-a-1
P(t) = c-aW)[-w(r), i) + ) ai(v)
i=0 08)
x [sin(0.1(t - 1)) — wy(r), sin(0.1(t - 1))

+ ()]

Remark 8.2. We note that

limcg(v) =c(1) =1, i€N,.
v—-1

Thus, the solution is non-local and when v — 1 the solution
will approach the integer order case. But,

limc(v) = ¢(0) =0, 1i€Nj.
v—0

Therefore, the solution will tend to f(t). This is a local
solution. The fadedness increases when v — 0. The memory
of the solution increases when v — 1. This discussion for the
discrete fractional difference is not the same (see Remark
5.3). For fractional differences, cases v = 0 and v = 1 have
local discrete differences.

In Figure 5(a)-(c) we demonstrated the deterministic
part and the boundaries of the solutions (right and left
boundaries) for various r and v. These figures illustrate
that by increasing v uncertainty increases. It is trivial since
by increasing v the effects of the memory coefficients
increase and thus it accumulates larger uncertainties from
previous terms. A similar argument can show why by
increasing v the deterministic part show a higher amplitude
of oscillations. Figure 6 shows this phenomenon.

Table 1: Coefficient of the (94) versus fractional order

v C1(v)  Ce2(v)  Ce3(v)  cealv)  Ces(V)  Cee(V)
0.99000 0.0003 0.0010 0.0025 0.0066 0.0238 0.9415
0.99900 0.0000 0.0001 0.0003 0.0007 0.0025 0.9940
0.99990 0.0000 0.0000 0.0000 0.0001 0.0002  0.9994
0.99999 0.0000 0.0000 0.0000 0.0000 0.0000 0.9999
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Example 8.3. The final example is devoted to the relaxation
equation. For this example, we consider

w(r) = u(r) =4 - 4r,
a=0,

and P, = [-wy(r), ux(r)]. We compare the result with var-
ious values of v and A.

We know that the solution for |A] > 1 and |A| < 1 is dif-
ferent. For |A] > 1, coefficients of uncertain terms effected by
(1 + |A)7, which tends to zero geometrically as j — c. Thus,
the uncertainty is reduced. Interestingly, for stable systems,
we have deterministic results, even with uncertain para-
meters. See also the discussion on stability in the study by
Alijani et al. [35] for the continuous case. In Figure 7(a) and
(b), we depicted the numerical results for A = 2 and A = -2,
respectively. Fading the uncertainty as expected is evident.
For|A| < 1, the coefficients (1 - |A|)7 increase geometrically.
A geometric rise in both uncertainty and determinism part
can be observed. Figure 8(a) and (b) demonstrates such
growth for both A = 0.2 and A = -0.2.

Remark 8.4. The solution of uncertain discrete relaxation
equation is given by Eqs (53)-(55), while the solution of
fractional order uncertain discrete relaxation equation is
given by more complex Eqs (94), (97), and (98). It is inter-
esting to ask if v —» 1, does such a complex solution of
fractional order tend to integer order one. To answer this
question, we first investigate the behavior of the coefficient
¢;j(v). In Table 1, we reported the numeric computation of
¢y for n = 6, for various v approaching to 1. The result
shows the tendency of ¢,; toward &y, as v approach to 1,
and hence, Eq. (94) will tend to (53). Such a result directly
can be implied by the recursive Formula (96) at the limit.

9 Conclusion

Unlike the fuzzy set, the FN does not have a unique defini-

tion and is defined by adding properties such as continuity

and uniformity to the membership function. We review the

available definitions concerning the advantages and draw-

backs of adding, removing, or refining such properties. In

conclusion, we keep

1) Convexity: the r-cut become a unique interval.

2) Existence of the deterministic part: the advantage is
that r-cuts are nonempty sets.

3) Compactness: imposes the boundaries of r-cuts that
become finite.
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4) Strict monotonicity and continuity with accepting the
exception of deterministic numbers: this leads to a one-
to-one relation between parametric representations
and membership representations.

Based on this discussion, we modified the concrete
definition of the fuzzy/uncertain number [25] that sepa-
rates the uncertain part and has a unique representa-
tion. We used the recent advantages in the definition
of uncertain difference operators with new scalar
multiplication.

There exist two nabla fractional differences in the lit-
erature, and we selected the one that behaves locally
similar to integer order in limit. In this respect, we think
it is necessary to have a principal base study for the defini-
tion of fractional difference in a separate study similar to
the study by Shiri and Baleanu [42].

The main aim of this study was to obtain the calculus
of uncertain discrete operators. This part covered funda-
mental theorems that relate uncertain anti-difference
operators to uncertain sum operators. We have done it
for integer and fractional order in separate sections. The
main tool to obtain such beautiful formulas was the con-
cept of the maximal solution. The next part of our cal-
culus covered linear uncertain nabla difference equations
for both integer and fractional order. In this respect, the
explicit solutions of uncertain discrete relaxation equa-
tions, which are an important subclass of such equations,
are obtained, separately.

The relaxation equations are used in diverse physical
phenomena, particularly the phenomenon with superposi-
tion laws. For example, the models of stress-strain for
material and radioactive decay use such equations.
Depending on the materials the fractional or integer order
relaxation equation may be applied. This paper covers
both cases and the result of uncertainty analysis will be
useful for considering measurement errors in such mod-
eling and their consequence results.

We expect such analysis for more complex equations
such as fractional or integer order discrete Hopfield neural
networks described in the study by Huang et al. [43], pos-
sibly extending such investigation for continuous Hopfield
neural networks [44]. Indeed, investigating the effect of
uncertain data in the learning process and the entropy of
an artificial brain can be very important. Partially, it may
have some analysis of security issues of learning by
knowing the effect of uncertain data on the result.
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