AIMS Mathematics, 8(2): 4390-4406.
DOI:10.3934/math.2023219
ATMS Mathematics Received: 30 August 2022

Revised: 30 September 2022
Accepted: 07 October 2022
http://www.aimspress.com/journal/Math Published: 05 December 2022

Research article

Solitary wave solutions to Gardner equation using improved

tan( Q(ZT) )-expansion method

Ghazala Akram', Maasoomah Sadaf', Mirfa Dawood', Muhammad Abbas>*and Dumitru
Baleanu **°

! Department of Mathematics, University of the Punjab, 54590 Lahore, Pakistan
2 Department of Mathematics, University of Sargodha, 40100 Sargodha, Pakistan
3 Department of Mathematics, Cankaya University, 06530 Ankara, Turkey

4 Institute of Space Science, Magurele-Bucharest, Romania

> Lebanese American University, 1102 2801 Beirut, Lebanon

* Correspondence: Email: muhammad.abbas@uos.edu.pk; Tel: +923046282830.

Abstract: In this study, the improved tan(@)—expansion method is used to construct a variety
of precise soliton and other solitary wave solutions of the Gardner equation. Gardner equation is
extensively utilized in plasma physics, quantum field theory, solid-state physics and fluid dynamics. It
is the simplest model for the description of water waves with dual power law nonlinearity. Hyperbolic,
exponential, rational and trigonometric traveling wave solutions are obtained. The retrieved solutions
include kink solitons, bright solitons, dark-bright solitons and periodic wave solutions. The efficacy
of this method is determined by the comparison of the newly obtained results with already reported

results.

Keywords: exact solutions; solitary waves; gardner equation; exponential solution; rational function;

solitons; hyperbolic solution; improved tan(@)-expansion method

Mathematics Subject Classification: 49Q10, 53A04

1. Introduction

Differential equations are very useful in many fields of science, including applied sciences and
mathematical physics. Partial differential equations (PDEs) are widely employed in engineering to
understand the behavior of physical systems through mathematical models. Many efficient approaches
for identifying the solutions of nonlinear PDEs have been developed in recent years, such as: Hirotés
bilinear method [1], exp(—®(£))-expansion method [2, 3], generalized exponential rational function
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method [4], auxiliary equation method [5], first integral method [6], homotopy analysis method [7, 8],
tanh-method [9], transformed rational function method [10], residual power series method [11, 12],
extended direct algebraic method [13] and many other powerful mathematical techniques. Nonlinear
PDE:s are studied extensively because they help to understand the propagation of waves in many areas
of mathematical physics, fluid mechanics and electromagnetic theory [14, 15]. In addition, soliton
solutions also have an effective contribution in fields of engineering and nonlinear optics [2,16,18-21].

The traveling wave solutions of nonlinear PDEs equation are essential to explore and interpret
various real life physical phenomena. The significance of the traveling wave solutions of nonlinear
evolution equations has motivated many researches to investigate exact traveling wave solutions using
effective and reliable mathematical techniques. The traveling wave solutions include solitary and other
kinds of wave solutions. In particular, solitons are of great significance due to their useful applications
in various areas of science and engineering [22,23].

This study aims to investigate soliton and other traveling wave solutions of Gardner equation, which
is an integrable nonlinear partial differential. The Gardner equation was originally proposed by Clifford
Gardner in 1968 [24]. This equation is frequently referred to as combined Korteweg-de Vries-modified
Korteweg-de Vries (KdV-mKdV) equation since it can be generalized to Korteweg-de Vries (KdV)
equation. Gardner’s equation has a wide range of applications in research, including quantum field
theory and hydrodynamics [25-27].

In this work, solitary wave solutions of Gardner equation (GE) are retrieved by utilizing the
improved tan( @)—expansion method. This technique is a recently developed direct technique which
provides a variety of traveling wave solutions for a wide class of nonlinear evolution equations [28-31].

A soliton is an autonomous wave that diffuses while maintaining its shape and velocity. The
nonlinear integrable KdV equation can be written, as

ry+lrry + mry, =0, (1.1)

where r(x,7) in Eq (1.1) is the appropriate field variable and [, m are real constants, also x is
representing the spatial variable and ¢ is indicating the temporal variable. The solitary waves are
generated due to nonlinear term rr, and the linear dispersion r,,,. The Gardener equation with
constant coefficients [32,33] is considered in the form

re—6(r + 62 r)r, + ryy = 0, (1.2)

where ¢ is a nonzero constant. Eq (1.2) is also called the combined KdV-mKdV equation. A higher
order nonlinear term was added to the Eq (1.1) to generate the Gardner equation. Like KdV equation,
Equation(1.2) is also an integrable equation.

2. Improved tan((@)-expansion method

Step 2.1. The nonlinear partial differential equation (NLPDE) for r(x, ¢) is considered in the form
Q(r, 1y Ty ity Pty Foxs - +) = 0. 2.1

By the aid of transformation Y’ = «(x — @t), Eq (2.1) can be converted into an ordinary differential
equation, as
I'(r, r', —wr’, r”, a’r .. ) =0, (2.2)
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where @ is to be evaluated later and Y is a wave variable.
Step 2.2. The solitary wave solution of Eq (2.2) is supposed, as

R(() = P(D) = Zp: Gj[q + tan(Q(zT)) ]j + Zp: Hj[q + tan(Q(zT)) ]_j, (2.3)
J=0 j=1

where G;(0 < j < p) and H;(1 < j < p) are constants to be determined later. Also, G, # 0,H, # 0
and Q = Q(T) satisfy the ordinary differential equation (ODE),

Q'(T) = go sin(Q(T)) + g1 cos(Q()) + ¢». (2.4)

Following are the special wave solutions for Eq (2.4).
Family 2.1. For ¢§ + ¢} —¢5 <0 and g; — q» # 0,

2 2 2 2
90 9 — 491 — 4, 9 — 491 — 4
- tan(

Q(T) = 2 arctan
91— q2 91— q2 2

Family 2.2. For ¢§ + ¢} —¢5 > 0and ¢; — ¢ # 0,

o NGB N s

Qer) =2 arctan[ tanh( (T + K))]
q1 — 42 q1 — q2 2
Family 2.3. For g5 + ¢ —¢5 > 0, ¢ # 0 and ¢, = 0,
PN R T NURET
Q(T) = 2 arctan [— - tanh( (T + K))].
q1 q1 2
Family 2.4. For g5 + g7 —¢5 <0, ¢> # 0O and ¢, = 0,
g0 NG9 % — 4
Q(T) = 2 arctan [ _d N tan(—(T + K))]
q> q> 2
Family 2.5. For g5 + g7 —¢5 > 0, q1 —¢> # 0 and ¢ = 0,
+ s
Q(T) =2 arctan[ Nt tanh( (T + K))]
q1 — 92

Family 2.6. For gy = 0 and ¢, = 0,

2n(r+K) _q 2e91(T+K) ]

Q(T) = arctan [equ T ] 2T 1 ]

Family 2.7. For g; = 0 and ¢, = 0,

p10(T+K)  2q0(T+K) _ ]

Q(T) = arctan [eZqO(T+K) 11 200(T+K) ¢ |
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Family 2.8. For ¢2 + ¢ = ¢4,

Q(Y) = -2 arctan [(% + ¢2)(qo(T + K) + 2)]‘

R +K)

Family 2.9. For gy = q; = ¢» = il,

Q(Y) = 2 arctan

o(0+K) _ 1]

Family 2.10. For do = ({2 = ll() and q1 = —ilo,

eilo(T+K) ]

Q(r) = -2 arctan [W

Family 2.11. For ¢, = g,

(g0 + q1)e R — 1]

Q(T) = =2 arctan (o —qnen T 1

Family 2.12. For ¢, = ¢»,

+ 0K 4 1
Q(T) = 2 arctan | L7 92)¢ ]

(g1 — g)en ™R =1

Family 2.13. For ¢, = —qq,

Q) = 2 arctan

enK) + g1 - 40]
e‘Il(T‘*'K) —q1 —qo

Family 2.14. For ¢, = —¢»,

qoeqo(T+K)]

Q(Y) = -2 arctan [W

Family 2.15. For ¢, = 0, g9 = ¢»,

T+K)+2
Q(T) = =2 arctan u]

(T + K)

Family 2.16. For ¢) = 0 and ¢, = ¢»,
Q(Y) = 2 arctan [qz(‘r ; K)].
Family 2.17. For g, = 0, ¢; = —¢>,
Q(T) = -2 arctan [—]
¢2(T + K)

Family 2.18. For ¢y = 0 and ¢, = 0,

QY) = 7 + K,
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where qo, g1, ¢» and Gy, G, H; (j = 1,2,....p) are to be evaluated. Homogeneous balance principle
is used to find the value of p by considering highest order derivatives and highest non-linear terms
occurring in Eq (2.2). If p is not an integer, then suitable transformation is implemented.

Step 2.3. Once the value of p is obtained, Eq (2.3) is substituted into Eq (2.2). By gathering the
coefficients of tan (Q(ZT)) co t(Qm) (j =0,1,2,...) and setting each coefficient equal to zero, a set of
algebraic equations for Gy, G;, H; (j = 1,2,...p), q0, q1, g2 and g can be obtained.

Step 2.4. The set of over determined equations are solved and the values of Gy, G, Hy, ..., G,, H,, @

and ¢ are substituted in Eq (2.3).
3. Exact soliton solutions of Gardner equation

Consider the integrable nonlinear Gardner equation given by Eq (1.2). Substituting the wave
transformation,
r(x,t) = R("), T = k(x — @), (3.1)

into Eq (1.2) yields an ordinary differential equation, as
@R + 3R> +26°R* - KR = 0. (3.2)

Implementing the homogeneous balance principle the value of positive integer is obtained, as p = 1.
The trial solution becomes

R(T) = Gy + Gl[q + tan (Q(QT) )] +H, [q + tan (@)r (3.3)

Substituting Eq (3.3) and Eq (2.4) into Eq (3.2), the following set of algebraic equations can be derived
for qo, q1, 2, k, @, Gy, G| and H; by collecting the terms with the same order of tan (Qm) and setting
every coefficient of all the polynomials equal to zero.

Q)| \°
(tan % ) =46°H,” - K*Hiq1"> - 2K°Hiq192 — K H1 g2,
QM \\!
(ta (T) ) —12(52G0H1 —3/( H]Qoll—3l( H]QoQ2+6H1 s
QM) 2 2 2 2
(tan T ) =126 G() H1+126GH1 -2k H]Q() +KH1ql _Kqu2 +2’(D'H1+12GOH1,
QMY 3 2 2 2 2 2
(tan — ) 6°Go’> + 24 6°GoG 1 H — K°G1qoq1 — K°G1qoq2 + K*H1qoq — K" H1qog»
+27D’G0+6GOZ+ 12G1H,,
QM| 2 2 2+ 2 2 2, 2 ) 2
(tan = ) = 126%Gy2Gy + 128G Hy — 212Ghqy” + CGrqi” — Gy + 2w Gy + 12GoG,
QM
(tan % ) = 126%GyGy” + 3K2Grqoly — 3 K2Grgogs + 6 G,
Q(T)\\°
(tan (T) ) = 4-(52G13 - K2G1qlz + 2K2G1qqu - K2G]qZ2.
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Following are the solutions obtained by solving the system of algebraic equation.

Set3l.k=x =L Go = 1 G, = 41 2q1k6—\452k2q1%-1 H, = 41 2 g1k 6+ \46%k2q12-1 4o = 0
olle - Ry - 52° - 2622 - =4 52 ’ - =4 52 ’ - E)
Vaseq-1
q=qi, ¢ =1 —"—,
QY Q(N)\1™!
R(Y) = Gy + G, tan( (2 ))] +H1[tan((T))] : (3.4)

where qo, q1, q» are arbitrary constants.
Using Eq (3.4) and Families 2.2, 2.5 and 2.18 respectively, yields the following solutions:

I 12qk6— EPR2g — 1 - 2,2
R(T) = —=— + =& S L [ % tanh( 4™ % qZ(‘r+K))]
260 4 6 91— q2 q1 — 92 2
12q1k6 + \46%%q% — 1 T+ gt -4 2+ q2 - ¢ -1
£ qi1K d K°q1 [ q0 + 91 T 49y — 49, tanh( q, T 49, qZ(T+K))] ’
4 & 91— q2 q1— 9 2
3.5
e |, 12qks— APRGI 1| o @ \/Qf—Q§T .
= s tanh  ———(" +
2( ) 2(52 4 [ q1 — 42 an ( 2 ( ))]
2 2
12qik6 + JAo22g 2 — 1 m Nz =
L 2dX “a [ ARae tanh( (‘r+1<))] , (3.6)
4 62 q1 — q» 2
1 12 0 — 46222 -1 1
R; (1) = Y + 1 TE L tan (E arctan[Y g, + K])]
12qik6+ JA22q 21 (1 -1
- ik = K [tan(iarctan[Tq2+K])] . 3.7)
_ \/_—K Y
Set 3.2. K = K, w = (5%’ GO = % 1+ 1+( ;;12+1122)62 2, Gl _ O, Hl _ +% (q16+q2), qgo =
_ V(a2
+ PE; 5 ql = 41, Clz = Clz»
Q(T)\1!
R(‘I’):GO+H1[tan( (2))] , (3.8)

where qo, q1, g, are arbitrary constants.
The following solutions are determined by using Eq (3.8) and Families 2.2,2.3,2.6,2.7 and 2.11-2.14,
respectively.

-1+ 1+ (=% + ¢22) 6«2
Ry(Y) = 3 v 52

1 + 24 g2 — g2 Tt - B
L 1e @ qz)[ B \/mmh( GG Dy K))] . (3.9
2 5 q1— ¢ 91— ¢ 2
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1 -1+ 1+ (=q1> + ¢22) 6%«
Rs(T) = = VI+(=qi® + ¢?) 6%

2 62
[2, 2 2, 2
1 q, t 4 q, t 4 -1
$_K(¢]1+6]2)[@+ 1 Otanh( 1 O(T+K))] ’ (3.10)
2 0 q1 q1 2
1 -1+ 1+ (—=q1> + ¢2°) 6%«
Ry(Y) = 5 \/ (;1 q2%) 6°k
_ 1k (g1 +q) 1 DK — 1 2en+K) 1y
Fy e [ g{arean | S ) G-AD
1=1+ 1+ (-q2 + g2%) 522
Ry () = 2 5
1k (q1+q) 1 290K p2q0(T+K) _ ] 1311
Fr e (e o S ) G412
Ry(Y) = LT VI+ (a2 + @) 8K 1K (@i + @) (go+gq) e ™ - 1]1 3.13)
) &2 2 4 (g0 —q1) e ™o — 11~ '
Ro(T) = 1=1+ 1+ (=q:> +¢.%) & e g+ @)+ q2) e+ 1]_] (3.14)
R 5 2 6 la-gen™h -1l |
1-1+ 1+ (=g:2 + g-,2) 52«2 1 r »q1(T+K) _ -1
Rio(T) = = V1 + (=g + ¢.%) 6% LK (g +q)[e +4d1—4qo0 ’ (3.15)
2 52 27 5 |en™B _g g
Ry1(T) = 1-1+ VI + (=12 + ¢2%) 8% - 1e(g+q)]  qoe®™® ]‘1 (3.16)
) 5 2 5 | gquen™H 1] - '
Set 3.3. K = k @ = iz GO _ l_l+ \/1+(—qz|2-+q22)(52/<2 = ¢lk(ql—qz) Hl — O q0 —
e 5 2 5 PR
+ PE; > 41 =41, 42 = 42,
QY
R(0) = Go + Gy tan ( ))] (3.17)

where qo, q1, g, are arbitrary constants.

Using Eq (3.17) and Families 2.2, 2.3, 2.6, 2.7, 2.11-2.14, respectively, yields the following

solution:
1-1+ 1+ (-q:2 + ¢22) %2
Rip(V) = =
| B 2 2 2 22 2
- Lk (q1 6]2)[ q0 4y T 490 — 4> tanh( A qz(‘r+ K))], (3.18)
2§ 91— ¢ g1 — ¢ 2
=1+ 1+ (¢ + g2%) %2
Riz3(0) = =
[ 2, 2 [ 2, 2
1 - (I] + CI() ‘I] + CI()
. _M[@ + (A —er+ w0 (3.19)
2 0 q1 q1 2
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1-1+ {1+ (-q:2 + ¢:2) %2

Ry4(Y) = 3 52
1k (q1—q) 1 20(T+K) _ 1 2pq1(T+K)
F iy tan p{arean | s e ) (20
=1+ 1+ (¢ + g2%) %2
Ry5(Y) = 3 2
1k (q1—q2) 1 2e000+K) - S2q0(T+K) _
Pyt wan (avean | s e ) 62D
Ri(T) = L TLF VI+(=qi> + @) 8 _ 1&g =g (go+gq)en ™ -1 (3.22)
A 5 275 | @ognen™ 1) '
1-1+ A1+ (-qi2+q.2)5* 1 - @) [(q1 + a(T+K) 4
Ri7(T) = = V1 + (=12 + ¢,2) 6% L1« (g1 =g [(q1 +q2)e ]’ (3.23)
2 62 2 o (g1 — q2) e+ — ]
1-14 1+ (=q2+ g2 % 1 —q) [T + gy -
Ris(T) = = VI +( (2]1 0?) % _ 1k (g1 —go)fe — q Clo]’ (3.24)
2 5 27 5 len™™B _ g — g
1 _1 + 1 + (= 2 + 2 62 2 l _ r qo(T+K)
Ry = LI NTFCaZ 2 @) 8 1k @i= g _qoe ] (325)
2 62 2 ) | gre®(T+K) — ]
2_ 0 2) 282 (a1 — R
Set3.4. k= k, = WP G 1 G oglkasn) g glkern ool
q1 = 41, 92 = 2,
QY Q(M)\T!
R(Y) = Go + G, tan( (2 ))] +H1[tan(%)] , (3.26)

where qo, q1, g, are arbitrary constants.

Using Eq (3.26) and Families 2.1-2.4, 2.8-2.10, 2.13-2.15, respectively, gives the following
solutions:

1 1 _ g2 — g2 4 g2 02— g2+ gl
Ry = L 15 qz)[q Qo \/ 90’ — 9>+ ¢ tan( \/ 90* = 91> + ¢ (‘I‘+K))]
1

22 5 - q1— ¢ 2
J kg + qz)[ G |ma’—ar+a? \/—q02 ol R ]_1 (3.27)
2 5 a1 - ¢ g - 2 S
L ~ 2L 22 24 2P
R0y = - L5 16 @ qz)[ G, |GG tanh( KA (R FP K))]
22 5 g1 — ¢ g1 — 2
| N 22— 2 2 2P -1
el ‘12)[ D I ann (T4 )| (3.28)
2 5 q1 — ¢ 91— ¢ 2
2 2 2 2
1 1« (q —QZ)[CIO V4 + 4o ( 4+ )]
(1) = g % 5 | B T anh (Y (4 K0
2 2 2 2
1 + 97 T 4, q, + q; -1
L e (g qz)[@ . tanh( v (T + K))] , (3.29)
2 5 q q 2
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2_ 2 [ 2
1 1 — 9 — 94 0 6]
R23(T)=——¢—K(Q1—qz)[—@+ ’ 0tan( : (‘Y‘+K))]
o> 2 0 92 q2 2
2_ 0
1 q; — 4 q; — 4 1
el o NE L NETR 530
2 0 92 92 2
_ 1 _lklg =g (g1 +g2)(qo(T + K) +2)
Ry (1) = R 5 - 2y
7,(T + K)
_ k(g + (12)[ (g1 + g2)(qo(Y + K) + 2)]_1
_1 _ , 3.31)
27 5 (T + K)
R _ Lk (g1 —q) 9 qo(T+K) _ k(g +q2) & qo(Y+K) -
ZS(T)__§+2T e -1 +§T e -1 , (332)
1 . 9 qo(T+K) 1 + 9qo(T+K) -1
Ry =~ 7 OB ¢ |7y cera_ ¢ IS
(52 27 6 | TleeamB|T2T “1 + P (TR
1 1 - [ 91 (T+K) — 1 q1(T+K) —an1!
R27(‘Y’)_——2¢—K(Ch q)[e — Tq QO]¢_K(CII+(]2)[6 — Tq Clo] (3.34)
0* 2 0 Lot ) — gy —gol 2 6 et — g1 — qo
1 1 _ r qo(T+K) 1 qo(T+K) -1
Ros(T) = - 5 LX (g1 =) qoe ] L lk(gn+ C]z)[ Qo ] ’ (3.35)
) ) | greT+K) — 1] 2 ) Gre®(+K) — ]
Rao(T) = 1 Ik@-g)f _ 612('Y'+K)+2] L 1x (g +Q2)[_ 42(T+K)+2]_1 (3.36)
» 22 5 | g(r+k) 2§ ¢ (T + K) '
Set3.5. k =k, w=-2 (o” qzz)KZ(SZ)(g iatoer)e?) . Go = 1’k — °k*, Gy = 1%'((‘115_‘12),
o 2\s2,2
H, = ¢%K(q16+qz)’ go = ¢1+(241 Kfsqz )8 QL =q1, ¢ = ¢,
QT Q(M)\!
R(T) = Gy + G, tan( (2 ))] +H1[tan(%)] , (3.37)

where qo, q1, q» are arbitrary constants.
Using Eq (3.37) and Families 2.1-2.3, 2.9, 2.10, 2.13 and 2.14, respectively, yields the following
solutions:

2 1x (g —Q2)[ 4o
2 6 q1 — 4>

—a? — a2 + g2 02— g2+ gl
B \/ 90* = 9> + ¢ tan( \/ o'~ 40+ g (T”{))]
q1 — g2

1 + —g02 — g2 + g2 —q0> — q1% + q2? B
- Lk (q: CI2)[ 90 \/ 4o~ —qi1” T 42 tan(\/ 4o~ —qi1”- T 42 (1 + K))] . (3.38)
q1 — 42

R30(") = q1°k* — ¢k

2 g q1 — ¢ 2

1 24+ g3 - +q—
2 o K (g1 — 92)[ q0 9y — 49> tanh( q; * 9, qz(T + K))]
q1 — q1 — 4>

R31("0) = ¢°k* — ¢’k

1 N 2422 2, 2
J_r_K(% 42)[ q0 N q; T 4 qztanh( 4, 490 — 49>
2 0 q1 — 92 q1 — q2

AIMS Mathematics Volume 8, Issue 2, 4390-4406.
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tanh

2 2
_ k(g —qz)[@ LN T

Ru(0) = ¢k — ¢°K* F
2 o q1 q1
2, 2 2, 2
_lk(gi+g)[q NN T V4 T 9
N _—[_ T (T

2 ) q q1
L T
2 0

-1
¥ %—K (‘h; QZ)[eﬂqWK) - 1] : (3.41)

NG
(~5—

(" + K))]

tanh (T + K))]_l, (3.40)

Ry(T) = )%k — ¢° K> F

1k (g1 — q2)
Rau(T) = ¢’k — ¢’k F 3 %5 1 [ -
_ k(g +q) R
i R v

Lk (g1 — g)[e"™5 + g1 — qo
_ 22 221
R35(V) = qi'k” —q°k™ F 3 S [eq](T+K) —q - C[o]

k(g +q)[e T + g1 —go1!
* 5 o [eql(TJrK) —q) — qo] ’

eﬁ qo(T+K) ]

21 + e? (T+K)

(3.42)

(3.43)

Ri(T) = ¢1°K — ¢k F

1k (g - qz)[ goe® "N ]
2 ) qre?(+K) — ]
_ k(g1 +q) qoe® R 71

"2 o [ e (THK) 1] ’

(3.44)

where Y = k(x — wt).

4. Graphical illustration

Some of the obtained soliton solutions are graphically represented in this section. Kink solitons,
dark-bright solitons, bright solitons, singular solitons and periodic wave solutions are retrieved.

The 3D-graph and contour plot for the solution R4((’) are shown in Figure 1. The solution R4(Y) is
derived from Family 2.2 of solution Set 2.2 as defined by Eq (3.9). The obtained graphs show a kink
soliton solution. Kink soliton is a type of solitary wave that ascend or descend from one asymptotic
state to another. The contour graph is also included along with surface graph to illustrate the wave
structure corresponding to the obtained solution.

The graphical illustration of Ry3(T) is presented in Figure 2. The solution R,3(T) is given by
Equation (3.30) using the values of Set 2.4 for Family 2.4. The graphs in Figure 2 show a bright
soliton. The surface graph shows a localized intensity peak above the continuous wave background
which means that there is a temporary increase in the wave amplitude.

Figure 3 shows the 3D plot and the corresponding contour plot of Ry(Y) given by Eq (3.27). The
graph of R>((") given by Eq (3.18) is illustrated in Figure 4. Figure 5 provides the graphical illustration
of R30(T) given by Eq (3.38). Figure 6 shows the graph of a dark-bright soliton which is graphical
illustration of the solution R3(T’) expressed by Eq (3.7). Similarly, Figures 7-9 presents the graphical
illustrations for the solutions presented by Eq (3.35), Eq (3.6) and Eq (3.32), respectively.

AIMS Mathematics Volume 8, Issue 2, 4390-4406.



4400

It can be easily observed that improved tan( Qm) technique is a spectacular technique as compared
to many other direct techniques as it gave abundant soliton solutions. Using this technique, kink,
singular, bright and dark-bright soliton solutions have been retrieved in this paper. This method is
clearly more powerful than many other methods, such as: the tanh-method [34], the % expansion
method [35] and the generalized exponential rational function method, the Jacobi elliptic solution
method [36], because the improved tan( Q(T)) method retrieved many more new solutions than the

previously mentioned techniques.
///'/ ; 10

=104

Figure 1. This figure demonstrates the 3D graph and corresponding contour of Eq (3.9) at
k=1,06=1,¢90=-282,q1=-3,¢2=4,Gy,=0914, G, =0, H, =1, K=-05, w = 1.
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Figure 2. This figure demonstrates the 3D graph and corresponding contour of Eq (3.30) at
k=1,0=2,49 =05, ¢ =0, g0 =05, Gy = -0.25, G; = -0.125, H; = -0.125, K =
I, =0, 9=1.
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Figure 3. This figure demonstrates the 3D graph and corresponding contour of Eq (3.27) at
k=1,06=1,q=1,q=1,¢=-3,Go=-1,G,=2, H=1,K=1, w=-17.

Figure 4. This figure demonstrates the 3D graph and corresponding contour of Eq (3.18) at
k=1,6=1,¢0=2828,9g,=-3, ¢2=4,Gy=0914, G, =35, H,=0,K=1, w=1.
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Figure 5. This figure demonstrates the 3D graph and corresponding contour of Eq (3.38) at
k=1,0=73, qo =0.206, ¢, =0, g =03, Gy = -0.09, G, = -0.05, H; = -0.05, K =
I, w=0.055, 9 =1.
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Figure 6. This figure demonstrates the 3D graph and corresponding contour of Eq (3.7) atk =
,6=1,90=0,49, =0, g, =051, Gy =-0.5, G, =-0.25], H =025, K=1, w = 1.

Figure 7. This figure demonstrates the 3D graph and corresponding contour of Eq (3.35) at
k=1,0=3,4q=033, ¢1=3,¢=-3,Go=-011,G, =1, HH =0, K =1, w =
0.11, 9 = 1.
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Figure 8. This figure demonstrates the 3D graph and corresponding contour of Eq (3.6) at
k=1,06=1,qg0=0, g1 =25, g = 2449, Gy = -0.5, G|, = 0.025, H; = 2474, K =
1, w=1.
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Figure 9. This figure demonstrates the 3D graph and corresponding contour of Eq (3.32) at
k=1,6=1,qgo=1,q1=1,¢=1,Gy=-1,G; =0, Hi=-1,K=1,w=1, 9=1.

5. Conclusions

In this study, the soliton and other solitary wave solutions of the constant-coefficient Gardner
equation are investigated using tan(@)—expansion method. A variety of precise closed form traveling
wave solutions have been constructed including bright solitons, dark-bright solitons, kink solitons and
periodic wave solutions. Some of the obtained solutions are illustrated using graphical simulations for
suitable choice of parameters. The wave profile corresponding to the obtained solutions is depicted
through 3D-surface graphs and corresponding 2D-contour plots. Comparison of the obtained results
with those available in the literature depict the efficacy and productivity of the improved tan(@)
technique. Mathematical computations and simulations were obtained using Maple software. The
reported results may be helpful in further explorations of the nonlinear physical problems governed
by the Gardner equation in fluid dynamics, plasma physics and other fields. The improved tan(@)
technique will be useful for the analytic study of a large class of nonlinear PDEs that are widely used
in engineering, physics and other sciences.
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