
LSB EMBEDDING METHODS

ON STILL IMAGES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

CEM OLCAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

APRIL 2010

iii

STATEMENT OF NON-PLAGIARISM

iv

ABSTRACT

LEAST SIGNIFICANT BIT EMBEDDING METHODS

ON STILL IMAGES

OLCAY, Cem

M.Sc., Department of Computer Engineering

 Supervisor : Dr. Nurdan SARAN

April 2010, 74 pages

Steganography is the science of hiding message or file in a cover media which can be

text, image, video, or other digital media formats. Digital images, the most published

media on internet, may be divided into two groups as lossless

compressed/uncompressed and lossy compressed. One of the most preferred

steganographic methods is setting the last bit of pixel in still images according to bits

of information that will be hidden. Least Significant Bit (LSB) methods are most

suitable for uncompressed/lossless compressed images. In this study, LSB

embedding methods such as LSB Replacement, Matching, Chan‟s Method, Modulus

Function Technique, 2/3 Embedding Efficiency, and Matrix Embedding using

Hamming Codes are examined. Moreover most used steganalysis methods such as

Visual Attack, Chi-Square Test, Raw Quick Pairs (RQP), and Regular and Singular

v

Groups (RS) are briefly described. Effectiveness of these embedding methods is

compared against steganalysis methods.

Keywords: Steganography, Steganalysis, Chan‟s Method, RS, Hamming Code

vi

ÖZ

İMGELERDE EN ÖNEMSİZ BİTE GÖMME

YÖNTEMLERİ

OLCAY, Cem

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

 Tez yöneticisi : Dr. Nurdan Saran

Nisan 2010, 74 sayfa

Steganografi, metin, imge, video gibi dijital medya formatlarını kullanarak mesaj

veya dosya gizleme bilimidir. İnternette en çok yayımlanan medya olan dijital

imgeleri sıkıştırılmamış/kayıpsız sıkıştırılmış ve kayıplı sıkıştırılmışlar olarak ikiye

ayırabiliriz. İmgelerde en çok tercih edilen steganografi yöntemlerinden biri piksel

değerlerinin son bitlerini saklanacak bilgiye göre ayarlamaktır. En önemsiz bite

gizleme yöntemleri en çok sıkıştırılmamış ve kayıpsız sıkıştırılmış imgeler için

uygundur. Bu çalışmada en önemsiz bite gizleme yöntemlerinden yerdeğiştirme,

eşleştirme, modüler foksiyonu tekniği, Chan‟ın yöntemi, 2/3 verimli gömme ve

Hamming kodlarını kullanarak matris gömme yöntemleri açıklanmıştır. Bunlardan

başka, en çok kullanılan steganaliz yöntemlerinden olan görsel ataklar, Ki kare testi,

vii

RQP ve RS analiz kısaca tanımlanmıştır. Açıklanan gömme yöntemlerinin steganaliz

yöntemlerine karşı verimliliği karşılaştırılmıştır.

Anahtar Kelimeler: Steganografi, Steganaliz, Chan‟ın Yöntemi, RS, Hamming

Kodu

viii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM .. iii

ABSTRACT ... iv

ÖZ .. vi

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

CHAPTERS:

1 INTRODUCTION .. 1

1.1 Outline of Thesis .. 2

2 STEGANOGRAPHY ... 4

2.1 The Prisoners‟ Problem ... 4

2.2 History .. 6

2.3 Forms of Steganography ... 7

2.3.1 Linguistic Steganography .. 7

2.3.2 Technical Steganography ...14

3 IMAGE CODING and COMPRESSION ...18

ix

3.1 Image Types ..19

3.1.1 Grayscale Images ...19

3.1.2 RGB Color Space...20

3.1.3 Palette Images ..21

3.2 Image Formats ...22

3.3 Image Analysis ..23

3.3.1 Mean Squared Error (MSE) ...23

3.3.2 Peak Signal to Noise Ratio (PSNR) ..24

3.3.3 Weighted Peak Signal to Noise Ratio (WPSNR)24

3.3.4 Histogram ..25

3.4 Compression and Coding Methods ...27

3.4.1 Lempel Ziv 77 (LZ77) ...27

3.4.2 Lempel Ziv 78 (LZ78) ...28

3.4.3 Lempel Ziv Welch (LZW) ...28

3.4.4 Huffman Coding ..29

4 STEGANOGRAPHY METHODS ON STILL IMAGES31

4.1 Least Significant Bit (LSB) Replacement ...32

4.2 Hiding Function Using Modulus Function36

4.3 LSB Matching Method ..37

4.4 Hiding Information Using Chan‟s Method40

4.5 2/3 Embedding Efficiency Method ...43

4.6 Matrix Embedding Using Hamming Codes44

4.7 Hiding Information Randomly Pixels‟ LSB......................................46

4.8 Hiding Information into Edges of Images ...46

x

4.9 DCT Based Information Hiding on JPeG Images48

4.10 Patchwork: A Statistical Approach ...49

4.11 Bit Plane Complexity Segmentation (BPCS) Steganography50

5 STEGANALYSIS..54

5.1 Visual Attack ...56

5.2 Statistical Attack: Chi-Square Analysis ..58

5.3 Raw Quick Pairs (RQP) Steganalysis ...62

5.4 Regular and Singular Groups (RS) Steganalysis64

6 EXPERIMENTAL RESULTS ...68

6.1 Coding and Compression Algorithms ...68

6.2 Effects of Coding and Compression Algorithms with Different

Embedding Methods ..70

6.3 Embedding Efficiency of LSB Methods ...71

7 CONCLUSION ...73

REFERENCES .. R1

APPENDICES:

A. JPEG Lossless and Lossy Compression .. A1

1.1 Lossless Compression ... A1

1.2 Lossy Compression ... A2

B. Curriculum Vitae .. A8

xi

LIST OF TABLES

TABLES PAGES

Table 3.1 Comparison of Image Formats ...23

Table 3.2 Encoding Process of LZ77 ...28

Table 3.3 Encoding Process of LZ78 ...28

Table 3.4 Encoding Process of LZW ...29

Table 4.1 Effects of Information Hiding on Image ...34

Table 4.2 Results of Modulus and Replacement Methods on Cover Pixels37

Table 4.3 Results of Matching and Replacement Methods on Cover Pixels39

Table 4.4 Results of Matching and Replacement Methods on Images39

Table 4.5 Hiding Information Using Chan‟s Method ...42

Table 4.7 Coding using 2/3 Efficient Embedding Method43

Table 5.1 Bit Representation of PoV ...60

Table 5.2 Original PoV and Stego PoV. ..61

Table 6.1 Rate of Gain Using Compression Algorithms68

Table 6.2 Gain Results of Compression Algorithms ..69

Table 6.3 PSNR and MSE Values for Different LSB Methods70

Table 6.4 Needed Pixel Number to Hide 1024 Bits with LSB Methods72

Table A.1 Lossless Compression .. A1

Table A.2 MSE, PSNR, WPSNR Values of JPEG Images A7

xii

LIST OF FIGURES

FIGURES PAGES

Figure 2.1 Prisoners‟ Problem.. 5

Figure 2.2 Forms of Steganography ... 7

Figure 2.3 Type Spacing and Offsetting Method for Non-Digital Text 8

Figure 2.4 Line Shift Coding Example ... 9

Figure 2.5 Word Shift Coding Example ... 9

Figure 2.6 Zoom to Word Shift Coding Example ..10

Figure 2.7 Feature Coding Example ..11

Figure 2.8 A Codebook and an Example for Coding Using Music Notes14

Figure 2.9 An Invisible Ink Example on Laser Printers15

Figure 2.10 Sample Microdot ...15

Figure 3.1 (a) 8-bit Shades of Gray (b) 16-bit Shades of Gray20

Figure 3.2 Color Space ...21

Figure 3.3 Sample Palette Image ...21

Figure 3.4 (a) Original Image (b) %80 Quality Compressed Image26

Figure 3.5 Histogram of Lena .bmp and .jpeg Images26

Figure 3.6 Huffman Tree ..30

Figure 4.1 Color Representations on RGB ..32

Figure 4.2 (a) Cover Image (b) Stego Image ...34

xiii

Figure 4.3 Histograms of Cover and Stego Images ..35

Figure 4.4 Color Representations ..35

Figure 4.5 Flowchart of Chan‟s Method ..41

Figure 4.6 Matrix Embedding Calculations Using Hamming Codes45

Figure 4.7 Edge Filter Results ...47

Figure 4.8 Robert Cross Convolution Mask ..47

Figure 4.9 Sample Patches ..50

Figure 4.10 BPCS on Different Bit Channels ..51

Figure 4.11 Converting Between PBC and CGC ...52

Figure 5.1 Effects of Visual Attack on Images ..56

Figure 5.2 Visual Attack to Grayscale Image ..57

Figure 5.3 Visual Attack to Color Image ...58

Figure 5.4 Çankaya University Logo ..61

Figure 5.5 Histograms and Chi-Square Analysis ...62

Figure 5.6 RS Diagram ...66

Figure 6.1 Comparisons of Compression Algorithms ..69

Figure 6.2 Modified Bits / Used Pixels LSB Embedding Methods71

Figure A.1 (a) RGB Color Cube (b) YUV Color Space A3

Figure A.2 Y,Cb, and Cr Color Spaces of Image... A3

Figure A.3 Quantization Table Quality %50 ... A4

Figure A.4 Quantization Table Quality %10 ... A4

Figure A.5 Zigzag Ordering .. A5

Figure A.6 IDCT Formula .. A6

Figure A.7 Compressed JPEG Images .. A7

1

CHAPTER 1

1INTRODUCTION

Communicating secretly is always a matter of human throughout history. Different

methods have been developed to hide or share information. One of them is to convert

message into scramble form. If someone has the scrambled message, he/she can try

to convert the message. This form of hiding information is called as cryptography.

Success of cryptography methods are judged depending on different usage of them.

Encryption is the process of making message unreadable, called as ciphertext, using

an algorithm called as cipher, and a key between sender and receiver. Decryption is

the process of reading secret message hidden in ciphertext using the cipher and the

key. Other form of secretly communication is hiding message using a cover object.

This message can be encrypted or original. This type of data hiding methods can be

divided into two different forms called as steganography and watermarking.

Watermarking is the process of hiding message into a cover object to declare its

identity, in a way that is difficult to remove. Digital watermark identifies the

associated rights of media during distribution and later. Watermarks are called as

robust if they resists to all kind of manipulations like cropping, editing, resizing,

compressing, and etc. Text or logo of copyright owner can be seen in image, video

or text file, called as visible watermarking. Digital data may not be unseen to declare

2

the ownership of media called as invisible watermarking. Another type of data hiding

science is called as steganography. Steganography uses cover objects to hide

message into them. Digital cover objects can be a text, an image, a video or another

digital media formats. The aim of steganography may be summarized as someone

should not to realize cover object carries a message. After embedding hidden data to

cover object, changes in stego object (an object that carries hidden message), should

not be detected by Human Visual System (HVS). Differences between

steganography and watermarking may be listed as follow:

 Steganography uses any object to hide message but watermarked object

carries own identity information.

 Steganographic techniques will do fewer changes on cover object to make the

message unrealizable, watermarking techniques will make the watermark

irremovable. Also, changes on watermarked objects should not defect the

quality of media.

 Steganography techniques fail if someone relies that an object carries a

hidden message. So the objectives is to make minimum changes on cover

object in this way the attacker may not detect the existence in a cover object.

Main case is to protect the communication channel. So, the minimum changes

on cover object that can be undetectable for attacker is matter.

1.1 Outline of Thesis

In the following chapter, history of steganography, forms of steganography, how to

hide message in text, image, audio, video, and other digital files are explained.

3

In the third chapter image file formats, coding and compression algorithms are

described. Comparison methods of original and manipulated images such as Mean

Squared Error (MSE), Peak Signal Ratio (PSNR), Weighted PSNR (WPSNR),

Histogram analysis, are briefly described.

Data embedding methods that use LSB techniques for uncompressed/lossless

compressed images such as replacement method, modulus function method,

matching method, Chan‟s method, and matrix embedding using Hamming codes are

described in Chapter four. Also, in this chapter data embedding methods into lossy

compressed image formats as jpeg and data embedding into bit planes are explained.

Chapter five is about analysis methods of still images. Visual attacks and filtering

methods to find where the secret message is explained and some important statistical

analysis methods; Regular and Singular group‟s analysis (RS), Raw Quick Pair

analysis (RQP), and Chi-Square Steganalysis methods are described.

Compression algorithms are used to minimize the message size; this reduces the

defects on cover image. Some compression algorithms such as Winrar, Huffman

coding are examined and their effects on steganography are illustrated on some

different stego objects in Chapter six. Some LSB methods hide 1 or more bits in a

pixel to have more embedding capacity. Some LSB methods need more than 1 pixel

to embed 1 bit data. So, these methods may cause less change on image. Steganalysis

methods need different percentage of changes on object to catch stego objects. For a

fixed size image, embedding capacity of LSB methods is compared according to the

resistance to the steganalysis methods on images.

4

CHAPTER 2

2STEGANOGRAPHY

Steganography is the science of hiding message in a way that anyone does not

suspect that there is a hidden message in a stego media. The word steganography is

derived from the Greek words “stegos” meaning “cover” and “grafia” meaning

“writing” defining it as “covered writing” [1].

Modern formulation of steganography is first defined by Simmons as 'The Prisoners'

Problem' in 1984 [2]. Steganography has a long history since 484 BC- 425 BC.

2.1 The Prisoners’ Problem

Assume that Alice and Bob are two prisoners and want to develop an escape plan.

Let Wendy be the warden [3]. The only way for Bob to communicate with Alice is

through the warden. If Wendy should notice anything suspicious, they will be put in

solitary confinement. So they have to communicate in a manner that does not attract

attention. Steganography is a way that they communicate invisibly.

Figure 2.1 shows the components of steganography to send a secret message. The

cover object can be picture, sound, video, text and any object which is not

5

suspicious. Alice uses a cover media to hide message. Alice and Bob know how to

encode and decode stego object and they share the stego key. Encoding is the process

of hiding message in cover media and decoding is the process of finding secret

message. Alice uses a stego-key to code secret message and Bob uses stego-key to

read the message. For example, if the cover object is a text, encoder decides how to

and where to hide message using a method in it. Assume that this method hides

message in the i.th letters of words in the cover object. Decoder knows which words

hiding secret message letters. Stego-key may define the order of hidden letters. The

stego object is a combination of cover object, an encoding algorithm, and a stego-

key. This stego object goes though the recipient Bob. All messages are checked by

warden. If warden realize something suspicious about stego-object, warden can

destroy message which is called as active attack Warden may create own fake object

and send to recipient, called as malicious attack, so decoder becomes ineffective. If

warden does not attack to object and passes it to recipient, Bob uses decoder and

shared stego-key to extract the hidden message [4].

Figure 2.1 Prisoners‟ Problem

6

2.2 History

The earliest record of steganography found from Histories of Herodotus is about

covering secret message written wood with wax to warn Spartans against invasion of

Xerxes in BC 480 [13].

Another history record is tattooed head. In ancient Greece, a Greek shaved head of a

slave and tattooed message. After hair grows back, slave was sent to encourage

Aristagoras of Miletus to battle against the Persian king.

Fruit juice, urine and milk were used as invisible inks in Ancient Romans. By

heating the letter the secret message is reconstructed. Other chemicals are used in

World War II such as copper sulfate solution on handkerchief, which can be visible

with ammonia fume [14].

Microfilms were used as stego object during the Franco-Prussian War (1870 -1871).

During World War I, the reason of the large number of cigar orders by two German

spies was discovered by the British censor. German spies were using the cigar orders,

numbers and types to code ship movements. After the British censor exposed the

spies, they were captured and executed [4].

A Cardan grille, introduced by Renaissance mathematician Gerolamo Cardano in

1550, is an important tool for reading and hiding of a message [4] [13]. The grille is a

paper or cardboard with holes at selected places. The card is laid over the page of

texts that contains a hidden message to read messages. Only the secret letters that

appear through the holes in the grille are read.

7

2.3 Forms of Steganography

Steganography methods can be used for different media types as cover such as text,

audio, xml, video, image files and etc. Each of these cover media has different

technique and embedding capacity to hide secret message. Figure 2.2 shows how to

group steganographic methods [7].

Figure 2.2 Forms of Steganography

2.3.1 Linguistic Steganography

2.3.1.1 Text Semagrams

Text files are another cover media to hide secret message. For open space methods

both using a software and handwriting are possible. But while writing to hide

message more attention is needed. Handwriting and software can be used for hiding

message in text using semantic, syntactic and spelling methods. All three of these

text based encoding methods require either the original file or the format knowledge

of the original files to be able to decode the secret message [7] [4].

8

a. Type Spacing and Offset

Type spacing or type offsetting is a way of hiding message in a text. The first reason

to use type spacing method was to discourage illegal copying of textual material.

Although the purpose of this method to add a watermark, type spacing can also be

used to hide a secret message in text. To encode a secret message using type spacing

all one would have to do is adjusting specific letters ever so slightly from their

normal position. The letters that are out of position indicate the secret message [4].

This method changes the distance between the letters or words adding extra white

spaces or changing words position from original by slightly shifting. Figure 2.3

shows an example of non digital form of type shifting method. Secret words are

underlined. They have 1 white space at left and 2 white spaces at right.

It is also possible to define this method not only for words but also characters. For

example, if the decoding definition of this method is to take the character after extra

white space. As soon that our secret message: tmtuhdssbwpaa. Writing secret words

cannot be possible for all kinds of texts. So, encoding letters using type spacing

method can be more useful.

Figure 2.3 Type Spacing and Offsetting Method for Non-Digital Text

9

b. Line Shifting Coding Protocol

Line-shift coding involves actually shifting each line of text vertically up or down by

a small fraction (such as 1/300th of an inch) according to the coding parameters.

HVS cannot detect the shifting lines, but this small fraction is detectable using

computer. It is possible to encode data in text defining lines shifted up or down as 1

or 0. So, the capacity to hide message depends on line counts in text. Figure 2.4

shows an example of line shifting coding [63].

Figure 2.4 Line Shift Coding Example

c. Word Shift Coding Protocol

Word-shift encoding works in much the same way that line-shift encoding works;

only we use the horizontal spaces between words to equate a value for the hidden

message. This method of encoding is less visible than line-shift encoding but requires

that the text format support variable spacing. Coding technique is same with line

shifting. 1 or 0 represents if a word is shifted left or right measuring the spaces

between each word. Figure 2.5 and Figure 2.6 show an example of word-shift

encoding method [63] [4].

Figure 2.5 Word Shift Coding Example

10

Figure 2.6 Zoom to Word Shift Coding Example

In this example the first line uses normal spacing while the second has some words

shifted to right. If word is shifted right, it is represented by 1. If there is no shifting to

right or left, it is represented by 0. Also without having the original for comparison it

is possible to read secret data from text. The distance between two starting words can

give a threshold value, and then by comparing the distance between other words

using the threshold value message can be extracted.

d. Feature Coding Protocol

Feature Coding Protocol uses characters attributes such as vertical/horizontal length

of letters such as b,d,T,L,N,P or the dots above i and j to encode secret message into

the text [4.7] [8]. Although, these small changes do not take an attention of HVS,

coding whole document can be detectable. So, defining coding letters, which can

changeable horizontal, as if there is a manipulation on right direction, it is

represented by 1, left direction represents 0. If there is no change, it means that letter

does not carry any secret. This method can be defined for letters which can

manipulate by changing vertical attributes or having dot. Figure 2.7 shows an

example of feature coding. All these three methods line-shifting, word-shifting and

feature coding can be usable together to increase capacity to hide a secret message.

11

Figure 2.7 Feature Coding Example

e. Syntactic Method

Syntactic method uses the manipulation of punctuation to hide information [63].

Defining ',' as 1 or 0 where it does not change the meaning of the sentences coding

text is possible. Also apostrophe ' can be used to encode data.

For example:

bread, cereal, and milk

bread, cereal and milk

f. Semantic Method

Another data hiding method in text involves changing the words themselves. This

method assigns two synonyms primary or secondary value. For example, the word

"big" can be considered primary and "large" secondary. Receiver must have the same

table whether a word has primary or secondary for decoding. Also this table assigns a

value for each word as 0 or 1 to help encode secret message [9]. Some synonyms:

student and pupil (noun)

petty crime and misdemeanor (noun)

buy and purchase (verb)

sick and ill (adjective)

quickly and speedily (adverb)

on and upon (preposition)

12

g. American / British English Differences

There are differences between more than 1700 words spelling in British and

American English. Differences can be categorized into eleven types [10].

Steganography takes advantage of these differences for hiding message choosing

British or American English as 1 or 0.

British vs. American British American

-ise vs. –ize

-l- vs. –ll

final -l vs. –ll

-ae- vs. -e-

-oe- vs. -e-

-our vs. –or

-tre vs. –ter

-gramme vs. –gram

-logue vs. –log

-ence vs. –ense

Miscellaneous

analyse

enrolment

appal

esthetic

diarrhea

honour

centre

programme

catalogue

defence

aeroplane

analyze

enrollment

appal

aesthetic

diarrhea

honor

center

program

catalog

defense

airplane

2.3.1.2 Open Codes

a. Null Cipher

Null Cipher is a form of steganography using fixed positions of each word to hide

message in the cover message [6]. Example:

Fishing freshwater bends and saltwater coasts rewards anyone feeling stressed.

Resourceful anglers usually find masterful leapers fun and admit swordfish rank and

overwhelming any day.

The following message emerges taking the third letter in every word: Send lawyers

guns and money.

13

b. Template

Template, which uses a template as piece of paper with holes cut in or predefined

locations on the page to hide a message, is another form of steganography.

Obviously, sender and receiver must have the same template to hide and read

message [5]. Example:

THE MOST COMMON WORK ANIMAL IS THE HORSE. THEY CAN

BE USED

TO FERRY EQUIPMENT TO AND FROM WORKERS OR TO PULL

A PLOW.

BE CAREFUL, THOUGH, BECAUSE SOME HAVE SANK UP TO

THEIR

KNEES IN MUD OR SAND, SUCH AS AN INCIDENT AT THE

BURLINGTON

FACTORY LAST YEAR. BUT HORSES REMAIN A SIGNIFICANT

FIND. ON

A FARM, AN ALTERNATE WORK ANIMAL MIGHT BE A BURRO

BUT THEY

ARE NOT AS COMFORTABLE AS A TRANSPORT ANIMAL.

The receiver can read the hidden message as follows, using a template to the text

above.

 HORSE

 FERRY

 SANK

 IN

BURLINGTON

FIND

 ALTERNATE

 TRANSPORT

14

c. Music Notes

Matching letters to specific music notes to hide message into notes, described in

Gaspar Schott's book Schola Steganographica [4].

Figure 2.8 A Codebook and an Example for Coding Using Music Notes

2.3.2 Technical Steganography

2.3.2.1 Invisible Ink

Invisible inks, colorless liquids that require light, heat or special chemicals to make

them visible, are one form of steganography. Acid based colorless liquids can

applied to paper and dried to hide a message [4]. To make it visible and change the

color, pH indicator is used to reacts with the acid properties. Milk, vinegar, lemon

juice are some types of liquids, have been used throughout history.

Most color laser printers add an identifying code on printed page carrying

information about serial number of printer, date, and time [11]. This code is

15

microscopic yellow dots normally invisible, HVS cannot detect, but it can be visible

using a blue LED light.

Figure 2.9 An Invisible Ink Example on Laser Printers

2.3.2.2 Microdots

The microdots are a form of page-size photograph reduced to 1 mm in diameter. The

microdots used as a form of steganography firstly in World War II. Size of taken

photograph of hidden message reduces to the size of postage stamp. Using reverse

microscope image size brings down to 1 mm [12].

Figure 2.10 Sample Microdot

16

2.3.2.3 Computer Based Techniques

a. Hiding in Audio Files

The techniques that are used to hide information inside Audio files may be listed as

follows [4]:

 Low bit encoding, which is somewhat similar to LSB that is generally used in

images.

o The problem with low bit encoding is that it is usually noticeable to the human

ear, so it is a rather risky method for someone to use if they are trying to mask

information inside of an audio file.

 Spread Spectrum is another method which adds random noises to the signal the

information and spreads across the frequency spectrum.

 Echo data hiding which uses the echoes in audio files and. adds extra sound to

an echo

 Differential phase variation in which the file is divided into blocks and using

the embedded message, block's initial phase is transformed.

b. Hiding in Image Files

Image steganography techniques can be divided into two groups: those in the Image

(Spatial) Domain and those in the Transform (Frequency) Domain. Image domain

techniques embed messages in the intensity of the pixels directly. Frequency domain

techniques first transform the image and then embed the message in more significant

areas of cover image. Most suitable image types are uncompressed and lossless

compressed images for spatial domain steganography methods.

17

In Chapter 4 steganography algorithms will be explained in categories according to

image file formats and the domain in which they are performed.

c. Hiding in Video Files

Hiding a message in video files such as .avi and .mpeg is similar to hiding in images.

Mostly, the program use Discrete Cosine Transform (DCT) method to hide message

rounding a value in a part of frame [17].

18

CHAPTER 3

3IMAGE CODING and COMPRESSION

An image is a collection of numbers that constitute different light intensities in

different areas of the image [18]. The smallest component of a digital image is called

as pixel. Each pixel has own coordinates. Pixels are displayed horizontally row by

row. Number of row and columns gives the dimension of an image. The number of

the bits per pixel (bpp) represents the color of a pixel, which describes the color

depth or bit depth of an image. If each pixel represented by 1-bpp, called as

monochrome. There are 2 colors for 1-bpp to represent pixels. 8-bpp generally uses

for grayscale images to display 256 different shades of gray, or uses for color

images. 16-bpp color depth images are called as “High color” images, 5 bits

represents red color channel, 5 bits for blue color channel, and 6 bits for green color

channels. 24-bpp is called as “True color”. These images can show almost 16.8

million different colors. Each primary color (red, green, and blue) are represented by

8-bits.

Digital images can be stored using different techniques. Some of them compresses

image to reduce data size but it defects the quality of an image, called as lossy

compression. Some of these techniques reduce data size, but not as much as lossy

compression methods, by not changing pixel values, called as lossless compression.

19

To compress data different compression and coding algorithms are used. Lossless

compression methods Lempel Ziv 77 (LZ77), Lempel Ziv 78 (LZ78), Lempel Ziv

Welch (LZW) and Huffman Coding algorithm are described in this chapter. After

compression or manipulation on an image, there can be significant changes. Some

image analysis methods, Mean Squared Error (MSE), Peak Signal-to-Noise Ratio

(PSNR), Weighted Peak Signal-to-Noise Ratio (WPNR), Histogram Analysis, are

described to calculate differences between original and manipulated image.

3.1 Image Types

3.1.1 Grayscale Images

Grayscale images carry on a series of shades from white to black at each pixel.

Generally, each pixel stores 8-bit integer, giving 256 different grayscale intensities.

For medical imaging use, more details are needed. So, some image formats as

JPEG200, GIF, and PNG support 16-bpp (65,536 tones) grayscale images. Binary

representation of color black is 0 for different pixel depths and white is the maximum

value. White is 255 for 8-bit pixel depth and 65,535 for 16-bit pixel depth. Figure 3.1

shows 8 and 16-bit shades of gray.

20

Figure 3.1 (a) 8-bit Shades of Gray (b) 16-bit Shades of Gray

To convert any color to grayscale representation, firstly the color is converted to

RGB format if it is not. Then, typically adding %30 of the red value, %59 of the

green value, and %11 of the blue value give the grayscale tone of the color [19].

3.1.2 RGB Color Space

The RGB color model is a mixture of different tones of red, green, and blue colors,

and light spectra to produce tones of other colors. Zero intensity gives the black

color, and full intensity of each color spaces gives the white color [20]. If the tones

of color channels are close to each other, mixture of them gives the shade of gray

depending on the intensity. If a color channel has the strongest value and there is a

big difference between other color channels, the color is close to this primary color.

If two color channels have the strongest value, the color is close to mixture of these

two primary colors (cyan: green and blue, magenta: red and blue, yellow: red and

green). Figure 3.2 shows the RGB color space.

21

Figure 3.2 Color Space

3.1.3 Palette Images

These images are coded using one number to represent a pixel color. Each image file

contains its own palette. This palette is the list of used colors in image. For example,

if a color image dimensions are 10x10, an uncompressed image carries 24 bit per

pixel and totally 2400 bits (300 byte). If the palette image represents each pixel by 8

bits, this file contains 800 bits (100 byte) for pixels and 768 bits (256x3) for palette.

These 768 bits (96 byte) define the RGB values of used 256 colors. While this

uncompressed image needs 300 bytes, palette image needs 196 bytes. Limited

number of distinct colors is the disadvantage of palette images. But it can be useful

for images or drawings which do not need more color than the number of colors

supported by palettes. [21]

Figure 3.3 Sample Palette Image

22

3.2 Image Formats

Table 3.1 shows properties of different image formats. Image file may be

uncompressed in this case file format has the exact value of each pixel. If it is

lossless compressed, the file stores less information than uncompressed files. This

type of format may give exact value of each pixel after some operations. Lossy

compressed files, store less information than uncompressed files, after some

calculations, it may give closer values to each pixel. Natural images are kind of

photos taken by cameras which have smooth variation of tone and color. In Table 3.1

“line drawing row” represents images, have hard edges, like textures, iconic

graphics. „S‟ represents “Suggested” and “ Not S” represents “Not Suggested” to use

image formats to encode natural or line drawing images.

Transparency is represented by 1 bit. A pixel can be %100 transparent or not. PNG

and BMP image formats have Alpha channel. This channel carries 8-bit or 16-bit

transparency tones for each pixel. But systems may output maximum 255 different

tones for each pixel. PNG, TIFF and GIF support palette-indexed color for 1, 2, 4,

and 8-bit. But JPEG and JPEG2000 do not support palette-indexed color images.

Supported color depths and file extensions are given in Table 3.1 [22] [23] [24]

23

Table 3.1 Comparison of Image Formats

Image Formats

Properties
BMP JPEG JPEG2000 GIF PNG TIFF

Uncompressed Y N N N N N

Lossy

Compressed
N Y (DCT) Y (DWT) N N N

Lossless

Compressed
N Y Y

Y

(LZW)

Y (LZ77 &

HUFFMAN)
Y (LZW)

Natural Images S S S Not S S S

Line Drawings S Not S Not S S S S

Transparency N N Y Y N Y

Alpha Channel Y N N N Y N

Palette-Indexed Y N N Y Y Y

Animations N N N Y N N

Color Depth 1,4,8, 16,

32-bit

12, 24-

bit

Up to 48-

bit

1,2,3,4,5

,6,7,8-bit

1,2,4,8,16,24,

32,48,64-bit

1,2,4,8,16,

24,32-bit

Grayscale Depth 8-bit 8-bit 8, 16-bit 8-bit 8, 16-bit 8, 16-bit

File Extensions .bmp .dib

.rle .2dp

.jpg

.jpeg .jpe

.jp2 .j2c

.jpc .j2k

.gif .giff

.gfo
.png .tif .tiff

3.3 Image Analysis

Differences between two images can be calculated using MSE, PSNR, and WPSNR

formulas to have an idea if these images are identical or manipulated. Histograms

show the frequency distribution on color or grayscale images. Comparing histograms

of two same looking images can give an idea if there is any modification on image.

3.3.1 Mean Squared Error (MSE)

MSE is the ratio of sum of the square of the differences in the pixel values between

the corresponding pixels of the two images over total pixel number. MSE can be

calculated if two images‟ dimensions are equal. If two images are identical MSE

24

𝑀𝑆𝐸 =
 𝐼1 𝑚, 𝑛 − 𝐼2(𝑚, 𝑛) 2

𝑀 ,𝑁

𝑀 ∗ 𝑁

𝑃𝑆𝑁𝑅 = 10 log10
𝑅2

𝑀𝑆𝐸

value is 0. Formula 3.1 shows how to calculate MSE value. I1 and I2 are images with

same dimensions. M and N are the dimensions of images. [25]

(3.1)

3.3.2 Peak Signal to Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is the ratio between maximum power of a

signal and the power of the signal‟s noise. After lossy compressing an image to

reduce data size or changing quality of image, pixel values changes. Calculating

PSNR value defines the changes on image. PSNR is usually expressed in decibels.

MSE and PSNR values can be calculated separately for each color channel. If two

images are identical the PSNR value is infinite. [26]

 (3.2)

Formula 3.2 shows how to calculate PSNR value. R is the maximum pixel value for

the image. 2
n
-1 gives the maximum pixel value for an image. R value is 2

8
-1=255 if

pixels are represented by 8-bits for image.

3.3.3 Weighted Peak Signal to Noise Ratio (WPSNR)

Quality measurement function Weighted Peak Signal to Noise Ratio uses different

approach than PSNR. WPSNR calculates different weights for different blocks of

image while PSNR uses same weight for all images. Using different weights gives

25

𝑁𝑉𝐹 = 𝑁𝑂𝑅𝑀
1

1 + 𝛿𝑏𝑙𝑜𝑐𝑘
2

𝑊𝑃𝑆𝑁𝑅 = 20 log10
R

 𝑀𝑆𝐸 𝑥 𝑁𝑉𝐹

𝑛𝑖 = 𝑚𝑖

𝑘

𝑖=1

better results about changes in the perceptual quality more accurately than PSNR.

HVS is less sensitive for to changes in highly textured areas. So, WPSNR uses Noise

Visibility Function (NVF), which uses a Gaussian model to estimate how much

texture exists at different blocks of the image. NORM is a normalization function

and δ is the luminance variance of block at formula 3.4. [27]

(3.3)

(3.4)

An example of WPSNR, PSNR and MSE values for a compressed image with

different qualities are given at Appendix A..

3.3.4 Histogram

An image histogram is a graphical display of the tonal distribution in an image,

shown as bars. Let k is the maximum pixel value in an image, m is the pixel value,

and n is total repetition of n in image. [28]

(3.5)

26

Example:

Figure 3.5.a, b show the color distribution on 3 channel (red, green, blue) of

Lena.bmp (Figure 3.4.a) and compressed with quality 80 Lena.jpeg (Figure 3.4.b)

respectively. ImageJ [29] was used for histogram analysis of pictures.

Figure 3.4 (a) Original Image (b) %80 Quality Compressed Image

(a) Color Histogram Lena.bmp, (b) Color Histogram Lena.jpg

Figure 3.5 Histogram of Lena .bmp and .jpeg Images

27

3.4 Compression and Coding Methods

Compression methods are used to reduce the data size. Image formats use them to

encode image files. PNG image format uses combination of LZ77 lossless

compression algorithm and Huffman coding method called as DEFLATE [30]. GIF

image format uses LZW lossless compression algorithm, modified version of LZ78.

Compression ratio of .gif files are between 4:1 and 10:1. TIFF image files also use

LZW algorithm to reduce data size. JPEG image format applies DCT to image than

uses Huffman coding method. Compression ratio of .jpeg image changes between

10.1 and 100.1 depending on the quality of image. PNG image format compresses

better than .gif files, between %10 and %30 [31]. PNG gives the best

quality/compression ratio for all kind of images. In this part, lossless compression

algorithms LZ77, LZ78, LZW and Huffman coding method are explained.

3.4.1 Lempel Ziv 77 (LZ77)

LZ77 is a lossless data compression algorithm defined by Abraham Lempel and

Jacob Ziv in 1977. LZ77 algorithm searches back to find longest sequences to

represent next characters. This algorithm carries 3 characters for each step at coding

table. First one defines how character long to go back from current position, second

character defines how long character will be copied from that position and the last

character is a character to add end of that sequence. [32]

Assume that the character sequence is S = (A,B,B,C,D,A,B,D,B,C,C) to be

compressed.

28

Table 3.2 Encoding Process of LZ77

 Back to i.th character Get L character Add to end of sequence Sequence

Step 1 0 0 A A

Step 2 0 0 B AB

Step 3 2 1 C ABBC

Step 4 0 0 D ABBCD

Step 5 1 2 D ABBCDABD

Step 6 3 2 C ABBCDABDBCCC

3.4.2 Lempel Ziv 78 (LZ78)

LZ78 is a lossless data compression algorithm defined by Abraham Lempel and

Jacob Ziv in 1978. This method is similar to LZ77. Advantage of this method is to

store 2 characters for each step. LZ78 stores the result of each step in a dictionary.

When new characters will be added, checks the previous steps to find the longest

matching step. [33]

Assume that the character sequence is S = (A,A,B,A,C,A,B,A,A,C,C) to be

compressed.

Table 3.3 Encoding Process of LZ78

 Dictionary Back to dictionary Add to end of sequence Sequence

Step 1 A 0 A A

Step 2 AB 1 B AAB

Step 3 AC 1 C AABAC

Step 4 ABA 2 A AABACABA

Step 5 ACC 2 C AABACABAACC

3.4.3 Lempel Ziv Welch (LZW)

LZW is an improved implementation of LZ78 algorithm, published by Welch in

1984. This algorithm defines a code book and which encoder and decoder know.

LZW stores new codes generated by encoder. Decoder uses the coded sequence to

analyze the meaning of new codes. [34]

29

Assume that the character sequence S = (A,B,C,A,C,D,B,C,A,B,C,A)

Codebook have this representations for these characters, A=1, B=2, C=3, D=4

Table 3.4 Encoding Process of LZW

 New Value Codeword

Step 1 5 AB

Step 2 6 BC

Step 3 7 CA

Step 4 8 AC

Step 5 9 CD

Step 6 10 DB

Step 7 11 BCA

Step 8 12 ABC

Compressed sequence of S is (1,2,3,1,3,4,6,5,7)

Decoding process:

Decoder knows the meaning of 1,2,3,4. So, decoder generates same table. Till it

comes to new codes „6‟,‟5‟, and „7‟ codebook has values of these codes

3.4.4 Huffman Coding

The entropy encoding algorithm is developed by David A. Huffman in 1952, used for

lossless data compression. This method creates binary tree using frequencies of

characters. [35]

Assume that frequencies of 7 characters are:

A= 1 B= 3 C= 7 D= 14 E= 20 F= 25 G= 27

30

Figure 3.6 Huffman Tree

Using Hamming algorithm each character now has different represented value.

Higher frequency characters have smaller codeword length so this is the advantage of

Hamming algorithm to encode data using fewer characters for the most repeated

characters.

A= (0100) B=(0101) C=(0110) D=(0111) E=(00) F=(10) G=(11)

0

0

1

1
1

1

1 1

0

0

0 0

A(1) B(3) C(7) D(14)

E(20)
F(25) G(27)

57

4 21

25

45

102

31

CHAPTER 4

4STEGANOGRAPHY METHODS ON STILL IMAGES

Image steganography techniques deal with two subjects as Frequency / Transform

Domain and Image / Spatial Domain [36]. Spatial Domain techniques embed secret

data pixel directly into cover image. The most popular data hiding method is,

changing pixels' left most digits or last two, known as (Least Significant Bit) LSB.

Lossless image formats like .bmp, .png, and 8-bit gray-scale .gif are usable for LSB

methods. LSB embedding method is not usable for palette images because of

changing just last bit of a pixel causes a big difference on image. After embedding all

of secret message to palette image, HVS can detect manipulations on image. There

are some techniques to hide data in palette images like changing color orders in

palette or adding new colors to palette. Transform Domain techniques, firstly

transform image then embed data in it. These techniques are usable for .jpeg images

(See in Chapter 3.1). One byte data can be hidden in each 8x8 block using the DCT

for lossy compression.

In this study;

MxN : image size

yi : i.th position of cover image

ŷi : i.th position of stego image

32

mi : i.th bit of the message

yi,j : j.th bit of i.th pixel of cover image

If there is no additional explanation, cover image is grayscale and when talking about

pixel, it means only one color channel is mentioned.

4.1 Least Significant Bit (LSB) Replacement

LSB insertion is the most preferable method to embed data in cover image. The last

bit of each pixel swaps with secret message's bit [37]. For example, if cover media is

color image and secret data is 'a':

ASCII value of 'a' is 97 = 01100001

Color image pixels:

10101111 00011000 11000010 (175, 24, 194)

10110000 00010110 11001000 (176, 22, 200)

10110100 00011000 11000100 (180, 24, 196)

After making changes on LSB of pixels, new pixel values are;

10101110 00011001 11000011 (174, 25, 195)

10110000 00010110 11001000 (176, 22, 200)

10110100 00011001 11000100 (180, 25, 196)

(a) 174,25,195 (b) 176,22,200

Figure 4.1 Color Representations on RGB

When LSB insertion is applied to an image, generally as much as half of the last bits

changes. For a 240x320 color image, the total number of pixels is 240*320*3, which

is equal to 230400 bits, 28800 bytes or 28,125 kb. Thus, 28,125 kb secret message

33

may be embedded in the color image. If a method with last two bit insertion is used,

the capacity gets doubled.

For an instance, a color image, size of image is 500x300x3, is used to hide 10240

bytes data in it. Maximum capacity of image is 56250 bytes for LSB insertion.

Figure 4.2 (a) is the cover image and (b) is the stego image. Figure 4.3 (a) is the color

histogram of cover image and (b) is the histogram of stego image.

34

(a)Cover Image

(b) Stego Image

Figure 4.2 (a) Cover Image (b) Stego Image

Table 4.1 Effects of Information Hiding on Image

Embedded

Bits

Modified

Bits

MSE

(Red)

MSE

(Green)

MSE

(Blue)

PSNR

(Red)

PSNR

(Green)

PSNR

(Blue)

81920 41042 0.0906 0.0916 0.0914 58.5595 58.51 58.5226

35

(a)Cover image histogram (b) Stego image histogram

Figure 4.3 Histograms of Cover and Stego Images

There are some methods to hide data using up to last 4 bits of grayscale pictures. As

mentioned at Chapter 3.1.1 8-bit represents grayscale colors between 0 (black) and

255 (white). At worst case, changing last 4 bit cause a change of maximum 15 colors

change in palette. If the pixels last 4 bits is 0000 and secret message bits to hide there

are 1111. Figure 4.4 shows changing 15 colors in grayscale palette. So, depending on

picture and coding technique, last 4 bits can be used to encode data in 8-bit grayscale

images. Although steganalyze techniques can detect changes in image easily, HVS

cannot detect the difference between cover image and stego image.

(a)Grayscale value 0

(b)Grayscale value 15

Figure 4.4 Color Representations

36

𝑑 = 𝑚 − 𝑦 𝑚𝑜𝑑2𝑘

𝑦 = 𝑑′ + 𝑦

4.2 Hiding Function Using Modulus Function

High-hiding capacity method based on modulus function is proposed by Thien and

Lin in 1993 [38]. This method hides k bits in 1 pixel and causes less modification

than hiding k bits per pixel using in LSB Replacement method.

How this method works:

Let k be the number of host bits of a pixel to embed data

m is the secret data can be represented by k bits

y is the cover pixel value

d is the difference

(4.1)

d' is the minimal difference value between the original value y and the modified

value ŷ.

(4.2)

ŷ is, the modified pixel value, the sum of d' and y.

(4.3)

𝑑′ = 𝑑 𝑖𝑓 −
2𝑘 − 1

2
 ≤ 𝑑 ≤ −

2𝑘 − 1

2

𝑑′ = 𝑑 + 2𝑘 𝑖𝑓 −2𝑘 + 1 ≤ 𝑑 ≤ −
2𝑘 − 1

2

𝑑′ = 𝑑 − 2𝑘 𝑖𝑓 −
2𝑘 − 1

2
 ≤ 𝑑 ≤ 2𝑘

37

For an instance, let

Cover pixel is y1 = 184 (10111000)2

If last two bits of cover pixel is used to hide data

 If m1 and m2 = (11)

 d = 3 - (184 mod 2
2
) = 3

 d' = 3-4 = -1 (equation 4.2. condition 3)

 ŷ = -1 + 184 = 183

Table 4.2 shows all combinations for hidden bits for cover pixel 184.

Table 4.2 Results of Modulus and Replacement Methods on Cover Pixels

S. Bits L5 bits* Modulus L5 bits Distance Replacement L5 bits Distance

00 11000 184 11000 0 184 11000 0

01 11000 185 11001 +1 185 11001 +1

10 11000 182 10110 -2 186 11010 +2

11 11000 183 10111 -1 187 11011 +3

 *L5 bits are the last five bits of color channel

As seen in Table 4.2 Modulus method affects more than k bits to minimize the

difference between cover pixel and stego pixel. So, this approach gives better MSE,

and PSNR values according to LSB replacement method.

Extraction of secret bits:

 Secret Bits = (ŷ mod 2
k
)

 If Stego pixel is 186 and k is 2,

 Secret bits = (186 mod 4) = 2 = (10)2

4.3 LSB Matching Method

LSB Matching method is described by J.Mielikainen in 2006 [39]. The purpose of

this method is to embed data in image, by changing fewer bits than classical LSB

38

𝑓 𝑙, 𝑛 = 𝐿𝑆𝐵
𝑙

𝑛
 + 𝑛

property 1: 𝑓(𝑙 − 1, 𝑛) ≠ 𝑓(𝑙, 𝑛 + 1)

property 2: 𝑓 𝑙, 𝑛 ≠ 𝑓(𝑙, 𝑛 + 1)

Replacement method. LSB Matching method has the same capacity with LSB

Replacement method. LSB Matching method groups secret bits by two and groups

the pixels by two, depending on cover bits and secret data bits, changes the LSB of

cover image.

If the 2 message bits are different from the LSB of cover pixels, LSB Replacement

method changes both two pixels‟ LSB. But LSB Matching uses a different approach.

This method does not change the second pixels value. Increase or decrease the first

pixels value using these properties. After changing two cover bits, LSB of the first

pixel is the first message bit, and the second message bit can be found using formula

(4.4).

(4.4)

How this method works:

1. Check if the LSB of first cover pixel (y1,1) is equal to 1
st
 message bit (m1)

a. If they are equal, first stego pixel is equal to first cover pixel (ŷ1=y1)

i. If the LSB of sum of the last 2
nd

 bit of first cover pixel (yi,2) and

LSB of second cover pixel (y2,1) is equal to 2
nd

 message bit, LSB

second of stego pixel is equal to second cover pixel (ŷ2=y2).

ii. Else, stego pixel 2 can be 1 more or 1 less (ŷ2±1)

b. Else, stego pixel 2 is equal to cover pixel 2 (ŷ2=y2)

i. If the LSB of sum of the last 2
nd

 bit of first cover pixel minus 1

(y1-1,2) and LSB of second cover pixel (y2,1) is equal to 2
nd

39

message bit (m2), first stego pixel is first cover pixel minus 1

(ŷ1-1).

ii. Else, first stego pixel is first cover pixel add 1 (ŷ1+1).

Table 4.3 Results of Matching and Replacement Methods on Cover Pixels

Cover Pixels Message Bits LSB Matching LSB Replacement

6 7 0 0 6 7 6 6 or 8

6 7 0 1 6 6 6 7

6 7 1 0 7 7 5 or 7 6 or 8

6 7 1 1 5 7 5 or 7 7

The LSB replacement and matching algorithm were tested for 5 grayscale images.

Results are in Table 4.4.

Table 4.4 Results of Matching and Replacement Methods on Images

Image Lena Cameraman Goldhill Baboon Boat

Image Size 128x128 256x256 256x256 111x111 256x256

LSB Capacity (bits) 16384 65536 65536 12321 65536

Test File Size (bits) 14825 33200 33200 11696 44912

Replacement MSE 0.4433 0.2554 0.2503 0.1632 0.0859

Replacement PSNR 51.6638 54.0580 54.1461 56.0031 58.7926

Replacement Changed Bits 7263 16740 16404 5948 22509

Matching MSE 0.3347 0.1917 0.1897 0.1517 0.0645

Matching PSNR 52.8848 55.3057 55.3498 56.1682 60.0366

Matching Changed Bits 5483 12560 12433 4405 16903

If cover and hidden bits are

different *1 1713 4216 4262 1457 5679

Ratio of Changed bits

Rep/Match *2 24.5078 24.9701 24.2075 25.9415 24.9056

Less Changes *3

12.0068 12.5904 11.9608 13.1915 12.4822

*1 For example, two pixel last bits of cover pixels are [0 0] and secret bits group [1 1].

*2 For Lena, Ratio = (7263-5483)*100/7263

*3 For Lena, (7263*100/14825) – (5483*100/14825)

As seen in Table 4.3, LSB Matching method modifies about %12.5 less than LSB

Replacement method.

40

1,2 ,1()i i iF y y y

4.4 Hiding Information Using Chan’s Method

The purpose of this method is to reduce modified bit numbers on stego image while

having the same payload (α = 1/1) with Mielikainen‟s method. Chan‟s method does

not group cover pixels and message bits by 2. This method uses XOR function to

decide how to embed message bit. If the result of LSB of cover pixel at position i

(yi,1) and last 2
nd

 bit of cover pixel at position i-1 (yi-1,2) is equal to message bit mi, no

need to modify cover pixel. If the result is not equal Chan uses a formula which is

modified version of Mielikainen‟s method [40]. Chan‟s method‟s efficiency

increases if the message length increases, the other algorithms have the static

embedding efficiency.

 Chan‟s formula

(4.5)

How this method works:

1. Firstly, XOR the last bit of pixel at position i, and last 2
nd

 bit of pixel at position

i-1.

a. Compare the result of 1. With the stego bit for position i. If they are

equal, no need to change.

b. If they are not equal use F function. XOR the last bit of pixel at position i

and last 2
nd

 bit of pixel at position i+1. Compare the result with stego bit

at for position i+1.

i. If they are not equal, decrease the pixel value 1 at position i, get

the last 2
nd

 bit, and compare it with the last 2
nd

 bit of the original

value at position i.

1. If they are equal decrease pixel value by 1 at position i.

2. If they are not equal increase the pixel value by 1.

41

ii. If the result of step 3 is equal, subtract the last bit of pixel value

and add the complement of last bit to the pixel value.

Figure 4.5 Flowchart of Chan‟s Method

Example:

If the cover pixel is 2 to hide 0, and the previous cover pixel number is 0;

 yi-1 yi

 0 1

 0

XOR 0

Stego Bit 0

Result 1. step, no need to changes

Result of XOR function is equal to message bit, so any modification is not needed.

If cover pixels are y1=2, y2=2 and stego bits are m1=1 ,m2=1;

Before After

 0 1 1 0 1 1

 0 0 1 0

XOR 0 1 1 1

Stego Bit 1 1 1 1

Result a. and ii. step, need to increase first pixel by 1.

42

Result of XOR function is not equal to message bit, so result of XOR function for

next pixel is checked if it is equal to message bit for that position. Since the result is

equal, stego pixel is equal to cover pixel plus 1.

If cover pixels are y1=2, y2=2 and stego bits are m1=1 ,m2=0;

 Before After

 0 1 1 0 0 1

 0 0 1 0

XOR 0 1 1 0

Stego Bit 1 0 1 0

Result i. and 1. step, need to decrease first pixel by 1.

Result of XOR function is not equal to message bit, so the next cover bit is checked

using XOR function if the next message bit is equal to result of second XOR

function. It is not equal, so change first cover pixel‟s last 2 two bits by subtracting 1.

As a result of this change, also next message bit is embedded.

The advantage of Chan‟s method increases depending on message length. So, the

example in Table 4.3, message bits, grouped by 2 for replacement and matching

methods, is grouped by 8 for this method and Table 4.5 shows the results.

Table 4.5 Hiding Information Using Chan‟s Method

Cover Image Pixels 66776776 66776776 66776776 66776776

Message Bits 00000000 01010101 10101010 11111111

Stego Image 67777777 66786676 56676786 76876876

Table 4.6 shows the results of changes on 256x256 grayscale image after embedding

a file 1850 byte using different methods with payload α = 1/1.

43

Table 4.6 Changes on Images Information Hiding Methods α = 1/1

File Size (byte) Method Modified Bits Embedding Efficiency PSNR MSE

100

Mielikainen 286 2.7972 71.7319 0.0044

Chan 255 3.1373 72.2302 0.0039

Replacement 368 2.1739 70.6371 0.0056

250

Mielikainen 730 2.7397 67.6624 0.0110

Chan 658 3.0395 68.1133 0.0100

Replacement 941 2.1254 66.5597 0.0144

500

Mielikainen 1502 2.6631 64.5289 0.0229

Chan 1321 3.0280 65.0866 0.0202

Replacement 1952 2.0492 63.3908 0.0298

1024

Mielikainen 3118 2.6273 61.3568 0.0476

Chan 2729 3.0311 61.9356 0.0416

Replacement 4152 1.9730 60.1130 0.0643

1850

Mielikainen 5589 2.6480 58.8223 0.0853

Chan 4926 3.0045 59.3707 0.0752

Replacement 7391 2.0024 57.6086 0.1128

4.5 2/3 Embedding Efficiency Method

This method uses 3 pixels to hide 2 bits and if the modification is necessary changes

only 1 bit of them by increasing or decreasing. The other bit, which is not hiding 2

message bits, defines how to decode message bits [41]. If that bit is 0, two bits are

message bits, if that is 1, complement of two bits are message bits. Table 4.7 shows

how to encode 2 message bits in 3 bits for all conditions and Table 4.8 shows an

example for all conditions to hide 2 message bits (0, 0).

Table 4.7 Coding using 2/3 Efficient Embedding Method

1,i im m
00 01 10 11

,1 1,1 2,1
ˆ ˆ ˆ, ,

i i i
y y y

000 001 010 011

111 110 101 100

44

1 2 p

p

2 1p

p

Table 4.8 Example for 2/3 Efficient Embedding Method for 1,i im m = 00

Payload (α): 2/3

Changes: 1/4 → no change

 3/4 → 1 change

Embedding Efficiency (ε): 3/8

Although this method has the same embedding efficiency with Mielikainen‟s

method, the disadvantage of this method is %33 less embedding capacity.

4.6 Matrix Embedding Using Hamming Codes

Hamming codes mostly is used in transmission, can detect 2 bits fault or detect 1 bit

fault and correct it. It is possible to use 1 bit detection and correction property of

Hamming codes for steganography [42][43]. This method splits the message into p-

length groups and using hamming codes changes 1 bit.

 The embedding efficiency of this method:

(4.6)

Payload:

(4.7)

,1 1,1 2,1
, ,

i i i
y y y

 000 001 010 011 100 101 110 111

,1 1,1 2,1
ˆ ˆ ˆ, ,

i i i
y y y

 000 000 000 111 000 111 111 111

45

How this method works:

1. Split message p-length groups

2. Get a group length 2
p
-1 bits from cover pixels

3. Construct a hamming matrix p x 2p-1

4. Calculate the multiply of Hamming matrix and transpose of grouped cover pixels

a. If the result of multiplication is equal to p-length stego bit group no need

to change

b. Else,

i. XOR the result of multiplication and p-length stego bit group

ii. Change a bit from cover pixel group which is the result of 4.b.i

Let message group length p=3, cover pixel length to hide 3 bits is 2
p
-1 = 7. Let the

message group is m= (110) and cover pixels bits are y= (1001000). Hamming matrix

for p=3 and the process to embed message are in Figure 4.6.

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

H

1 1 1 1 0

. 0 1 0 1 1

1 0 1 0 1

TH y

Figure 4.6 Matrix Embedding Calculations Using Hamming Codes

As a result, 3
rd

 bit of cover pixels group‟s should change. After embedding that 3

message bits in 7 pixels, the LSB of these pixels are ŷ= (1011000). To decode the p-

length secret message, multiply 2
p
-1 cover pixels group and 2

p
-1 length Hamming

codes.

46

Table 4.9 shows results of needed pixel number and modification number to hide

1024 message bits for splitting different p-length groups.

Table 4.9 Matrix Embedding Using Hamming Codes with Different P-lengths

P : 1 2 3 4 5 6 7 8 9 10

N. Pixel * 1024 1536 2389 3840 6348 10752 18578 32640 58140 104760

Modified 512 384 298.66 240 198.40 168 145.14 127.50 113.55 102.30

Ratio ** 0.50 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0009

*Needed pixel size

**Need pixel size / Modified Pixels

4.7 Hiding Information Randomly Pixels’ LSB

The basic method to hide data using LSB insertion method sequentially is not very

effective and not secure and not resistant to visual attacks on some images. So,

spreading the secret bits on image using pseudo random number generator is

advisable, using a method to select a position once in a time [44]. If the attacker has

the stego image, and know the distribution technique or, has the software, attacker

can easily extract the hidden message from stego image. Using stego key for

distribution bits in cover image randomly makes it harder to extract message.

4.8 Hiding Information into Edges of Images

Edge detection is the process to find where the image brightness changes sharply

such as corners, thin lines, textures, and edges. There are different filters to find

edges like Laplacian, Sobel, Prewitt, Robert Cross, and Canny methods.

47

These methods have different matrices to find the edges. Figure 4.7 shows the results

of the filters to an image.

Laplacian Sobel Prewitt Robert Cross

(a) (b) (c) (d)

Figure 4.7 Edge Filter Results

Kh. Manglem Signh et al. [45] have described a method, which does not need to

have cover image to extract hidden data, to hide data on the edges of image using

Roberts cross operator in 2007. Because of the pixels on edges appear to be much

brighter or dimmer than neighbors, the suspicion of the present of message bits on

edges will be less for an attacker. Edges can be found easily using detection filters.

Defining the threshold value is the most important part of this method. Because after

applying edge filter to cover image and embedding secret data into edges, for stego

image edges may be changes. So, the right threshold value makes it possible to have

the same edges on stego image, after changing the edge bits on cover image.

x1 x2

x3 x4

Figure 4.8 Robert Cross Convolution Mask

48

3 2 1 4 , x y x yD G G where G x x G x x

𝑥1 =

𝑥1 + 1, 𝐷 ≥ 𝜃 & 𝐺𝑥 ≥ 𝑥1 𝑖𝑠 𝑒𝑣𝑒𝑛 & 𝑀𝐵 = 1
𝑥1 − 1, 𝐷 ≥ 𝜃 & 𝐺𝑥 < 𝑥1 𝑖𝑠 𝑒𝑣𝑒𝑛 & 𝑀𝐵 = 1
𝑥1 + 1, 𝐷 ≥ 𝜃 & 𝐺𝑥 ≥ 𝑥1 𝑖𝑠 𝑜𝑑𝑑 & 𝑀𝐵 = 0
𝑥1 − 1, 𝐷 ≥ 𝜃 & 𝐺𝑥 < 𝑥1 𝑖𝑠 𝑜𝑑𝑑 & 𝑀𝐵 = 0
𝑥1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥2 =

𝑥2 − 1, 𝐷 ≥ 𝜃 & 𝐺𝑦 ≥ 𝑥2 𝑖𝑠 𝑒𝑣𝑒𝑛 & 𝑀𝐵 = 1

𝑥2 + 1, 𝐷 ≥ 𝜃 & 𝐺𝑦 < 𝑥2 𝑖𝑠 𝑒𝑣𝑒𝑛 & 𝑀𝐵 = 1

𝑥2 − 1, 𝐷 ≥ 𝜃 & 𝐺𝑦 ≥ 𝑥2 𝑖𝑠 𝑜𝑑𝑑 & 𝑀𝐵 = 0

𝑥2 + 1, 𝐷 ≥ 𝜃 & 𝐺𝑦 < 𝑥2 𝑖𝑠 𝑜𝑑𝑑 & 𝑀𝐵 = 0

𝑥2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.8)

(4.9)

(4.10)

x3 can be calculated with the same formula to calculate x1.

x4 can be calculated with the same formula to calculate x2.

4.9 DCT Based Information Hiding on JPeG Images

The .jpeg image format uses the discrete cosine transform to reduce data size. It

causes the loss of the image quality. But it helps to hide data without big significant

changes on image depending on the chosen quality level. As described before at

Appendix A. in detail, the steps of .jpeg compression and embedding data [46]:

1. Convert image from RGB format to YUV format

2. Split image into 8x8 pixel blocks

3. Calculate the DCT coefficients for each block

4. Use quantization matrix to reduce the data size

5. Replace the lowest order coefficient bits all greater than zero with hidden bits

6. Send the modified coefficients to the Huffman coder.

Only hiding 1 byte data is possible into 8x8 blocks using DCT compression.

49

1 1

n n

n i i i

i i

S S a b

0 0nS n S n

4.10 Patchwork: A Statistical Approach

The patchwork algorithm is a statistical approach to invisibly embed data in a cover

image that has a Gaussian distribution using pseudo random generator given by

Bender et al [47]. After two patches are chosen pseudo randomly in cover image as

the first A, and the second B, patch A is lightened and patch B is darkened. In other

words, while intensities of the pixels in the one patch are decreased with a value

between 1 and 5, the pixels of the other patch are increased by the same value. The

average luminosity does not change and the contrast changes in that patch are

unnoticeable. The disadvantage is low embedded data rate one-bit signature per

image so it is more useful for low bit-rate applications as the digital watermark.

How this algorithm works:

Take any two points, A and B, chosen at random in an image. The brightness at point

A is Ai and at B is Bi.

Increase the brightness of pixels in patch Ai by an amount ∂ between 1 and 5.

Decrease the brightness of pixels in patch Bi by an amount ∂ between 1 and 5.

After the repeating n times this algorithm to embed data, S = 0.

(4.11)

The expected value for Sn is:

(4.12)

50

The patch shape is an important part of this algorithm. If the patch will place in

higher frequencies the Figure 4.9 (a) is suitable with sharp edges. Using that kind of

patch will make the distortion hard to detect. If the cover image format is JPEG,

placing a patch's energy in low frequencies is better and the patch shown on Figure

4.9 (b) is suitable for this situation. Figure 4.9 (c) shows a sharp-edged patch,

spreading the patch energy around the frequency spectrum.

(a) (b) (c)

Figure 4.9 Sample Patches

4.11 Bit Plane Complexity Segmentation (BPCS) Steganography

BPCS-Steganography technique is defined by Eiji Kawaguchi and Richard O. Eason

in 1997 to embed secret data in a 24-bit BMP format image and in an 8-bit indexed

color image. The most important advantage of this technique is the high capacity to

embed data. This method can hide information around %50 of true color image. The

bit-planes of an image are used for data embedding [48].

Assume that the cover image format is 24-bit bmp. Red, Green, and Blue channels

are divided into bit-planes as,

P= (PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR8,...

(PG1, PG2, PG3, PG4, PG5, PG6, PG7, PG8,...

(PB1, PB2, PB3, PB4, PB5, PB6, PB7, PB8)

51

PR8, PG8, PB8 are the LSB (Least Significant Bit)

PR1, PG1, PB1 are the MSB (Most Significant Bit).

A set of 24 binary pictures is created for each bit plane in same color channel.

(a) (b) (c) (d)

Figure 4.10 BPCS on Different Bit Channels

(a) Original picture, (b) Red plane Third Bits, (c) Red Plane Fourth Bits, (d) Red

Plane Sixth Bits

Complexity of each bit-plane pattern increases from the MSB to the LSB. Then these

bit-planes are converted from PBC (Pure Binary Code) to CGC (Canonical Gray

Code). BPCS Steganography method works after converting bit-planes from PBC to

CGC. Figure 4.11 shows how to convert PBC to CGC.

52

Figure 4.11 Converting Between PBC and CGC

If a bit in the 3
rd

 least plane is changed from 0 to 1 in PBC

As in Figure 4.11:

0 (000) → 4 (100), 1 (001) → 5 (101), 2 (010) → 6 (110), 3 (011) → 7 (111)

Changing 3
rd

 bit in PBC increases the all integer value by 4 and it will cause a

blocking effect.

Converting from PBC to CGC, changing 3
rd

 bit 0 to 1, and converting back to PBC

will cause of the average change 4. This will not cause a blocking effect remarkably.

How the algorithm works to encode data is described as follows [49]:

1. First step is to covert cover image format from PBC to CGC.

2. Split each bit-plane using a threshold value, default is 0.3, into noise-like and

informative regions.

3. Group the secret file as secret blocks.

53

4. If a block of cover image is less than the threshold, conjugate it to have a more

complex block.

5. Embed or replace each secret block into the noise-like regions of the bit-planes.

If the block is conjugated, then record this fact in a “conjugation map.”

6. Embed the conjugation map.

7. Convert the stego image from CGC back to PBC

54

CHAPTER 5

5STEGANALYSIS

Steganalysis is the art and science to detect whether a given medium has a hidden

message in it and to judge the performance of steganographic techniques. The wide

variation of data embedding algorithms makes steganalysis a tough mission for

images. Cover image and its stego image always differ from each other, because data

embedding period makes changes on original images. Steganalysis techniques can be

divided into two parts. First one is, if analyst does not have the original image and

does not know which specific data hiding algorithm is used, called as blind

steganalysis. If the analyst has cover media or knows the embedding method is the

second situation. Analysts often use statistical digital signal processing to detect data

within images. On the steganography side, it is important to improve algorithms and

find new undetectable methods using steganalysis techniques.

Steganalysis is especially also important in the security aspect, namely monitoring a

user‟s communication with the outside world. In the age of Internet, images are sent

via email or by posting on websites. Detecting whether or not data is hidden in the

images will allow furthering analyzing the suspicious images in order to find what

the hidden message is.

55

In this part, some important blind steganalysis techniques are explained. If analyst

has the original image, it is easy to detect if there is a manipulation on image

calculating MSE, PSNR values or checking histograms.

Firstly, visual attack is described. Visual attack is mostly usable for grayscale

images. HVS can detect if there is a hidden message in image using visual attack

[50] [51]. Other methods use statistical properties to detect stego images.

Secondly, statistical attack using chi-square analysis is described. This analysis

technique, which is successful for sequentially embedding secret data to LSB of

channels, is defined by Westfeld [51]. Another steganalysis method developed by

Fridrich et al. [53] for detection of LSB embedding in 24-bit color images, called as

the Raw Quick Pairs (RQP) method. Fridrich also proposed RS (Regular and

Singular groups) method, which is suitable for color and grayscale images if the

hidden data is embedded randomly [54]. There are more steganalysis methods such

as Sample Pair Analysis and Difference Image Histogram those are not discussed in

this thesis. Sample Pair Analysis (SPA) is defined by Dumitrescu S. et al. which

works well if the embedding ratio is more than %3 and can give an estimated length

of hidden message [55][58]. The idea of SPA method is based on finite-state

machine theory; these states are selected as multi sets of sample pairs. There are

some inherent relations between sample pairs. After embedding message to LSB of

pixels, statistic relations of multi sets will change. This method uses these statistics

of multi sets to estimate hidden message length. DIH (Difference Image Histogram)

steganalysis method is proposed by Zhang T. and Ping X. [59]. This method can

detect the existence of message and estimate the length of message if the message is

56

embedded using LSB Replacement method sequentially or randomly in images. DIH

gives better results than RS if the embedding ratio is more than %50.

5.1 Visual Attack

This is very simple method to discover if there is a hidden message in image or not.

The purpose of visual attack is to detect whether there is a potential message or not

in image by HVS [50]. Effectively this method is usable with grayscale images or

color images which have white or black area. This method eliminates all 7 high level

bits for each pixel and uses LSB to create a new picture. If LSB of pixel is 1 it

becomes maximum value, (i.e. for 8-bit pictures it is 255). If LSB of pixel is 0, this

value stays same for new picture [51]. The LSB of the original image becomes

visible, good enough for a visual check. Figure 5.1 shows an example of visual

attack. Picture (a) is the cover image, (b) is the form of after visual attack to original

picture, (c) is the worst case, if all LSB of pixels change, (d) is the half of c, and (e)

is the form of which has 2kb hidden message.

 (a) (b)

 (c) (d) (e)

Figure 5.1 Effects of Visual Attack on Images

57

Using visual attack it is possible to detect whether there is a hidden message in

picture or not. However, by changing all LSB, visual attack does not give any clue in

same grayscale pictures. As seen in Figure 5.2, it has different 230 gray tones, and it

does not contain any area that is full black or white color. After, creating binary

image depending on last bits of pixels, if the image contains hidden data and if there

is a block on image has the same color; new image on that block will be noisy.

Because, statistical analysis shows that after embedding data into last bits about half

of the last bits changes. If there is no hidden data that block will be completely black

or white. Figure 5.2 (b) is the form original picture after visual attack and (c) is the

form of original picture that all LSB are swapped.

(a)

(b) (c)

Figure 5.2 Visual Attack to Grayscale Image

(a) Cover image, (b) visual attack to original image, (c) visual attack to stego

image

58

It is possible to detect if the image contains hidden data or not for color images using

filter. Figure 5.3 shows an example for color images.

(a) (b)

(c) (d)

Figure 5.3 Visual Attack to Color Image

(a) Cover image, (b) Filtered of a, (c) Filtered image, conta ins data %50 of

capacity, (d) Filtered image, contains data %100 of capacity

5.2 Statistical Attack: Chi-Square Analysis

This statistical attack was published in 2000 by Andreas Westfeld [51]. Changing

least significant bits in cover image creates new value which is closest to original

one. If the channel value for original image is 2, after hiding a bit in that channel

value stays same or becomes 3. These pairs are called PoV. The frequencies of both

values of each PoV become equal, if the bits used for hiding data at the least

significant bits are equally distributed. The purpose of the statistical attack using chi-

square analysis is to compare the distribution of PoV in stego image with the

theoretically expected frequency in original image.

59

*

colour 2 ,2 1

2
i

sortedIndexOf colour i i
n

𝑋𝑘−1
2 =

 𝑛𝑖 − 𝑛𝑖
∗ 2

𝑛𝑖
∗ with 𝑘 − 1

𝑘

𝑖=1
 degrees of freedom

𝑛𝑖 = 𝑐𝑜𝑙𝑜𝑟 𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑒𝑥𝑂𝑓 𝑐𝑜𝑙𝑜𝑟 = 2𝑖

2
1

1
1

2 2
1 0

2

1
1

1
2

2

k

x k
X

k
p e x dx

k

Let we have k categories which are all palette indices. Each observation falls in only

one category. The minimum expected frequency of odd values of PoV must be

greater than 4.

After embedding an equally distributed message, the expected frequency in i is;

(5.1)

The measured frequency is in a random sample

(5.2)

The X
2
 statistic is given as

(5.3)

Formula to calculate the probability p if the distributions of 𝑛𝑖 and 𝑛𝑖
∗ are equal.

(5.4)

60

How does this attack works?

Assuming that the part of picture where the secret message will be hidden has the

same pixel values as 15. When secret message is embedded there, about half of the

LSB will change. So, about %50 of pixels stay as 15 and the other half of pixels are

14. 15 and 14 are Pairs of Values (PoV). Table 5.1 shows the pair of values for last 3

bits. If last 3 bits are used to encode, there are 4 PoV. If 8-bits represent a pixel and

LSB is used to encode data there will be 128 Pair of Values.

Table 5.1 Bit Representation of PoV

000

001

First Pair of Values.

010

011

Second Pair of Values.

100

101

Third Pair of Values.

110

111

Fourth Pair of Values.

This method assumes PoV almost have the same frequency. Firstly, calculates total

of PoV and constructs a table. Then constructs a second table which consists of PoV

values how to be and compares these tables using chi-square test to find an answer

whether this table is significantly different or not. Table 5.2 first column shows a

sample PoV table of original image and Table 5.2 second column shows a table of

stego image. Figure 5.4 used for this

61

Table 5.2 Original PoV and Stego PoV.

. . .

246 : 439

247 : 668

248 : 799

249 : 19113

250 : 3471

251 : 2017
252 : 496

253 : 129

254 : 92

255 : 78478

. . .

246 : 543

247 : 564
248 : 5381

249 : 14531

250 : 2827

251 : 2661
252 : 353

253 : 272

254 : 38760

255 : 39810

Table 5.2 first column shows the distribution of pixel values in original grayscale

image and second shows the stego image which hide the data about half of the

capacity of cover image. As seen in above frequency of PoV gets closer after

encoding.

Software is used to test and see the results of chi-square attack to stego image written

by Guillermito El Loco [52]. This program reads each time 126 bytes of data and

makes calculation then plots the results on a graph. First reads bytes from 0 to 128

then reads 128 bytes more and tests from bytes 0 to 256. The red curve is the result

of the chi-square test. The probability for a random embedded message is high, if it is

close to one. The second output is the average value of the LSB on the current block

of 128 bytes. So, this green curve will stay around 0.5, if there is a random message

embedded. Every vertical blue line represents 1024 byte of embedded data block on

the graph.

Figure 5.4 Çankaya University Logo

62

For instance, in Figure 5.4, File Size is 100x98. Capacity of this image for LS2B

(Least Significant 2 bits) embedding is 100x98x3=29400 bits (3,58kb), 29400 bits x

2=58800 (7,17kb) bits for last 2 bits.

Figure 5.5 shows the histograms of original image and stego image after embedding

4.05kb data, and results of chi-square test for both images.

(a)

 (b)

 (c)

(d)

Figure 5.5 Histograms and Chi-Square Analysis

(a) Color Histogram of cover image, (b) Graph of chi -square analysis to cover

image, (c) Color Histogram of stego image, (d) Graph of chi -square analysis to

Stego image

5.3 Raw Quick Pairs (RQP) Steganalysis

RQP is, based on analysis of close pairs of colors in 24 bit color images, developed

by Fridrich. If the secret message is embedded to LSB, it works well as long as the

63

1 2 1 2 1 2

2 2 2

1 2 1 2 1 2

1 1 1

or

3

R R G G B B

R R G G B B

2

U
P

2

P
R

U

number of unique colors in the cover image is less than %30 of the number of pixels.

Unless the number of unique colors exceeds about %50 percent of the number of

pixels, RQP method can provide a rough estimate of the secret message size [53].

Suppose that the number of unique colors in an image is U.

P is the number of close color pairs in the image palette for U.

Two neighbor pixels (R1, G1, B1) and (R2, G2, B2) are close if;

(5.5)

The number of all pairs of colors is greatest than the number of closest pairs of color:

(5.6)

The ratio R, between these values is;

(5.7)

The idea of this method is, the number of unique color increase after embedding a

message to picture. If there is no hidden message, the number of close pairs relative

to the number of all possible pairs of colors gets smaller than an image that has an

embedded message. Embedding a message to an image does not change the ratio R

64

significantly, if stego image has a large image. On the other hand, the ratio R

increases significantly, if the image does not contain a secret message.

How the Detection Algorithm Works:

1. Using equation (5.7), calculate the ratio R between the number of all pairs of

close colors P and the number of all color pairs.

2. Embed randomly a test message in pixels changing LSB. Test message length is

α3MxN.

3. Calculate U', P', and R' for new image.

4. Take the ratio of R' / R

If there is no hidden message or it is too short, calculated two ratios will be very

close to each other.

If there is a large hidden message the two ratios will be sufficiently different.

5.4 Regular and Singular Groups (RS) Steganalysis

Fridrich et al. also proposed a powerful RS (regular and singular groups) method

[54]. This method uses the statistics of the alterations of regular groups and singular

groups in the image to estimate the embedded length accurately. It is suitable for

color or gray-scale images if the secret message is embedded randomly.

Let the cover image size MxN

P is the set of pixel values.

For an 8-bit grayscale image; P = {0, 1, 2,…, 255 }

Using a discrimination function f(x1,...,xn) є R, to a group of pixels G = (x1,...,xn)

capture the spatial correlations.

65

𝐹1 𝑥 =
𝑥 + 1, 𝑥 𝑒𝑣𝑒𝑛
𝑥 − 1, 𝑥 𝑜𝑑𝑑

∋ 𝑥 ∈ 0, … ,255

𝐹−1 𝑥 =
𝑥 + 1, 𝑥 𝑜𝑑𝑑
𝑥 − 1, 𝑥 𝑒𝑣𝑒𝑛

∋ 𝑥 ∈ −1, … ,256

𝐹0 𝑥 = {𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

𝑓 𝑥1, 𝑥2,, … , 𝑥𝑛 = 𝑥𝑖+1 − 𝑥𝑖

𝑛−1

𝑖=1

(5.8)

(5.9)

(5.10)

(5.11)

Three types of pixel groups:

If f(F(G)) > f(G) => G is Regular (R)

If f(F(G)) < f(G) => G is Singular (S)

If f(F(G)) > f(G) => G is Unchanged (U)

A mask is defined as n-tuple which consists of M (-1,0,1)

Firstly, divide image to n groups then divide each group n into k-tuples and define

the mask ,M, such that M1,M2,…,Mk Є {-1,0,1} to calculate to as FM1,FM2,…,FMk.

Then compare f(FM(G)) and f(G) for all groups to compute the number of R,S,U

groups. For –M (1,0,-1) calculate f(F-M(G)), and find the numbers of R,S,U groups.

Statistically, number of regular groups is larger than singular group for cover images.

After applying mask M to cover image, which has no secret message, RM and R-M,

SM and S-M are approximately equal. If the image hides a message, RM and SM get

66

closer to each other. On contrary, the difference between R-M and S-M increases, RM

and SM is approximately equal after flipping the half of pixels‟ LSB [57]. The

expected values of RM and SM after all possible LSB randomizations are given in

 [17] as shown in Figure 5.6. p is the message length (in percents of pixels), assume

that LSB Replacement method is used to embed message. So, almost half of the

message bits are changed (Chapter 4.1).

Figure 5.6 RS Diagram

The x-axis is the percentage of pixels with flipped LSBs, y-axis is the relative

number of R and S groups with masks M & -M, M=[0 1 1 0]

How this method estimates a message length:

1. Find the number of R,S,U groups for M and –M

(R1(p/2), S1(p/2), R-1(p/2), S-1(p/2))

2. Flip all the LSB of pixels and recalculate for M and –M

(R1(1-p/2) S1(1-p/2) R-1(1-p/2) S-1(1-p/2)

3. Randomly change all the LSB of pixels and recalculate for M and –M

(R1(50), S1(50)).

67

4. Solve this equations to find message length

d0=RM(p/2)-SM(p/2), d1= RM(1-p/2)-SM(1-p/2),

d-0= R-M(p/2)-S-M(p/2), d-1= R-M(1-p/2)-S-M(1-p/2)

2(d1+d0)z
2
+(d-0-d-1-d1-3d0)z+d0-d-0=0

p=z/(z-1/2) message length

Manoharan S. tested RS steganalysis method for natural images how it is efficient to

guess hidden message lengths [56]. LSB Replacement, LSB Random Replacement,

LSB Matching, LSB Random Matching methods were used to embed data. Results

show that RS steganalysis method is mostly effective for LSB Replacement method.

LSB Random Matching method is the most resistant method to RS steganalysis. This

steganalysis method can guess about %50 length of hidden message with large

message sizes, encoded using LSB Random Matching method.

 68

CHAPTER 6

6EXPERIMENTAL RESULTS

In this chapter, the effect of encoding and compression methods for hidden message,

and LSB embedding methods are tested.

6.1 Coding and Compression Algorithms

S-Tool4 [60], most known steganography tool, uses a compression algorithm.

S-Tool4 is referred as the best algorithm (when compared to TurkSteg, InfoStego,

Stego_LSB, Hermetic_Stego, F5, Hide and Seek) in Şahin‟s thesis [63]. In this part

we compared S-Tool4 with popular compression software WinRAR (uses LZMA2

algorithm), encoding algorithm Huffman.

Sample text file size is = 2768 bytes, Table 6.1 shows some different techniques to

reduce the data size.

Table 6.1 Rate of Gain Using Compression Algorithms

Method Compressed Size Rate of gain

S-Tool4 highest compression 1429 bytes %48.37

Winrar [62] highest compression 1308 bytes %52.78

Huffman encoding 1604 bytes %41.90

Huffman encoding + Winrar 659 bytes %76.20

 69

Using algorithms above ten random text files are compressed. Figure 6.1 shows the

compressed file sizes. Table 6.2 summarizes gains of algorithms.

Figure 6.1 Comparisons of Compression Algorithms

Table 6.2 Gain Results of Compression Algorithms

Total Size of Original Files 38046

Total Size of files after Huffman Encoding 22763

Gain of Huffman Encoding %40.1698

Total Size of files after S-Tool4 19852

Gain of S-Tool4 %47.8211

Total Size of files after Winrar 17541

Gain of Winrar %53.8953

Total Size of files after Huffman Encoding & Winrar 8573

Gain of Huffman Encoding & Winrar 77.4668

 70

6.2 Effects of Coding and Compression Algorithms with Different Embedding

Methods

This section, involves PSNR and MSE values for different LSB embedding methods.

As described in Chapter 3, higher PSNR values show that the difference between

stego image and cover image is less. So, Chan‟s method is the best way to embed

bits if only the LSB of pixel will be used to hide bit.

Table 6.3 PSNR and MSE Values for Different LSB Methods

Method File

Size

MSE

(R)

MSE

(G)

MSE

(B)

PSNR

(R)

PSNR

(G)

PSNR (B)

LS2B*1

Replacement
2768 0.2640 0.2710 0.2646 53.9155 53.8013 53.9041

LSB

Replacement
2768 0.1178 0.1165 0.1125 57.4181 57.4670 57.6194

LSB *2

Replacement
1308 0.0629 0.0646 0.0634 60.1473 60.0296 60.1127

STool4 1429 0.0612 0.0635 0.0615 60.2660 60.1041 60.2393

LSB*3

Matching
 659 0.0270 0.0263 0.268 64.6785 65.4094 63.9923

Chan*3 659 0.0239 0.0240 0.251 70.2866 72.3412 70.4148

*1LS2B, the last 2 bits of a pixel is used to hide bits.

*2 1308 bytes size of the same data after compression.

*3 659 bytes, after Huffman encoding and compression

As seen in Table 6.3 to minimize the data size, using Huffman encoding method and

LZMA2 algorithm for compression gives better results. LSB Matching method to

LSB of cover image‟s pixels causes the minimum changes on images.

Then, the question is where to embed data, randomly in all image or the edges? The

answer of this question depends on message size and cover image type. If the

message size is enough for edge embedding method, edge embedding can be used;

edge embedding method size also depends on used filter to find edges. How much

the distance between edges are closer each other, finding a threshold value and

hiding there, message will be harder. If the message size is high for edge embedding,

 71

randomly embedding method can be used to get a higher capacity with edge

embedding method.

After deciding where to hide data, image statistics must be recorded. While

embedding data in cover image, unused bits can be changed to be successful against

statistical analysis.

6.3 Embedding Efficiency of LSB Methods

Figure 6.1 shows the effects of modified pixel numbers and needed pixel numbers

for different LSB methods. Message length starts from 256 bits up to 4096 bits

increasing by 256 bits [16].

Figure 6.2 Modified Bits / Used Pixels LSB Embedding Methods

 72

Steganalysis methods can detect stego images if the image has at least 0.002 changes

over total pixel numbers [61]. So that, Table 6.3 shows needed total pixel number to

hide 1024 bits data using different LSB embedding methods.

Table 6.4 Needed Pixel Number to Hide 1024 Bits with LSB Methods

Method Replacement Matching Chan* 2/3 Efficient Embedding Hamming**

Needed Pixel 256000 192000 170500 288000 58140

Modified Pixel 512 384 341 384 113.5

*Embedding Efficiency for Chan‟s method is 3/1

**Used data in Table 4.8 for Matrix Embedding using Hamming Codes

 73

CHAPTER 7

7CONCLUSION

This thesis explains some steganography methods for still images and their analysis.

There are different techniques to hide data in still images depending on cover image

format. Mostly, LSB embedding methods for uncompressed or lossless compressed

image formats are explained. Remembering the purpose of steganography is to cause

minimum changes in cover image to hide maximum data. These LSB embedding

methods are analyzed. Also, location of embedded bits is important to robust

steganalysis techniques. So, random embedding and edge embedding methods are

described. How statistical analysis methods can be successful to find out stego

images are explained.

There are several techniques to defeat steganalysis methods. But it is hard to be

successful for all known attacks. For example, a developed method may give good

results after RS analysis; however it may be detectable for SPA or etc. method. For a

good steganography technique, first step is to select right cover image. Minimizing

changes in cover image is another important part. So, before hiding message in cover

image secret message should be compressed.

The best algorithm that is mentioned in this thesis is the Chan‟s Method when the

size of message is large and the transmission channel is secure. If the transmission

 74

channel is not secure to avoid steganalysis methods, Matrix embedding using

Hamming code may be preferred.

 R 1

REFERENCES

[1] Petitcolas, F. A. P., Anderson, J. R., Kuhn, G. M. (1999), “Information

Hiding A Survey”, Proceedings of the IEEE, special issue on protection of

multimedia content, Vol.87 No.7 1062-1078.

[2] Simmons, G. (1984), “The Prisoners' Problem and the Subliminal Channel",

CRYPTO83 Advances in Cryptology, 51-67.

[3] Kharrazi, M., Sencar, H., Memon, N. (2004), “Image Steganography:

Concepts and Practice”, Lecture Notes Series, National University of

Singapore.

[4] Kipper, G. (2004), “Investigator's Guide to Steganography”, Auerbach

Publications.

[5] Kessler, G. C. (2002), “Steganography: Hiding Data within Data”, Windows

& .NET Magazine.

[6] http://www.jjtc.com/stegdoc/sec202.html

[7] Kessler, G. C. (2004), “An Overview of Steganography for the Computer

Forensics Examiner”, Forensic Science Communication, Vol.6 No.3.

[8] Diskin, P., et. al. (2004), “Steganography and Digital Watermarking”, The

University of Birmingham.

[9] Sui, X., Luo, H., Zhu, Z. L. (2006), “A Steganalysis Method Based on the

Distribution of First Letters of Words”, International Conference on

Intelligent Information Hiding and Multimedia Signal Processing.

 R 2

[10] http://www2.gsu.edu/~wwwesl/egw/jones/differences.htm

[11] http://w2.eff.org/Privacy/printers/docucolor

[12] http://en.wikipedia.org/wiki/Microdot

[13] http://en.wikipedia.org/wiki/Steganography

[14] http://thomas.gloeckler-ulm.de/fhu-old/www/stego.html

[15] Westfeld, A., Wolf, G. (1998), “Steganography in a Video Conferencing

System”, Proceedings of the Second International Information Hiding

Workshop, Vol.1525, 32-47.

[16] Olcay, C., Saran, N. (2010), ”İmge İçine Bilgi Gizlemede Kullanılan LSB

Yöntemlerinin Karşılaştırması”, 3. Mühendislik ve Teknoloji Sempozyumu.

[17] Fridrich, J., Goljan, M., Du, R. (2001), ” Reliable Detection of LSB

Steganography in Color and Grayscale Images”, Proceedings of the 2001

workshop on Multimedia and security: new challenges, 27-30.

[18] Morkel, T., Eloff, J., Olivier, M. (2005), ”An Overview of Image

Steganography”, Proceedings of the Fifth Annual Information Security South

Africa Conference.

[19] http://en.wikipedia.org/wiki/Grayscale

[20] http://local.wasp.uwa.edu.au/~pbourke/texture_colour/colourspace

[21] http://www.scantips.com/palettes.html

[22] http://www.jpeg.org/jpeg2000

[23] http://www.scantips.com/basics09.html

 R 3

[24] http://www.w3.org/TR/PNG

[25] Wang, Z., Bovik, A. (2009), “Mean Squared Error: Love it or Leave it? A

New Look at Signal Fidelity Measures”, IEEE Signal Processing Magazine

Vol.26, 98-117.

[26] Gupta, G., Aggarwal, H. (2009), “Digital image Watermarking Using Two

Dimensional Discrete Wavelet Transform, Discrete Cosine Transform and

Fast Fourier Transform”, International Journal of Recent Trends in

Engineering, Vol.1, No.1.

[27] Parthasarathy, A. (2007), “Improved Content Based Image Watermarking”,

IEEE Broadcast Technology Society Vol.53, 468-479.

[28] http://www.dpreview.com/learn/?/Glossary/Digital_Imaging/

Histogram_01.htm

[29] http://rsbweb.nih.gov/ij

[30] http://www.zlib.net/feldspar.html

[31] http://www.ou.edu/class/digitalmedia/articles/

CompressionMethods_Gif_Jpeg_PNG.html

[32] http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz77.html

[33] http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html

[34] http://marknelson.us/1989/10/01/lzw-data-compression

[35] Huffman, D. (1952), “A Method for the Construction of Minimum

Redundancy Codes”, Proceedings of IRE, Vol.40, No.9, 1098-1101.

[36] Wu, D. C., Tsai, W. H. (2003), "A Steganographic Method for Images by

Pixel Value Differencing", Pattern Recognition Letters, Vol.24, 1613–1626.

 R 4

[37] Johnson, N. F., Katzenbeisser, S. (2000), ”A Survey of Steganographic

Techniques”, Information Hiding Techniques for Steganography and Digital

Watermarking, ISBN-13: 978-1580530354, 43-78.

[38] Chan, C.S., Chang, C.C. (2007), "A Survey of Information Hiding Schemes

for Digital Images", IJCSES International Journal of Computer Sciences and

Engineering Systems, Vol.1, No.3.

[39] Mielikainen, J. (2006), “LSB Matching Revisited”, IEEE Signal Processing

Letters, Vol.13, No.5, 285-287.

[40] Chan, C.S. (2009), ”On Using LSB Matching Function for Data Hiding in

Pixels”, Fundamenta Informaticae, Vol.96, 49–59.

[41] www.sti.uniurb.it/events/fosad08/slides/ker-slides-part2.pdf

[42] Fridrich, J., Soukal, D. (2006), ”Matrix Embedding for Large Payloads”,

Security, Steganography, and Watermarking of Multimedia Contents VIII.

Proceedings of the SPIE, Vol.6072, 727-738.

[43] Fridrich, J., Lisonek, P., Soukal, D. (2007), “On Steganographic

Embedding Efficiency”, Proceedings of the 8th Information Hiding

Conference, Lecture Notes in Computer Science Vol.4437, 282-296.

[44] Amin, M.M., et. al. (2003), “Steganography: Random LSB Insertion Using

Discrete Logarithm”, Proceedings of the 3rd International Conference on

Information Technology in Asia, 234–238.

[45] Signh, M.K., et. al. (2007), "Hiding Encrypted Message in the Features of

Images", IJCSNS International Journal of Computer Science and Network

Security, Vol.7, No.4.

[46] Westfeld, A. (2001) “F5-a Steganographic Algorithm: High Capacity

Despite Better Steganalysis”, Proceedings of the 4th International Workshop

on Information Hiding.

[47] Bender, W., et. al. (1996), "Techniques for Data Hiding", IBM Systems

Journal, Vol.35, No.3-4, 313-336.

 R 5

[48] Kawaguchi, E., Eason, O. (1999), "Principle and Applications of BPCS-

Steganography", Proceedings of SPIE The International Society Vol.3528,

464-473.

[49] Beaullieu, S., Crissey, J., Smith, I. “BPCS Steganography”, University of

Texas.

[50] Martin, F., Stripf, H.S. (2005), "Visual Steganalysis of LSB-Encoded

Natural Images", Proceedings of the 3rd International Conference on

Information Technology and Applications (ICITA'05) Vol.2, 746-751.

[51] Westfeld, A., Pfitzmann, A. (2000), “Attacks on Steganographic Systems:

Breaking the Steganographic Utilities EzStego, Jsteg, Steganos, and S-Tools–

and Some Lessons Learned”, 3rd International Workshop on Information

Hiding.

[52] http://www.guillermito2.net/stegano/tools/index.html

[53] Fridrich, J., Du, R., Meng, L. (2000), “Steganalysis of LSB Encoding in

Color Images”, Proceedings IEEE International Conference on Multimedia

and Expo, New York City, NY.

[54] Fridrich, J., Goljan, M., Du, R. (2001), “Reliable Detection of LSB

Steganography in Grayscale and Color Images”, Proceedings. of the ACM

Workshop on Multimedia and Security, Ottawa, Canada, October, 27-30.

[55] Dumitrescu, S., Wu X., Wang, Z. (2003), “Detection of LSB Steganography

via Sample Pair Analysis”, IEEE Transactions on Signal Processing, Vol.51,

No.7, 1995-2007.

[56] Manoharan, S. (2008), “An Empirical Analysis of RS Steganalysis”, the 3rd

International Conference on Internet Monitoring and Protection, 172-177.

[57] Fridrich, J., Goljan, M. (2002), ”Practical Steganalysis-State of the Art”,

Proceedings of the SPIE Photonics West, Vol.4675, 1-13.

 R 6

[58] Luo, X., Liu, F. (2007), “A LSB Steganography Approach Against Pixel

Sample Pair Steganalysis”, International Journal of Innovative Computing,

Information and Control, Vol.3, No.3, 575-588.

[59] Zhang, T., Ping, X. (2003), “Reliable detection of LSB steganography based

on the difference image histogram”, Proceedings of the IEEE ICSAAP, Part

III, 545-548.

[60] ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/s-tools4.zip

[61] Ker, A.D. (2004), “Quantitative Evaluation of Pairs and RS Steganalysis”

Security, Steganography, and Watermarking of Multimedia Contents VII.

Proceedings of the SPIE, Vol.5306, 83-95.

[62] http://www.win-rar.com

[63] Şahin, A. (2007), “Görüntü Steganografide Kullanılan Yeni Metodlar ve Bu

Metodların Güvenilirlikleri”, Ph.D. Thesis, Edirne University.

[64] http://www.cs.auckland.ac.nz/compsci708s1c/lectures/jpeg_mpeg/jpeg.html

[65] http://www.opennet.ru/docs/formats/jpeg.txt

 A 1

APPENDIX A

A. JPEG Lossless and Lossy Compression

1.1 Lossless Compression

Lossless encoding, used for JPEG, gives around 2:1 compression on image. Each

color channel is encoded separately. Three pixel values and selection values give the

prediction value. Difference of actual value and prediction value, and selection value

is stored using Huffman encoding or arithmetic operations to encode pixel value of X

[64].

Table A.1 Lossless Compression

Pixels

 C B

 A X

Selection Value Prediction

0 No Prediction

1 A

2 B

3 C

4 A+B-C

5 A+((B-C)/2)

6 B+((A-C)/2)

7 (A+B)/2

 A 2

1.2 Lossy Compression

JPEG image format uses DCT method to compress the image and to reduce the data

size. Firstly, if an image format is RGB, it is converted to YCbCr color space,

consists of two chroma components (Cb: Blue/Yellow and Cr: Red/Green), and one

luma channel which represents brightness of image (Y). Figure A.2 shows Y, Cb,

and Cr color spaces of an image and Figure A.1 shows the RGB color cube and

YCbCr color space. The transformation between YCbCr and RGB is based on the

following equations.

RGB to YUV Conversion

Y = + 0.299R + 0.587G + 0.114B

Cb = + 0.492(B Y) = - 0.147R - 0.289G + 0.436B

Cr = + 0.877(R Y) = + 0.615R - 0.515G - 0.100B

YUV to RGB Conversion

B = 1.164(Y - 16) + 2.018(U - 128)

G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)

R = 1.164(Y - 16) + 1.596(V - 128)

 A 3

7 7

0 0

1 (2 1) (2 1)
(,) () () (,) cos cos

4 16 16

for 0,...,7 and 0,...,7

1/ 2 for 0
where ()

1 otherwise

x y

x u y v
f u v C u C v f x y

u v

k
C k

Figure A.1 (a) RGB Color Cube (b) YUV Color Space

Figure A.2 Y,Cb, and Cr Color spaces of Image

Second step is to divide the image to 8x8 pixel blocks to apply DCT to each of the

three color spaces.

(A.1)

The transformed 8x8 block has 64 DCT coefficients. The first coefficient F(0,0) is

the DC component which is the sum of other 64 coefficients multiplied by 1/8 from

equation (A.1) for u=0, v=0. Other 63 coefficients are AC component. To quantize

 A 4

(,)
(,)

(,)
q

F u v
F u v Round

Q u v

the transformed coefficients is the next step. Each transformed coefficients is divided

by the corresponding quantization parameter and rounds to nearest integer.

(A.2)

 Different quantization matrixes can be selected to compress image depending on

wanted quality of image. Figure A.3 and Figure A.4 are the quantization tables for

quality 50 and 10. To have another table with different quality, multiply matrices, for

Quality50, 50/quality level, then reconstruct matrices between 1 and 255 for out of

range values.

Figure A.3 Quantization Table Quality %50

Figure A.4 Quantization Table Quality %10

 A 5

This process removes the high frequencies in the original image. The HVS is much

more sensitive to lower spatial frequencies than higher frequencies. Next step is to

use zigzag sorting (Figure A.5). This process traverses the 8x8 DCT coefficients in

order of increasing the spatial frequencies and gives lots of consecutive zeroes.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure A.5 Zigzag Ordering

Zero Run Length Coding of AC coefficient, encodes quantized vector with

consecutive zeroes.

If the quantized vector is;

13, 7, 0, 0, 0, 4, 0, 18, 0, 0, 0, 0, 3, 54, 0, …, 0

RLC Encoded;

 (0,13); (0,7); (3,4); (1,18); (4,3); (0,54);…

First number represents the number of 0 before second number.

DC coefficients are usually larger value than AC coefficients and they have close

connection between adjacent blocks. So, Jpeg stores the differences between the DC

coefficients of block i and DC coefficient of block i-1. Both of differences of DC

coefficients and RLC encoded AC coefficients are encoded using Huffman encoding.

After adding quantization factor, scale factors and Huffman tables to header

 A 6

information, compression is completed. Below, decompression procedure is

described.

How to decode JPEG images:

1. Remove header info and quantization factors.

2. Extract data from Huffman encode bit stream.

3. Scale each coefficient by the inverse 'quantization' factors.

4. Prepare the coefficients for IDCT in 8x8 blocks.

5. IDCT each coefficient block.

6. Put the 8x8 pixel blocks into the image buffer.

7. Scale up the CbCr components.

8. Convert the YCbCr components into an RGB image.

Figure A.6 IDCT Formula

 A 7

Original (192 kb)

JPEG Quality 100 (58,6 kb)

 JPEG Quality 80 (13,7 kb)

JPEG Quality 40 (7,34 kb)

Figure A.7 Compressed JPEG Images

Table A.2 MSE, PSNR, WPSNR Values of JPEG Images

 MSE

(red)

MSE

(green)

MSE

(blue)

PSNR

(red)

PSNR

(green)

PSNR

(blue)

PSNR

(grayscale)

WPSNR

(grayscale)

b/c 18,6239 13,3884 24,2249 35,4301 36,8635 34,2882 37,78 58,4624

b/d 47,8736 37,4377 61,1845 31,3326 32,3977 30,2644 33,11 49,8402

 A 8

APPENDIX B

B. Curriculum Vitae

Personal Information

Surname, Name : OLCAY, Cem

Nationality : Turkish

Date of Birth : 29/11/1983

Birth Place : İzmir (Turkey)

Marital Status : Single

Phone : +90 532 374 5132

E-Mail : cem_olcay@hotmail.com

Education

2008 - 2010 : M.Sc., Computer Engineering, Çankaya University

2001 – 2006 : B.Sc., Computer Engineering, Çankaya University

Work Experience

2007 - : Olsea Security and Automation

2005 August – September : MMC Engineering (Internship)

2004 August – September : MMC Engineering (Internship)

Languages

Turkish : Native

English : Advanced

Hobbies

Basketball, Archery, Rafting

