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Gravitational potential in fractional space
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Abstract: In this paper the gravitational potential with β-th order fractional mass distribution
was obtained in α dimensionally fractional space. We show that the fractional gravitational
universal constant Gα is given by Gα = 2Γ( α

2 )

πα/2−1(α−2)
G, where G is the usual gravitational universal

constant and the dimensionality of the space is α > 2.
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1 Introduction

Fractional dimensional space represents an effective physical description of confinement

in low-dimensional systems [1, 2].

In recent years, authors have redefined the integer space to the case of fractional space

[3–8]. It is believed that the dimension of space plays an important role in quantum field
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theory, in the Ising limit of quantum field theory, in random walks and in Casimir effect

[4]. It is worth mentioning that the experimental measurement of the dimensionality α of

our real world is given by α = (3± 10−6) [7, 8]. The fractional value of α agrees with the

experimental physical observations in the sense that in general relativity, gravitational

fields are understood to be geometric perturbations (curvatures) in our space-time [9],

rather than entities residing within a flat space-time. Besides, in [6] it was noted that

the current discrepancy between theoretical and experimental values of the anomalous

magnetic moment of the electron could be resolved if the dimensionality of space α is

α = 3 − (5.3 ± 2.5) × 10−7.

Among several approaches used to investigate fractional dimensions, fractional calcu-

lus [10–17], which is a branch of mathematics that deal with generalization of well-known

operations of differentiations and integrations to arbitrary non integer order-which can be

non-integer, real or even an imaginary number, was applied recently to gravity [18]. Also

fractional calculus was employed in other physical phenomena like problems in electro-

magnetism [19–21]. Engheta [19–21] discussed multipoles in electromagnetic theory and

applied fractional calculus to show the evolution of a dipole,for instance, from a monopole

by fractional derivation. The charge distribution of a dipole is the first spatial derivative

of the charge distribution of a monopole, a quadrapole is the first spatial derivative of a

dipole, and so on.

For these reasons a new derivation of the scalar potential in α dimensional fractional

space is important from gravitational point of view.

In this paper, we use the concept of fractional calculus to obtain the solution of the

gravitational problem in α dimensional space.

The paper is organized as follows:

In Section 2 the gravitational potential in α dimensional fractional space is presented.

Gauss’s law in α dimensional fractional space is derived in Section 3. The compact form

of the fractional gravitational potential is analyzed in Section 4. Our conclusions are

presented in Section 5.

2 Gravitational potential in α dimensional fractional space

Given a mass distribution ρ, the gravitational potential ϕ(r), can be determined by solving

the Poisson’s equation

∇2ϕ = 4πGρ, (1)

where G is the usual gravitational universal constant and the dimensionality of the space

is α > 2. Here ∇2 is the Laplacian in α dimensional fractional space defined as follows

[8]

∇2 =
∂2

∂r2
+

(α − 1)

r

∂

∂r
+

1

r2 sinα−2 θ

∂

∂θ
sinα−2 θ

∂

∂θ
. (2)

To obtain the solution of equation (1), let us look at the solution of Laplace’s equation,
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∇2ϕ =

(
∂2

∂r2
+

(α − 1)

r

∂

∂r
+

1

r2 sinα−2 θ

∂

∂θ
sinα−2 θ

∂

∂θ

)
ϕ = 0. (3)

The equation (3) is separable and considering

ϕ(r, θ) = R(r)Θ(θ), (4)

one gets the angular and radial differential equations as follows:

[
d2

dθ2
+ (α − 2) cot θ

d

dθ
+ l(l + α − 2)

]
Θ(θ) = 0, (5)

[
d2

dr2
+

(α − 1)

r

d

dr
− l(l + α − 2)

r2

]
R(r) = 0. (6)

The solutions of the angular equation (5) are Gegenbauer polynomials in cos θ [8],

namely

Θ(θ) = C
(α

2
−1)

l (cos θ), = 0, 1, 2, ..., (7)

which fulfill the following orthonormality relations:

∫ π

0

C
(α

2
−1)

l (cos θ)C
(α

2
−1)

l′ (cos θ) sinα−2 θ dθ = N(l)δl,l′ . (8)

Here, N(l) has the following form

N(l) =
23−απΓ (l + α − 2)

l!
(
l + α

2
− 1

) [
Γ

(
α
2
− 1

)]2 . (9)

The forms of the first few Gegenbauer polynomials are given by

C
(α

2
−1)

0 (x) = 1, (10)

C
(α

2
−1)

1 (x) = (α − 2)x, (11)

C
(α

2
−1)

2 (x) =
(α

2
− 1

) (
αx2 − 1

)
. (12)

From (6), the radial solutions are found to be

R(r) =

{
rl

1
rl+α−2

. (13)

Therefore, the solutions ϕ(r, θ) in α dimensional fractional space have the forms

ϕ(r, θ) =
∞∑
l=0

(
alr

l +
bl

rl+α−2

)
C

(α
2
−1)

l (cos θ), (14)

where al and bl are constant coefficients, which can be determined from the boundary

conditions on ϕ(r, θ). One should notice that the radial solutions (13) and the angular

solutions (7) are valid for α > 2.
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The generating function for the Gegenbauer polynomials is defined as

1

(1 − 2xt + t2)
α
2
−1

=

∞∑
l=0

C
(α

2
−1)

l (x)tl, |x| ≤ 1, |t| < 1, α > 2. (15)

Defining the distance |	r − 	r′| = (r2 + r′2 − 2rr′ cos θ)
1
2 , then we obtain

∞∑
l=0

r′l

rl+α−2
C

(α
2
−1)

l (cos θ) =
1

|	r − 	r′|(α−2)
, r > r′, (16)

∞∑
l=0

rl

r′l+α−2
C

(α
2
−1)

l (cos θ) =
1

|	r − 	r′|(α−2)
, r < r′. (17)

In this case the gravitational scalar potential in α dimensional fractional space becomes

ϕα(r, θ) = − Gαm

|	r − 	r′|(α−2)
, (18)

where m represents the point mass and Ga is a universal constant in α fractional space.

An interesting observation here is that according to (18), if α differs from three, the

Coulomb potential of a point source falls off as r(2−α) and the dynamical symmetry is

broken. This leads to additional contributions of the Lamb shift and perihelion shift of

planetary motion [22].

3 Gauss’ law in α dimensional fractional space

The next step is to derive Gauss’s law in α dimensional fractional space. Let us consider

a closed α dimensional sphere of radius R, with its center at the origin of the coordinate

system, and let us calculate the total flux of the gravitational field 	g = −	∇ϕα(r, θ), on

the surface of this closed sphere. Namely, the total flux on the sphere is given by

∮
αD

	g·d 	A =

∮
αD

gradialdA =
2π

(α−1)
2

Γ
(

α−1
2

)
∫ π

0

[
−∂ϕα

∂r
rα−1

]
dθ sinα−2 θ

= −mGαα (α − 2)πα/2Γ
(α

2
+ 1

)
= −4πGm. (19)

From (19) we identify the constant Gα in α dimensional space as follows

Gα =
2Γ(α

2
)

πα/2−1(α − 2)
G. (20)

It may be observed that the fractional value of α agrees with the experimental phys-

ical observations so that in general relativity, gravitational fields are understood to be

geometric perturbations (curvatures) in our space-time [9], rather than entities residing

within a flat space-time. In this case one should take into consideration, the new effective

value of universal constant Gα.
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4 Fractional calculus approach to gravitational problem

One of the commonly used definitions of fractional integrals is known as the Riemann-

Liouville integrals [10–12, 23]. The n-th order (or n-fold) integration of the given function

f(x) can be written as

aD
−n
x f(x) =

∫ x

a

dxn−1

∫ xn−1

a

dxn−2...

∫ x1

a

f(x0)dx0

=
1

(n − 1)!

x∫
a

(x − u)n−1f(u)du, (21)

where, aD
−n
x f(x) denotes the n-th order integration with lower limit a. If n is replaced

by a non integer number β, the Riemann-Liouville fractional integration is written as

follows:

aD
β
xf(x) =

1

Γ(−β)

x∫
a

(x − u)−β−1f(u)du, (22)

where, Γ is the Gamma function. For fractional derivatives with β > 0, a positive integer

m > β is chosen such that β − m is negative, then the (β − m)-th order Riemann-

Liouville fractional integration is performed whose m-th order derivative is the fractional

derivatives of order β.

aD
β
xf(x) ≡ dm

dxm aD
β−m
x f(x). (23)

In Sec. 2 we investigated the solution of the Poisson’s equation in α dimensional

space. The gravitational potential was obtained as

ϕα(r, θ) = − Gαm

|	r − 	r′|(α−2)
=

Gαm

(x2 + y2 + z2)(α/2−1)
, (24)

where m represents the point mass and Gα is the universal constant and it is defined in

equation (20).

We now apply a fractional βth-order partial differential operator [10–12, 18, 23] to

both sides of equation (1), with the lower limit of a = −∞, we get

−∞Dβ
z [∇2ϕα] = 4πG[−∞Dβ

z ρ], (25)

Following the condition of commutativity of two operators ∇2 and −∞Dβ
z , we can

write

∇2[−∞Dβ
z ϕα] = 4πG[−∞Dβ

z ρ], (26)

with −1 ≤ β ≤ 0, the mass distribution density of β th order is obtained as

ρβ = mlβ−∞Dβ
z [δ(x)δ(y)δ(z)] = mlβδ(x)δ(y)

{
0 z < 0
z−β−1

Γ(−β)
z > 0

. (27)
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The solution of the Poisson equation (25) of β-th order mass distribution density gives

the β-th order scalar potential as

Φα
β = lβ−∞Dβ

z ϕα,

= −Gαmlβ−∞Dβ
z

1

(x2 + y2 + z2)(α/2−1)
, (28)

employing the Riemann–Liouville definition of diferintegration in equation (22), for −1 ≤
β ≤ 0, the potential Φβ is calculated as

Φα
β = −Gα

m
lβΓ(−β)

∫ z

−∞

1

(x2 + y2 + t2)(α/2−1)(z − t)1+β
dt. (29)

Using the change of variable v = z − t, the integral is rewritten as

Φα
β = −Gαmlβ

Γ(−β)

∫ ∞

0

1

(x2 + y2 + (z − v)2)(α/2−1)v1+β
dv. (30)

Using the relations z = r cos θ and r =
√

x2 + y2 + z2, one can show that the integral

can be written as

Φα
β = −Gαmlβ

Γ(−β)

∫ ∞

0

1

(r2 − 2rv cos θ + v2)(α/2−1)v1+β
dv. (31)

Now, let u = v
r
, one obtains

Φα
β = −Gαmlβ

Γ(−β)

1

rα+β−2
F β

α (cos θ), (32)

where

F β
α (cos θ) =

∫ ∞

0

1

(1 − 2u cos θ + u2)(α/2−1)u1+β
du. (33)

One should notice that the dependence on the radial distance comes only through the
1

rα+β−2 factor, while the function F β
α (cos θ) determines the angular dependence. An impor-

tant point to be specified here is that, for three dimensional space (α = 3), the potential

(32), reduced to the potential as obtained in reference [18]

Φ3
β =

−mGαlβ

Γ(−β)

1

r1+β
F β

3 (cos θ), (34)

where F β
3 (cos θ) is the Legendre function of the first kind and the (noninteger) degree β.

5 Conclusions

We have introduced the form of fractional scalar gravitational potential by using the

solutions of Laplace’s equation in α dimensional fractional space.

Using the generating function of the Gengenbauer’s polynomials the compact form of

the fractional gravitational potential was obtained and we observed that Gauss’s law is

satisfied and leads us to redefine the constant Gα in any fractional or integer space.
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Using these results, we employ the fractional calculus to obtain the fractional scalar

gravitational potential of β-th order for the fractional space of order α > 2.

We observed that for α → 3, the obtained results reduces to those obtained in reference

[18].
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