
REPRESENTING DEPENDENCIES
AND

DEPENDENCY STRUCTURE MATRIX
BASED VISUALIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ÇANKAYA UNIVERSITY

BY

OĞUZHAN YÜCETÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

THE DEPARTMENT OF COMPUTER ENGINEERING
SEPTEMBER 2010

iv

ABSTRACT

REPRESENTING DEPENDENCIES AND DSM BASED VISUALIZATION

Yücetürk , Oğuzhan

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Mehmet R. Tolun

Co-Supervisor: Dr. Ersin Elbaşı

September 2010, 59 pages

This work presents an approach to general definition and identification of the types

of dependencies with the object oriented perspective. Also the Unified Modeling

Language (UML) way of dependency representation is investigated. In the second

part of the thesis the dependency structure matrix (DSM) methodology is

introduced and aspects of DSM are shown. For the purpose of representing

dependencies a basic application is developed. The application uses main

partitioning algorithms for the implementation of DSMs.

Keywords: Dependency Representation, Object Oriented Programming, UML,
 DSM, Algorithm

v

ÖZ

BAĞIMLILIK GÖSTERİMİ VE DSM TABANLI GÖRSELLEŞTİRME

Yücetürk , Oğuzhan

Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Prof. Dr.Mehmet R. Tolun

Ortak Tez Yöneticisi: Dr. Ersin Elbaşı

Eylül 2010, 59 sayfa

Bu çalışmada, genel bağımlılık tanımı ve bağımlılık tipleri belirlenmesi nesne

tabanlı perspektif yaklaşımıyla sunulmuştur. Ayrıca bağımlılığın UML gösterimi

incelenmiştir. Tezin ikinci bölümünde DSM metodolojisi takdim edilerek, bu

yöntemin değişik yönleri gösterilmiştir. Bağımlılık gösterimi amacıyla bir

uygulama geliştirilmiştir. Belirtilen uygulama, DSM gerçekleştirmesi için temel

bölümleme algoritmalarını kullanmaktadır.

Anahtar Kelimeler: Bağımlılık Gösterimi, Nesne Tabanlı Programlama, UML,
 DSM, Algoritma

vi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Mehmet R.

Tolun and co-supervisor Dr. Ersin Elbaşı for their guidance, advices, criticism,

encouragements, and insight throughout the research.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ... iii

ABSTRACT.. iv

ÖZ .. v

ACKNOWLEDGMENTS .. vi

TABLE OF CONTENTS... vii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS... xi

CHAPTERS:

1.INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation.. 2

1.3 Objective .. 3

1.4 Thesis Outline .. 3

2.THEORETICAL BACKGROUND.. 5

2.1 Dependency Features ... 5

2.1.1Definition of Dependency.. 5

2.1.2Classification of Dependency .. 7

2.1.3Attributes Which Describe a Dependency ... 9

2.1.4Dependency Type Hierarchy.. 11

3.OBJECT-ORIENTED PROGRAMMING ... 12

3.1 Object-Oriented Software Engineering.. 12

3.1.1Paradigms... 12

3.1.2The Four Principles of Object-Orientation .. 13

3.1.3Objects, Components, Patterns, Architectures, Frameworks......................... 14

3.2 Object-Oriented Dependency... 15

3.2.1Software Component Ontology ... 18

viii

4.DEPENDENCIES IN UML.. 20

4.1 Object-Oriented Dependency... 20

4.2 The Unified Modeling Language (UML) .. 22

4.2.1Concepts of the UML 2.0... 22

4.2.2Dependencies ... 24

4.2.3UML Characteristics With Respect To Dependency 28

5.DESIGN STRUCTURE MATRICES .. 30

5.1 Basic Concepts ... 30

5.2 Dependencies ... 31

5.3 Types of DSMs .. 33

5.4 Roles of DSMs ... 36

5.4.1 Project Management Tool... 37

5.4.2 System Analysis Tool ... 37

6.DSM-BASED VISUALISATION.. 38

6.1 Reading, Partitioning, Clustering... 38

6.1.1 Reading a DSM... 38

6.1.2 Partitioning a DSM ... 39

6.1.3 Clustering a DSM ... 40

6.1.4 Numerical DSMs .. 41

6.2 Representing Dependencies Using DSMs ... 43

6.3 Related Work ... 47

6.4 Lattix LDM .. 47

6.5 NDepend .. 49

6.6 DeMatrix .. 49

7.DSM INTERFACE IMPLEMENTATION .. 51

7.1 Algorithms ... 51

7.2 DSM Interface Component .. 56

8.CONCLUSIONS AND FUTURE WORK ... 58

8.1 Conclusions .. 58

8.2 Future Work ... 59

REFERENCES...R1

APPENDIX... A1

CURRICULUM VITAE ... A1

ix

LIST OF TABLES

Table 2-1 Dependency Attributes .. 10

Table 3-1 Types and Relations Defined in SCO.. 18

Table 4-1 UML Relationship Types [13, 14]... 24

Table 4-2 Kinds of Dependencies .. 26

Table 5-1 Four different types of data that can be represented in a DSM [33].......... 35

Table 6-1 Importance Ratings.. 42

x

LIST OF FIGURES

Figure 2-1 Multidimensional Space of Dependencies [16].. 8

Figure 2-2 Dependency Type Hierarchy [6] .. 11

Figure 4-1 Example of Class and Object ... 23

Figure 4-2 Dependencies.. 28

Figure 5-1 Sequential relationship (Dependent) .. 32

Figure 5-2 Parallel relationships (Concurrent)... 32

Figure 5-3 Coupled relationships (Interdependent) ... 33

Figure 5-4 A taxonomy of DSM types according to Browning[32, 33] 34

Figure 6-1 Sample DSM .. 39

Figure 6-2 Example of Partitioning ... 40

Figure 6-3 Example of Clustering.. 41

Figure 6-4 Sample Packages .. 44

Figure 6-5 Sample DSMS Package Level.. 45

Figure 6-6 Sample DSMS Class Level .. 46

Figure 6-7 Sample DSMS Method Level... 46

Figure 6-8 Lattix LDM Eclipse plug-in showing a DSM for Apache Ant 47

Figure 6-9 DeMatrix applet displaying a DSM for the source code of JAPAN 50

Figure 7-1 An example directed graph and its corresponding adjacency matrix....... 52

Figure 7-2 Reachability matrix .. 53

Figure 7-3 Original DSM... 57

Figure 7-4 Optimized and partitioned DSM .. 57

xi

LIST OF ABBREVIATIONS

CQL Code Query Language

DSM Dependency Structure Matrix

DSM Design Structure Matrix

JAPAN Java Package Analyzer

NDEPEND Microsoft .Net Dependency Management Tool

NDSM Numerical Dependency Structure Matrix

LDM Lightweight Dependency Model

OMG Object Management Group

OO Object Oriented

SCO Software Component Ontology

UML Unified Modeling Language

1

CHAPTER I

INTRODUCTION

This chapter gives a short introduction to the thesis. First, some background

information about the software dependency concept is provided. Then motivation

for the thesis and the objective will be given. Also outline of the thesis will be

discussed.

1.1 Background

Several smaller elements are put together for building software systems. In an

excellent model, each element (component, object, function i.e. any subsystem or

code unit) works clearly with its defined functionality and in harmonization with the

other parts of the whole system.

Usually, none of the parts of the system creates the functionality directly. Rather,

each part contributes an aspect of the functionality and depends on other parts to

provide other aspects. However, each new element complicates the system

structure, making it harder to document and test. [9]

Since, software development architecture models are evolving from simple

programming units to high level complex systems, the identification of

dependencies becomes increasingly important. Dependency analysis has many

applications in software engineering activities including software understanding,

design, development, testing, debugging, and maintenance.

2

Many principles and techniques for managing software dependencies have been

developed to control and increase the changeability of the software. The key benefit

these techniques and tools give software that is more clear, better formed and easier

to maintain and debug.

1.2 Motivation

Dependency management is essential for a couple of reasons. The original purpose

of dependency analysis is to better ensure the quality of software, and in particular

warn about possible structural problems early on. Dependency management can

also facilitate other management activities such as fault management, accounting

management or tailorability management. [1]

Dependency management is fundamental because it directly impacts the

changeability and testability of the system. A system where many subsystems are

co-dependent quickly becomes difficult to change because every modification

potentially requires rebuilding and retesting of all the subsystems. [9]

Sound dependency management supports coordination and communication among

involved parties. It requires that efforts are made to know and to keep track of

dependencies, throughout the lifecycle of a software product. Moreover, it means

that opportunities for improved modularization, resulting in dependency

minimizations are detected, evaluated and pursued at various development stages.

[26]

In summary, it is of vital importance that developers know well what their code

relies on and how and why it does so. This emphasizes the importance of

dependency management for software development.

“For want of a nail, the shoe was lost.
For want of a shoe, the horse was lost.
For want of a horse, the rider was lost.
For want of a rider, the battle was lost.
For want of a battle, the kingdom was lost,
And all for the want of a horseshoe nail.”

3

1.3 Objective

The objectives of this thesis are twofold. The first goal of this thesis is to investigate

the dependency concept from the perspective of software engineering and defining

the concept of dependency and, secondly, exploring dependency structure matrices

(DSM) for the purpose of analysis of software products.

DSM-based support tools for software development offer new opportunities

because DSMs communicate information on prevailing dependencies in a clear and

concise way. Furthermore, it is expected that DSM visualizations can facilitate the

identification of opportunities for dependency minimizations. [26]

1.4 Thesis Outline

The remainder of the thesis is structured as follows:

Theoretical definitions of concept of dependency will be given in chapter 2. The

chapter is intended as introduction for basic concepts and classification of

dependency concept.

Chapter 3 gives an introduction to theories behind Object-Oriented Software in

general. In this chapter the thesis is focused on OO dependency and describes some

of the different forms it can take.

Chapter 4 introduces briefly the benefits of modeling and the role of Unified

Modeling Language (UML) in conceptual design. UML semantics of relationships

with the representations of dependency types will be defined.

Chapter 5 presents a thorough introduction to DSM. The DSM literature and basic

concepts for DSM will be defined. Also, DSM types and main roles will be

investigated.

4

Chapter 6 elaborates DSM visualization topics and some examples for the

simplicity of understanding the DSM concept will be given. A couple of different

software tools for DSM will be described. It is not an extensive tool evaluation, but

rather a brief summary of tools will be given.

Chapter 7 implements an application to support the visualization of DSMs and

optimization of system dependencies by using the partitioning algorithm.

In Chapter 8, the thesis ends with the summary and conclusions part including

important conclusions from this study. Finally, the future possible work related with

this study will be given.

5

CHAPTER II

THEORETICAL BACKGROUND

This chapter consists of theoretical definitions of concept of dependency and its

associated terms. Related literature which will introduce the basic concepts and

theoretical views relevant for the thesis are presented. Here is a brief overview of

the chapter: First, main features of the dependency concept will be analyzed. In the

subsections the definition, classification, attributes and hierarchy of the dependency

concept will be extended.

2.1 Dependency Features

The aim of this section is to discuss the main characteristics of the concept of

dependency.

2.1.1 Definition of Dependency

There is much related work concerning concept of dependency, and a wide range of

mechanisms have been proposed to analyze the dependencies of entities in a

system. [31]

In the present literature, an actual definition and characterization of a dependency is

usually avoided, and it is difficult to separate the discussion of the dependency from

the particular domain of interest. [5]

In the dictionary the meaning of words dependence and dependent are given as

follows [12]

6

“Dependence 1: the quality or state of being dependent; esp.: the quality or state of
being influenced or subject to another …”

“Dependent 2 a: determined or conditioned by another: contingent b: relying on
another for support c: subject to another’s jurisdiction …”

Cox, et. al. [5, 6] starting from this point, proposes an English language definition

of a dependency, influenced by the view that is interested in observable attributes:

A dependency is a relationship involving two or more elements where a change of

state in one or more elements leads to a potential for a change of state in one or

more other elements.

Dependencies are ubiquitous in a computer system. As an example, consider an

Internet browser used in a typical desktop computer. Several dependencies

associated with it can be identified [6]:

 Access to a web server depends on the network hardware in the computer,

application layer support, and Internet services;

 The operation of a picture viewer is dependent upon security settings (e.g.,

picture files must have read permission);

 The browser is dependent upon the operating system for various services

such as saving files, obtaining fonts, etc.

 The operating system is dependent upon a mouse and keyboard for its input

Interoperability and intercommunication is now being provided by different

technical specifications and disciplines such as networks, software development,

application integration, and human to machine interfaces. [31]

Abstractly, software architecture involves the description of elements from which

systems are built, interactions among those elements, patterns that guide their

composition, and constraints on these patterns. In general, a particular system is

defined in terms of a collection of components and interactions among these

7

components. Such a system may in turn be used as an element in a larger system

design. [18]

Usually, a group of components depend on each other in order to supply complex

system functionality. Any modification to a component can cause the change of

composite functionality. In addition, the replacement of a new version component

will also cause the change of dependency between components. [20]

2.1.2 Classification of Dependency

The second activity is the classification of dependencies. In order to compare the

different approaches towards classification of dependencies, specific research

papers will be analyzed in detail.

In the paper “The coordination of dependencies” the authors mention various types

of dependencies and their corresponding coordination process. They define the

coordination of dependencies as a management task. The analogy is made to a well-

coordinated basketball team. The team moves transparently in a coordinated

fashion, and the players seem to move automatically, but their movements are inter-

related. What one member of the team does or does not do affects the team as a

whole. [30]

In human systems, hierarchical dependencies are found in the way people organize

their activities, such as in an enterprise. In computer systems, many examples of

dependencies such as in distributed systems can be seen. They are in a hierarchy of

dependent modules so the system can collaborate properly.

In [1] authors presented the different occurrences of dependencies between

components in distributed applications. The first group comprehends syntactical

dependencies, where a communication between two components actually takes

place (Event Flow, Data Flow, and Functional Dependency). The second group is

8

also based on a syntactical level, but without direct communication between the

dependent components (Implicit Dependencies). The latter group of dependencies

finally describes semantic properties between components.

Keller, et. al. [16] states that since dependencies come in different flavors and have

varied characteristics, dealing with them in a systematic way can be facilitated by

classifying them into groups with similar properties. According to Keller, et. al. a

dependency, from the viewpoint of classification, has the following characteristics

in Figure 2-1:

In [19], the authors introduces the forms of software dependencies as Source code

dependencies occur when distinct packages rely on the same original code, usually

through files. Such dependencies may not be explicitly manifested at run-time;

however, they are important since changes to the code still risk breaking the

dependent packages. A common and desirable example of a pure source

dependency without an explicit run-time dependency is the use of abstract

interfaces.

Binary dependencies occur when a program or a library depends on another library.

Figure 2-0-1 Multidimensional Space of Dependencies [16]Figure 2-1 Multidimensional Space of Dependencies [16]

9

Embedded dynamic dependencies are made common by certain programming

models: object factories, embedded interpreters, dynamic loading, and configurable

internal services for example. These are of course mostly good design and decrease

coupling. The flexibility becomes a dependency when a client package uses hard-

coded literal strings (or other such constants) in its use of these services, such as

loading an explicit library by name. In functional terms and from the testing point

of view, the source is as inflexible as if the dependency was a more conventional

source dependency, and ought to be considered as such in the examination of that

package.

Knowledge dependencies occur when one part of the program makes assumptions

about what the other parts do. Common forms are read/write data dependencies or

communication through shared data. Multi-threaded applications have many other

synchronization issues. Assumptions about structure layouts, object sizes, virtual

function table layouts and those made when in lining code are also implicit

knowledge. If there is too much such knowledge in many places, the system may

become fragile.

In [23] author states that a software system may be structured in many different

ways depending on the problem domain, design methodology, and implementation

environment. But almost all software systems have components that are identifiable

as data items, data types, subprograms, or source files.

2.1.3 Attributes Which Describe a Dependency

In [5, 6], the approach aims at discovering and focusing on the very ambitious

attempt to produce what might be called an ontology of dependencies. This includes

both the identification of a set of attributes which apply to every dependency and

the development of a general dependency type hierarchy based upon those

attributes.

Attributes are shown with general definitions in Table 2-1. [5, 6, 16]

10

Table 2-1 Dependency Attributes

Feature Definition Possible Values
Need The need on which the dependency is

based. Is usually represented as a list
of required capabilities.

Authorization
Resources Provided
Testing

Criticality A measure of the importance of this
dependency to the success of the
“dependent” entity.

Not Applicable
High
Medium
Low

Frequency A measure of the frequency of the
need/criticality – how often does the
need/importance influence operation?
A numeric value representing how
often the dependency exists during a
particular time period.

Daily
Hourly
Yearly

Impact Possible repercussions of failure at this
dependency.

None
Mission
Compromised
Information-
Unreliable
Performance-
Degraded
Corruption/Loss of
Information/
Communication

Sensitivity How vulnerable is this dependency to
compromise or failure?

Fragile
Moderate
Robust

Stability A measure of the continuity over time
of the dependency’s vulnerability to
compromise or failure. One way of
looking at stability is to ask the
question: “When is the dependency
fragile/moderate/etc?”

Very-Stable
Infrequent
Periodic
Certain-Defined-
Times

Cardinality How many entities are involved? Independent
Binary
N-ary

Direction How are the entities involved? Symmetric
Anti-symmetric
Asymmetric

2.1.4 Dependency

Once a complete set of dependency attributes is identified, it will then be possible to

establish a type hierarchy, resembling a lattice, based upon those attributes and their

values. Using this hierarchy, specific types of dependency are characterized and

related to each other, and dependency types can be chosen to be applicable to

particular domains. Eventually, it should be possible to fully populate the

dependency type hierarchy based u

Figure 2

11

ependency Type Hierarchy

Once a complete set of dependency attributes is identified, it will then be possible to

establish a type hierarchy, resembling a lattice, based upon those attributes and their

g this hierarchy, specific types of dependency are characterized and

related to each other, and dependency types can be chosen to be applicable to

particular domains. Eventually, it should be possible to fully populate the

dependency type hierarchy based upon the attributes identified. [5

Figure 2-2 Dependency Type Hierarchy [6]

Once a complete set of dependency attributes is identified, it will then be possible to

establish a type hierarchy, resembling a lattice, based upon those attributes and their

g this hierarchy, specific types of dependency are characterized and

related to each other, and dependency types can be chosen to be applicable to

particular domains. Eventually, it should be possible to fully populate the

5]

12

CHAPTER III

OBJECT-ORIENTED PROGRAMMING

In this chapter, state-of-the-art methodologies from Object-Oriented Software

Engineering and analyze the dependency concept of OO programming will be

reviewed. An overview of the paradigms of current object-oriented methodologies

will be provided. OO dependency will be introduced and described some of the

different forms it can take. The way of how dependency is expressed implicitly and

explicitly and the usage of dependency will be analyzed. Also, the ontology

development methodology for Software Component Ontology will be defined in

terms of the object-oriented programming design concepts.

3.1 Object-Oriented Software Engineering

3.1.1 Paradigms

The basic assumption of Object-Orientation is that any problem domain can be

described in terms of things or entities, which have behavioral characteristics that

represent what an entity “does”, and structural characteristics that represent what an

entity “is” and how it relates to other entities. According to this view, entities with

common characteristics can be grouped into classes. The ancient Greek’s Theory of

Forms, which shares many ideas with Object-Orientation, states that arranging

entities into classes (or Forms) is an important way of achieving well-founded

knowledge of the world. In other words, “to know the Form of a thing is to

understand the nature of that thing”. The Theory of Forms suggests that Object

Orientation is a natural and intuitive way of analyzing and modeling a problem

domain.

13

Object-Orientation is close to our own natural perception of the real world [17]. The

contemporary view of software development takes an object-oriented perspective.

In this approach, the main building block of all software systems is the object or

class.

Simply put, an object is a thing, generally drawn from the vocabulary of the

problem space or the solution space; a class is a description of a set of common

objects. Every object has identity (name it or otherwise distinguish it from other

objects), state (there's generally some data associated with it), and behavior (do

things to the object, and it can do things to other objects, as well). [2, 17]

3.1.2 The Four Principles of Object-Orientation

Object-Orientation is founded on the following principles:

Abstraction is the formulation of models by focusing on similarities and differences

among a set of entities to extract relevant common characteristics, ignoring those

aspects that are not relevant to the current purpose. The main goal of abstraction is

managing complexity.

Encapsulation (often referred to as Information Hiding) facilitates abstraction, by

hiding the details of a design decision in a packaged model element. An entity

exposes what it is through a specification (or interface), and describes how it is

realized by means of an internal implementation. Encapsulation keeps related

content together, with the goal of reducing the cost of change.

Inheritance is a mechanism for expressing similarity among entity classes. It allows

relating, reusing, and extending representations. The goal of inheritance is to reduce

duplication and to prevent inconsistencies.

Polymorphism means that different model elements can have the same

specification, but different implementations. This means that the same message can

14

trigger different operations, depending on the class of the target entity.

Polymorphism allows extending existing models with new elements, without having

to change the elements that are already in the model.

These principles aim at capturing the world’s complexity into maintainable models.

The paradigms of encapsulation and polymorphism reduce the cost of change, and

– together with abstraction and inheritance – support the management of

complexity. The following subsection will introduce the concepts that implement

these four principles in the domain of Software Engineering. [17]

3.1.3 Objects, Components, Patterns, Architectures, Frameworks

Object-Orientation regards structural and behavioral characteristics of entities as

complete units. For that purpose, object-oriented models are centered around

objects, which represent (abstractions of) items, persons, or notions. An object

describes its structural characteristics by means of attributes and associations (or

relationships), and exposes its behavioral characteristics through operations (or

services). Objects communicate with each other by passing messages, which cause

the recipient to perform an operation, and to return a result to the sender. All objects

are grouped into classes, which are arranged in an inheritance hierarchy.

Related to classes, the concept of components is fundamental to modern object

oriented systems. A component is a reusable building block which can be (visually)

plugged together with other components. For that purpose, a component exposes a

list of properties and services that other components can link to. Although

components are often implemented by a single class, they might also encompass

multiple classes. The most widely used libraries of components contain graphical

user interface elements like buttons, labels, and lists.

Besides the low-level modeling elements like objects and components, object-

oriented methodologies also provide mechanisms to describe larger structures and

best-practices. The so-called Design Patterns document recurring solutions to

15

common problems. Patterns have a context in which they apply and must balance a

set of opposing consequences or forces. Patterns capture modeling experience from

which others may learn, and provide a vocabulary (or Pattern Language) which

allows communicating and discussing design decisions on a high level of

abstraction.

Related to architectures is the notion of frameworks. A framework is a collection of

several components with predefined co-operations between them. Frameworks

allow reusing not only code but architectural design and therefore playing an

important role in rapid software development. [17]

3.2 Object-Oriented Dependency

In OO systems, there are important dependences among different objects, such as

packages, classes, methods and other code unit in the systems. These dependencies

include relationships, contracts and collaborations among objects. These

dependencies are determined by different building mechanisms of object-oriented

systems: reuse, delegation, data encapsulation, dynamic binding, inheritance and

polymorphism. Although these mechanisms represent advantages of object-oriented

systems, the maintainers of object-oriented systems must cope with several

problems. The most important is that not all these dependencies are explicit in the

system.

In any OO system it is widely accepted as good practice to keep the number of

interconnections and dependencies between objects to a minimum. The more

connections there are then the harder it is to make changes to part of a system

without affecting other parts of it. [10]

According to [10] there are two main kinds of dependency within an object-oriented

program:

16

Functional dependencies refer to procedures or sections of code that are called from

other sections of code. Variable dependencies occur when the attributes contained

within objects affect the behavior of the code.

Dependencies also have scope, they may be embedded within a function or method,

they may be local to a particular object or they may have remote dependencies that

extend across modular boundaries. [10] and [38] gives the definition and two main

types, respectively explicit dependency and implicit dependency.

From OO perspective dependency is defined as an object A depends upon another

object B, if it is possible that a change to B implies that A is affected or also needs

to be changed.

Explicit Dependency: A dependency between two or more objects is explicit when it

is precisely and clearly expressed without ambiguity in the source code, i.e., the

definition of a direct subclass.

Implicit Dependency: A dependency between two or more objects is implicit when

it can be recognized but is not expressed directly in the source code, i.e., the chain

of super-classes of a new defined class.

Generally speaking, the dependencies among objects are not all explicit in OO

systems. The existence of these implicit dependencies is followed by undesirable

characteristics, such as a poorly structured source code, missing or incomplete

design specifications, non-existing or out of date documentation, and a high level of

redundancy or extremely complex modules. Discovering these dependencies is

important if any change is performed in the code.

Furthermore, these meaningful dependencies are determined by different building

mechanisms, such as reuse, delegation, data encapsulation, dynamic binding,

inheritance and polymorphism. In addition to section 3.1.2

17

• Class inheritance is the mechanism to define a new class in terms of one or more

parent classes. It means that the behavior and data associated with child classes are

always an extension of the properties associated with parent classes. A subclass has

all the properties of the parent class and others as well. Example: The definition of a

class in terms of one or more super-classes is an explicit dependency meanwhile all

the chain of super-classes and inherited behavior and state of a class is an implicit

dependency.

• Delegation is the mechanism that lets an object delegate to another object

whatever behavior the first cannot handle. Example: The delegation of behavior in a

method is an explicit dependency meanwhile all the chain of delegates is an implicit

dependency.

• Dynamic binding is the mechanism to select lately the method until execution

time. It has two main aspects: to determine the object (and the type) and to look up

in the chain of super-class for the method. Example: The method lookup made by a

chain of super classes is an implicit dependency.

• Data encapsulation is the mechanism to hide the implementation details of classes

from users. Users can only invoke the visible methods of classes without knowing

how they are implemented.

• Polymorphism describes a variable which refers to a class only known at run time.

The polymorphism is shown as: (1) a variable holding a value drawn from a group

of types, (2) a name associated with several different method bodies, and (3) a

single method with polymorphic variables as parameters. [2, 38]

In [21] author says that a “Good Dependency” is a dependency upon something that

is very stable. The more stable the target of the dependency, the more “Good” the

dependency is. By the same token a “Bad Dependency” is a dependency upon

something that is instable. The more instable the target of the dependency is, the

more “Bad” the dependency is.

18

3.2.1 Software Component Ontology

The author of [38] introduces, Software Component Ontology (SCO) which

includes components that summarized from the code comprehension point of view.

SCO aims to describe the design of software, to represent software design patterns

and related concepts using the concepts developed in that ontology, and to provide a

flexible framework for software engineers.

SCO mainly specifies the code structure from the implementation point of view.

SCO describes relationships between object-oriented software components

(programs that contain namespaces, which contain classes, abstract classes and

interfaces, which contain methods and method signatures). Relationships captured

include, for example, that an object-oriented class may implement an interface,

extend a super class, contain methods, and have membership in a namespace.

Software component ontology is defined to represent the programming elements

and their relationships in the source code. Software components normally consist of

namespace, packages, modules, classes and so on. Some relation among software

components are summarized in Table 3-1.

Table 3-1 Types and Relations Defined in SCO

Relation Description

is-a
Give the type of an artefact as one of: namespace, class, interface,
method, or variable.

definedIn SourceObject A is defined in SourceObject B.

hasSuper Class A has super Class B.

name
Relates an artefact to its unqualified name, for example the
namespace eHL.Util has name Util.

hasSub Class A has sub Class B.

scope
Indicates the scope with which the artefact is defined, i.e. public,
private or protected.

call Method A calls Method B.

indirectCall Transitive relation of method call.

19

Table 3-1 (Cont’d)

access Method A read/write Variable B.

In
Indicates the entity within which the artefact is defined. For a
method this is a class or interface, for a class or interface it is a
namespace, class or interface.

has-param Indicates that a method has an argument of a particular type.

Read Method A read Variable B.

write Method A write Variable B.

extends Indicates that a class extends another class.

implements Indicates that a class or interface extends an interface.

hasType Variable A has Type B.

typeOf Variable A is of Type B.

kind Classes and Interfaces are marked as either inner or not-inner.

create Class A creates instance of Class B.

20

CHAPTER IV

DEPENDENCIES IN UML

A common practice among software engineers is the use of diagrams for building

their system models. Graphical notations become useful for interacting with the end

users.

Models are used to describe business processes, to understand the current state of

the business, and to model new processes that do not exist but plan to create in the

future. Models help to depict business processes and their relationship with other

processes.

In this chapter, the benefits of modeling will be listed and the role of Unified

Modeling Language (UML) in conceptual design will be described. From the

perspective of dependency analysis UML way of dependency representation will be

provided. There are a variety of ways that dependency information is represented in

UML. UML semantics of relationships with the representations of dependency

types will be passed through. Then major advantages and drawbacks will be given

in section 4.2.3.

4.1 Object-Oriented Dependency

There are many elements that contribute to a successful software organization; one

common thread is the use of modeling. Modeling has been a cornerstone in many

traditional software development methodologies for decades. The use of object-

oriented modeling in analysis and started to become popular in the late 1980s,

producing a large number of different languages and approaches.

21

UML has taken a leading position in this area, partly through the standardization of

the language within the Object Management Group (OMG).

Modeling is a proven and well-accepted engineering technique. Architectural

models of houses and high rises to help their users are built to visualize the final

product. Even mathematical models are built in order to analyze the effects of winds

or earthquakes on the buildings. A model is a simplification of reality.

A good model includes those elements that have broad effect and omits those minor

elements that are not relevant to the given level of abstraction. Every system may be

described from different aspects using different models, and each model is therefore

a semantically closed abstraction of the system. A model may be structural,

emphasizing the organization of the system, or it may be behavioral, emphasizing

the dynamics of the system. There is one fundamental reason. Models are built so

that systems can be better understood.

Through modeling, these four aims are achieved.

1. Models help to visualize a system as it is or as want it to be.

2. Models permit to specify the structure or behavior of a system.

3. Models give a template that guides in constructing a system.

4. Models document the decisions.

Models are built for complex systems because such a system cannot be

comprehended in its entirety. There are limits to the human ability to understand

complexity. Through modeling, the problem is narrowed by focusing on only one

aspect at a time. This is essentially the approach of "divide-and-conquer" that

Edsger Dijkstra spoke of years ago: Attack a hard problem by dividing it into a

series of smaller problems that can be solved. Furthermore, through modeling, the

human intellect is amplified. A model properly chosen can enable the modeler to

work at higher levels of abstraction. [2, 25]

22

4.2 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general-purpose visual modeling

language that is used to specify, visualize, construct, and document the artifacts of a

software system. It captures decisions and understanding about systems that must be

constructed. It is used to understand, design, browse, configure, maintain, and

control information about such systems. It is intended for use with all development

methods, lifecycle stages, application domains, and media. The modeling language

is intended to unify past experience about modeling techniques and to incorporate

current software best practices into a standard approach. UML includes semantic

concepts, notation, and guidelines. It has static, dynamic, environmental, and

organizational parts. It is intended to be supported by interactive visual modeling

tools that have code generators and report writers. The UML specification does not

define a standard process but is intended to be useful with an iterative development

process. It is intended to support most existing object-oriented development

processes. [25]

4.2.1 Concepts of the UML 2.0

General UML concepts are used regularly, so they will be broadly described here,

before entering into more specific aspects of UML 2.0. These include the concept of

Class, object and relationships. [3]

Class is a category or group of items that have the same attributes (properties) and

the same behaviors (operations). Classes that do not have parents are called base

classes. Base classes can be both abstract and concrete meta-classes from the UML

meta-model [14].

A simple example of a Class is a Student. The class “Student” has some attributes

(e.g.: IDStudent, name, surname, dateOfBirth) and behaviors (e.g.:

IntroduceStudent(), UpdateStudent (), RemoveStudent()). Figure 4-1 shows the

graphical example of the class Student and its instance - the object Marie.

23

Thus, if a particular Student is indicated, for example, Marie, and its respective

attributes (010101-P111, Marie, Lee, 01/01/01), this is called object. Object is an

instance of a class, i.e., a specific thing that has specific values of the classes

attributes [3].

+Introduce()
+Update()
+Remove()

-IDStudent
-name
-surname
-dateOfBirth

Student

IDStudent = 01010101
name = Marie
surname = Lee
dateOfBirth = 01/01/01

Marie : Student

Class Student

Object of
Class Student

Figure 4-1 Example of Class and Object

There is a special type of class denominated abstract class. Abstract class is a class

that provides an operation signature, but no implementation [2]. These classes are

useful for identifying common functionality across several types of objects. For

example, an abstract class denominated Movable and one operation defined as

move(). Because the base class Movable does not have an implementation for

move(), the class is said to be abstract [2].

Classes are related to each other through relationships. Each UML relationship

represents a different type of connection between classes. There are different types

of relationships. Here the most used in metamodelling language have been listed

below. The most common relationships and their characteristics are provided in

Table 4-1. Table 4-1 shows the graphic representation and how to read the

relationships included in “<<>>” annotations [3].

24

Table 4-1 UML Relationship Types [13, 14]

Type of
Relationship

Graphical Representation Relationship
Characteristic

Dependency

A <<uses a >>B

Weakest relationship in
which one class uses
the knowledge of the
other class.

Association

A <<has a>> B

Indicate that one class
keeps a relationship
with another over an
extended period of
time.

Aggregation This is a stronger
version of association.
It implies ownership
and may imply a
relationship between
lifelines.

Composition

B << is part of >> A

It represents a very
strong
relationship, to the
point of containment,
i.e., it is used to capture
the whole-part
relationship

Generalization

B <<is a>> subclass of A

It represents an
inheritance relationship,
in which the subclass
inherits all features of
the parent and may add
its own.

4.2.2 Dependencies

A dependency indicates a semantic relationship between two or more model

elements. It relates the model elements themselves and does not require a set of

instances for its meaning. It indicates a situation in which a change to the supplier

25

element may require a change to or indicate a change in meaning of the client

element in the dependency.

The association and generalization relationships are dependencies by this

definition, but they have specific semantics with important consequences.

Therefore, they have their own names and detailed semantics. The word

dependency is normally used for all the other relationships that don’t fit the sharper

categories.

Table 4 - 2 lists the kinds of dependency found in the UML base model. A trace is a

conceptual connection among elements in different models, often models at

different stages of development. It lacks detailed semantics. It is typically used to

trace system requirements across models and to keep track of changes made to

models that may affect other models.

A refinement is a relationship between two versions of a concept at different stages

of development or at different levels of abstraction. The two concepts are not meant

to coexist in the final detailed model. One of them is usually a less finished version

of the other.

In principle, there is a mapping from the less finished concept to the more finished

concept. This does not mean that translation is automatic. Usually, the more

detailed concept contains design decisions that have been made by the designer,

decisions that might be made in many ways. In principle, changes to one model

could be validated against the other, with deviations flagged. In practice, tools

cannot do all this today, although some simpler mappings can be enforced.

Therefore a refinement is mostly a reminder to the modeler that multiple models are

related in a predictable way.

A derivation dependency indicates that one element can be computed from another

element (but the derived element may be explicitly included in the system to avoid a

26

costly re-computation). Derivation, realization, refinement, and trace are abstraction

dependencies - they relate two versions of the same underlying thing.

A usage dependency is a statement that the behavior or implementation of one

element affects the behavior or implementation of another element. Frequently, this

comes from implementation concerns, such as compiler requirements that the

definition of one class is needed to compile another class. Most usage dependencies

can be derived from the code and do not need to be explicitly declared, unless they

are part of a top-down design style that constrains the organization of the system

(for example, by using predefined components and libraries). The specific kind of

usage dependency can be specified, but this is often omitted because the purpose of

the relationship is to highlight the dependency. The exact details can often be

obtained from the implementation code. Stereotypes of usage include call and

instantiation. The call dependency indicates that a method on one class calls an

operation on another class; instantiation indicates that a method on one class creates

an instance of another class.

Table 4-2 Kinds of Dependencies

Dependency Function Keyword

access Permission for a package to access the contents of
another package

access

binding Assignment of values to the parameters of a
template to generate a new model element

bind

call Statement that a method of one class calls an
operation of another class

call

derivation Statement that one instance can be computed from
another instance

derive

friend Permission for an element to access the contents
of another element regardless of visibility

friend

import
Permission for a package to access the contents of
another package and add aliases of their names to
the importer’s namespace

import

instantiation Statement that a method of one class creates
instances of another class

instantiate

parameter Relationship between an operation and its
parameters

parameter

27

Table 4-2 (Cont’d)

realization Mapping between a specification and an
implementation of it

realize

refinement Statement that a mapping exists between elements
at two different semantic levels

refine

send Relationship between the sender of a signal and
the receiver of the signal

send

trace
Statement that some connection exists between
elements in different models, but less precise than
a mapping

trace

usage

Statement that one element requires the presence
of another element for its correct functioning
(includes call, instantiation, parameter, send, but
open to other kinds)

use

Several varieties of usage dependency grant permission for elements to access other

elements. The access dependency permits one package to see the contents of

another package. The import dependency goes further and adds the names of the

target package contents to the namespace of the importing package. The friend

dependency is an access dependency that permits the client to see even the private

contents of the supplier.

A binding is the assignment of values to the parameters of a template. It is a highly

structured relationship with precise semantics obtained by substituting the

arguments for the parameters in a copy of the template.

Usage and binding dependencies involve strong semantics among elements at the

same semantic level. They must connect elements in the same level of model (both

analysis and both design, and at the same level of abstraction). Trace and

refinement dependencies are vaguer and can connect elements from different

models or levels of abstraction.

The instance of relationship (a metarelationship, not strictly a dependency) indicates

that one element (such as an object) is an instance of another element (such as a

28

class). A dependency is drawn as a dashed arrow from the client to the supplier,

with a stereotype keyword to distinguish its kind, as shown in Figure 4.2. [20]

Figure 4-2 Dependencies

4.2.3 UML Characteristics With Respect To Dependency

In [6] authors describe the dependency considering the basic UML dependency

construct (denoted by a simple dashed arrow) as a “using” relationship indicating

directional links between elements (often classes). The meaning of this construct is

that element A uses element B, so that a change in class B may require or cause a

change to element B. This constitutes a dependency by our definition as well;

however, formal semantics relating to the dependency are still lacking. The

dependency construct may be considered to represent a general “functional

dependency” but it is not clear what a user of a UML diagram is supposed to do

with it. What constraints must therefore be observed? What additional meaning is

implied by the dependency? For simple traceability analysis, dependency arrows are

helpful in identifying where changes may be implied, but there is no further

guidance to a UML modeler as to what kind of changes the dependency implies, so

that the modeler needs to label the dependency arrows in a UML model with

additional information concerning the dependency type.

UML’s extensibility mechanisms can extend its notation; however, they do not in

general extend any semantics. There are other dependencies implicit in various

other UML diagrams. In fact, dependencies in UML are spread out over all of the

UML diagrams, and generally implicit. Each different kind of implicit dependency

has its own characteristics (e.g., presence or absence of transitivity) and set of rules.

29

This is not just a matter of inconvenience; it also means that for each construct there

exists a variety of differing interpretations, each one of which affects what the

dependency may mean. This makes sharing knowledge about the dependencies all

the more problematic.

Space does not permit to examine each construct in UML, but it is claimed that

most (if not all) of them do not possess inherent semantics and therefore are lacking

in sufficient power to represent dependencies for formal modeling. Further it is

claimed that there is no uniform representation for dependency in UML, nor is there

a way to specify dependency semantics beyond UML’s original semantics.

UML has the advantage of using multiple diagram types to model each aspect of a

system. This permits each diagram to be tuned to each aspect of a problem. The

difficulties are that a user must learn and master multiple types and their

appropriateness and syntax. Further, the relationship of one type of diagram to

another is defined only in informal senses, with the idea that each representation is

more or less orthogonal to the others. This makes it difficult to perform automatic

comparisons, inferences and queries.

UML’s characteristics with respect to dependency can be summarized as follows.

On the plus side, it possesses good generality in that its diagrams cover a wide

range of system characteristics and features. Its drawbacks are:

 no underlying built-in semantics for dependencies,

 several different ways to represent dependencies

 not overall formal semantic description that allows dependencies to fit

formally into a complete description.

30

CHAPTER V

DESIGN STRUCTURE MATRICES

A Dependency Structure Matrix (DSM) is a means of representing the interactions

between elements. In this chapter a thorough introduction to (DSMs) will be

presented. The main topics cover the origins and basic characteristics of DSMs. The

DSM literature and basic concepts for DSM will be built and DSM types and main

roles will be investigated.

5.1 Basic Concepts

The Dependency Structure Matrix (DSM) is a complexity management technique

that has proved to be valuable for managing, designing, modeling, analyzing and

optimizing technical systems, complex organizations, sizeable engineering projects,

densely networked processes and large market structures [27].

A Design Structure Matrix is a tool that can be used to model complex systems. A

DSM is a compact form for representing the dependencies in a system. The matrix

puts the units (parameters, subsystems, activities, tasks) and indicates the

dependencies among those.

Depending on the context, the dependency patterns can represent different aspects

of the system or project.

DSMs where first conceived by Donald Steward at General Electric in the late

1960s, but it took until 1981 before his work was published [7]. In his work

Steward proposed a novel method, called the Design Structure System, to manage

the complexity of large systems or engineering projects using DSMs.

31

Eppinger et al. [8] extended this model to capture more deeply the correspondence

between design structure and task structure in product development.

Despite being conceived as a project management tool, a DSM is an analysis and

design instrument that lends itself to a multitude of other applications across a wide

range of domains and disciplines. The interest for DSMs from computer science and

software development in particular is growing.

The DSM community maintains a portal website [27] which lists all publications

and all knowledge on the subject. The community meets at the annual International

DSM Conference [28] that has been sponsored by large corporations such as Boeing

and the BMW Group.

5.2 Dependencies

Consider a system that is composed of two elements - sub-systems (or

activities/phases): element "A" and element "B". A graph may be developed to

represent this system pictorially. The graph is constructed by allowing a vertex/node

on the graph to represent a system element and an edge joining two nodes to

represent the relationship between two system elements. The directionality of

influence from one element to another is captured by an arrow instead of a simple

link. The resultant graph is called a directed graph or simply a digraph. There are

three basic building blocks for describing the relationship amongst system elements:

parallel (or concurrent), sequential (or dependent) and coupled (or interdependent)

[37].

Sequential relationships imply that activities must be carried out in sequence, that

the output of one activity is required for the next. A must come before B, or B is

dependent of A, see Figure 5-1.

32

Figure 5-1 Sequential relationship (Dependent)

If activities are not dependent of each other they are independent and can be carried

out parallel to each other. In a matrix there would not be any marks to indicate

dependencies. See Figure 5-2.

Figure 5-2 Parallel relationships (Concurrent)

The complexity in a process occurs when activities become interdependent. C is

dependent on the output of B and B is dependent on the output of A but A requires

information from C. This is a clear example of iteration from C to A.See Figure 5-3.

33

Figure 5-3 Coupled relationships (Interdependent)

In the parallel configuration, the system elements do not interact with each other.

Understanding the behavior of the individual elements allows to completely

understanding the behavior of the system. If the system is a project, then system

elements would be project tasks to be performed. As such, activity B is said to be

independent of activity A and no information exchange is required between the two

activities. In the sequential configuration, one element influences the behavior or

decision of another element is a unidirectional fashion. That is, the design

parameters of system element B are selected based on the system element A design

parameters. Again, in terms of project tasks, task A has to be performed first before

task B can start. Finally, in the coupled system, the flow of influence or information

is intertwined: element A influences B and element B influences A. This would

occur if parameter A could not be determined (with certainty) without first knowing

parameter B and B could not be determined without knowing A. This cyclic

dependency is called "Circuits" or "Information Cycles". [37]

5.3 Types of DSMs

Tyson Browning [32, 33] distinguishes four different types of DSM applications,

based on the kind of data that is represented. He also introduced two main

categories static and time-based. Figure 5-4 shows taxonomy of the categories and

types of DSMs according to Browning.

34

In static DSMs the parameters represent the elements of a system that exist

simultaneously, such as components of product architecture or groups of people in

an organization. In time-based DSMs the parameters represent activities or

processes, and their ordering in the matrix indicates a flow through time, or in other

words, the chronological order in which they are to be carried out.

Figure 5-4 A taxonomy of DSM types according to Browning[32, 33]

DSMs are often processed with metrics or algorithms that analyze and/or restructure

the representation of a project or a system. In [33], Browning discusses each of the

four types of DSMs and their accompanying analysis methods using industrial

examples.

Component-based or Architecture DSMs are useful for modeling system

architectures, involving relationships and interactions among components or

subsystems and for facilitating appropriate decomposition strategies. Component-

based DSMs can be combined with clustering algorithms, which localize

dependencies by defining subsets of parameters with minimal external

dependencies. Such subsets are called clusters or chunks, but largely correspond to

the definition of modules.

35

Team-based, People-based or Organization DSMs are used to design integrated

organization structures based on (groups of) people and their interactions. These

DSMs can also be combined with clustering algorithms. Activity-based, Task-based

or Schedule DSMs are suited to model the information flow and other dependencies

among processes and their constituent activities. (Re)Sequencing methods can be

used to optimize the chronological order of the activities in activity-based DSMs

[33, 37]. An example of such an algorithm is partitioning, which transforms the

matrix into a nearly lower triangular form in order to minimize feedbacks (activities

that depend on activities in the future).

Finally, Parameter-based or Low-Level Schedule DSMs are aimed at modeling and

integrating low-level design decisions and processes based on physical design

parameter relationships. A noteworthy example can be found in the work of Black

et al. who applied parameter-based DSMs to an automobile brake system design

[29].

Table 5-1 Four different types of data that can be represented in a DSM [33]

DSM Data Types Representation Application Analysis
Method

Task-based Task/Activity
input/output
relationships

Project scheduling,
activity sequencing,
cycle time
reduction

Partitioning,
Tearing,
Banding,
Simulation and
Eigenvalue
Analysis

Parameter-based Parameter decision
points and
necessary
precedents

Low level activity
sequencing and
process
construction

Partitioning,
Tearing,
Banding,
Simulation and
Eigenvalue
Analysis

Team-based Multi-team
interface
characteristics

Organizational
design, interface
management, team
integration

Clustering

Component-based Multi-component
relationships

System
architecting,
engineering and
design

Clustering

36

5.4 Roles of DSMs

According to [27], a DSM is both a project management tool and system analysis

tool. In the role of a project management tool a DSM is primarily used to diagram

information flows in complex projects. As a system analysis tool DSMs are used to

analyze processes and architectures of products or organizations. However, there is

no clear boundary between both roles, as specific applications of DSMs can

combine them.

In these applications, DSMs represent the constituent stages, tasks or activities of an

engineering project, along with the corresponding dependencies. The dependencies

define the input which is required to start a certain activity and the generated output

that needs to feed into other activities. Both input and output represent pieces of

information. Hence, the pattern of dependencies in the DSM explicitly describes the

exchange of information that is vital to the project [27].

Traditional project management tools, such as PERT charts, Gantt charts and

Critical Path methods (CPM) were created to model and manage sequential and

parallel processes consisting of discrete tasks that make up large construction

projects. They capture work flow, often using pre and post conditions (e.g.: Which

tasks must be completed before task X can start?"), but do not to track the flow of

information (e.g.: Which pieces of information are needed before task X can

succeed?").

Compared to conventional project management tools, DSMs focus on representing

information flows rather than work flows. Therefore, the DSM method, which is

essentially an information exchange model, enables managers and product

development planners to deal with the complex relationships in large engineering

projects [37].

37

5.4.1 Project Management Tool

The Design Structure Matrix has its origins in project management and is still used

in that context by large corporations such as General Motors, Boeing, Airbus and

Intel. Project management applications of DSMs continue to receive interest from

the research community as well [37].

5.4.2 System Analysis Tool

DSMs can also be applied as a tool to analyze complex systems. Analyzed system

architectures can be for both tangible (e.g.: material products) and intangible things

(e.g.: projects or organizations). The compact and clear representation DSMs

provide facilitates the capturing and understanding of interactions,

interdependencies and interfaces between the elements of the system, such as

subsystems or modules. Moreover, the diagrams can highlight key processes and

enable engineers to discover previously unknown patterns in architectures. The

diagrams can also show where staff members fit in the larger project or organization

they are part of [37].

38

CHAPTER VI

DSM-BASED VISUALISATION

In this chapter the basic topics from a major resource the DSM website

(www.DSMweb.org) that includes lots of examples, cases, tutorial, references, and

computer macros to perform partitioning, tearing, clustering, and simulation will be

presented. It also contains links to other DSM researchers and research institutions.

And also, DSM visualization topics will be elaborated and some examples will be

given for the simplicity of understanding the DSM concept. In the last section

commercial and non commercial products are presented which uses DSM.

6.1 Reading, Partitioning, Clustering

6.1.1 Reading a DSM

The figure below shows a DSM model for the 14 major tasks. The X marks indicate

the existence and direction of information flow (or a dependency in a general sense)

from one activity in the project (represented by the overall matrix) to another.

Reading across a row reveals the output of a task by an X mark placed at the

intersection of that row with the column that bears the name of the receiving task.

Reading across a column reveals the input information flows to that activity to other

activities by placing an X in a similar manner described above. For example,

consider activity C in the above matrix. Activity C relies on information from

activities A and B, delivers information to activities D, E, F and G. The marks

(above the diagonal) thus represent the forward flow of information.

39

A B C D E F G H I J K L M N

A X X X X X

B X X X X

C X X X X

D X

E X X X

F X X

G X X X X

H X X X X

I X X X

J X

K X X

L X

M X

N
Figure 6-1 Sample DSM

The marks (below the diagonal) are of special significance. Such a mark reveals a

feedback from a later (i.e. downstream) activity to an earlier (i.e. upstream) one.

This means that the earlier activity may have to be repeated or reworked in light of

the late arrival of new information. Such an iterative process is common in most

engineering design and development projects. Design iterations create rework and

require extra communication and negotiation which result in a prolonged

development process. In order to speed up this iterative design process, the DSM

methodology suggests the manipulation of the matrix elements such that iterative

behavior is removed from the matrix, or at least minimized (a process called

Sequencing, Triangularization, Block Diagonalization, or Partitioning). [27]

6.1.2 Partitioning a DSM

The removal of iterations is referred to as sequencing or partitioning. The matrix is

divided in two sections by a diagonal line (each element intersecting itself). Every

mark in the upper triangle symbolizes iterations (See Figure 6.2). The DSM

rearranges the order in which tasks are carried out to move these marks to the lower

triangle (www.dsmweb.org). In Figure 6.2 the left matrix illustrate a fabricated

40

process with its dependencies. It also gives the order of when the tasks are issued. A

is the first task in the process, G is the last. This arrangement of activities has six

iterations, the largest spanning from G to B. The right matrix provides the optimal

solution obtained through a partitioning algorithm. By rearranging the order of tasks

(F-B-D-G-C-A-E) only two minor iterations remain.

A B C D E F G

A A . .

B B .

C . . C . .

D . D

E . E .

F F

G . . G

F B D G C A E

F F

B B .

D . D

G . . G

C . . . C .

A . A

E . . E

Figure 6-2 Example of Partitioning

Partitioning a DSM aims at finding the optimal order of activities. To do so the first

thing is to understand what components the project consists of. After this all of the

activities that make up each component are listed. When this is done one can start

looking on who does what and what time the activity takes (duration). The time

each worker spends on an activity must also be anticipated i.e. the workload. [15]

6.1.3 Clustering a DSM

A different method of analysis is by grouping elements that have the most

interaction into modules along the diagonal. These modules consist of both

sequential relationships and iterations. Tasks that share the most information should

be carried out in close proximity; this method is known as clustering (Figure 6.2).

The aim of clustering is significantly different from partitioning, the objective is to

increase iterations within the modules but remove any iteration between the

41

modules. Clustering is useful when dealing with representation of design

components or in shaping project development teams. Areas between clusters may

also contain dependencies. These areas are referred to as the interface between

clusters. Dependencies in the interface share information to at least two clusters and

must be carefully coordinated. They are the links between the modules. [4]

A B C D E F G

A A . . .

B B . .

C . C . .

D . . D . .

E . E

F . . F

G . . . G

A F E G B C G

A A . .

F . F .

E . E .

D . D . . .

B . B .

C . . C .

G . . . G

Figure 6-3 Example of Clustering

6.1.4 Numerical DSMs

In binary DSM notation (where the matrix is populated with "ones" & "zeros" or

"X" marks & empty cells) a single attribute was used to convey relationships

between different system elements--namely, the "existence" attribute which

signifies the existence or absence of a dependency between the different elements.

Compared to binary DSMs, Numerical DSMs (NDSM) could contain a multitude of

attributes that provide more detailed information on the relationships between the

different system elements. An improved description or capture of these

relationships provides a better understanding of the system and allows for the

development of more complex and practical partitioning algorithms.As an example,

consider the case where task B depends on information from task A. However, if

this information is predictable or have little impact on task B, then the information

42

dependency could be eliminated. Binary DSMs lack the richness of such an

argument. Possible attributes and measures that can be used:

 Level Numbers: Steward suggested the use of level numbers instead of a

simple "X" mark, for certain marks in the binary matrix. Level numbers

reflect the order in which the feedback marks should be torn. The mark with

the highest level number will be torn first and the matrix is reordered (i.e.,

partitioned or sequenced) again. This process is repeated until all feedback

marks disappear. Level numbers range from 1 to 9 depending on the

engineers judgment of where a good estimate, for a missing information

piece, can be made.

 Importance Ratings: A simple verbal scale can be constructed to

differentiate between different important levels of the "X" marks. As an

example, a 3-level scale can be defined as follows:

Table 6-1 Importance Ratings

Numeric Scale Meaning

1 High Dependency
2 Medium Dependency
3 Low Dependency

Some other attributes depend on the type of DSM used in the representation and

analysis of the problem. For example, in an Activity-based DSM, the following

measures can be used:

Dependency Strength: This can be a measure between 0 and 1, where 1 represents

an extremely strong dependency. The matrix can, now, be partitioned by

minimizing the sum of the dependency strengths below the diagonal.

Volume of Information Transferred: An actual measure of the volume of the

information exchanged (measured in bits) may be utilized in the DSM. Partitioning

of such a DSM would require a minimization of the cumulative volume of the

feedback information.

43

Variability of Information Exchanged: A variability measure can be devised to

reflect the uncertainty in the information exchanged between tasks. This measure

can be the statistical variance of outputs for that task accumulated from previous

executions of the task (or a similar one).

Probability of Repetition: This number reflects the probability of one activity

causing rework in another. Feedback relationships represent the probability of

having to loop back (i.e. iteration) to earlier (upstream) activities after a

downstream activity was performed, while feed-forward relationships can represent

the probability of a second-order rework following an iteration.

Impact strength: This can be visualized as the fraction of the original work that

has to be repeated should iteration occur. This measure is usually utilized in

conjunction with the probability of repetition measure, above, to simulate the effect

of iterations on project duration.

6.2 Representing Dependencies Using DSMs

An object-oriented system is composed of a collection of communicating objects

that cooperate with one another to achieve some desired goals. Similar objects form

classes, which provide the static description of the properties and behaviors that

their instances will have. Therefore, extracting, analyzing, and modeling

classes/objects and their relationships is of key importance in acquiring in-depth

understanding of object-oriented software systems. However, when dealing with

complex object-oriented systems, maintainers can easily be overwhelmed by the

large number of classes/objects and the high degree of interdependencies among

them [36]. A commonly used strategy to address the scalability problem is to

partition the set of all classes/objects into coarse-grained container entities and then

analyze their interrelationships.

While some modules in object-orientation, such as objects or methods, are apparent

as explicit units of code, this is not always true for others, such as packages or

44

namespaces. Most dependencies in object-orientation are explicitly defined, but

often by individual lines of code (e.g.: a method call or the specification of

inheritance relations in a class header), which makes them hard to track down.

However, a DSM-based visualization can display all modules in the same, explicit,

way and can offer a convenient overview of all dependencies, no matter where or

how they are defined.

Figure 6-4 shows such a method-class-package DSM series for a hypothetical piece

of object-oriented software.

As an example this section uses DSMs for analyzing the dependencies of the three

simple packages. Only direct dependencies are included on the method-level to

emphasize how higher level DSMs summaries the dependencies on lower levels

(i.e.: M-DSM sums method-level dependencies per ordered pair of classes and P-

DSM does so per ordered pair of packages).

Figure 6-4 Sample Packages

45

The UML diagram in Figure 6-4 only displays three packages with related classes

and methods for the simplicity the dependencies originating from the packages are

not shown. Now those dependencies to illustrate the summarizing process in the

DSM series shown in Figure 6-5 is used.

Method relationships, flow of message from one to the next is significant. At this

stage these are noted on a binary scale of 0 (no dependency exists) or 1 (a

dependency exists). All method-level dependencies are caused by method calls are

given an individual weight of 1.

Looking at M-DSM, the dependencies originating from Package C are caused by 7

method calls to 5 different methods (one is called 3 times from the same method).

Next, in C-DSM the 7 method calls target methods in 4 classes (respectively 3, 1, 2

and 1 times). Finally, in P-DSM the method calls from Package C target methods in

classes of both Package A and Package B (respectively 4 and 3 times). [26]

Package Level P-DSM

1 2 3

Package A 1 . 2

Package B 2 6 . 1

Package C 3 4 3 .
Figure 6-5 Sample DSMS Package Level

46

Class Level C-DSM

1 2 3 4 5

Class AX 1 . 1

Class AY

2 2 . 1

Class BX
3 1 3 . 1

Class BY 4 2 1 . 1

Class CX
5 3 1 2 1 .

Figure 6-6 Sample DSMS Class Level

Method Level M-DSM

1 2 3 4 5 6 7 8 9

MethodAX1 1 . 1

MethodAY1 2 1 . 1

MethodAY2 3 1 .
MethodAY3 4 1 . 1

MethodBX1 5 1 1 .
MethodBX2 6 2 . 1

MethodBY1 7 1 1 . 1

MethodCX1 8 1 1 1 .
MethodCX2 9 3 1 .

Figure 6-7 Sample DSMS Method Level

47

6.3 Related Work

Although the application of DSMs in support of software development is a fairly

recent phenomenon, other parties have conducted related research and created

similar tools. Three such tools, Lattix LDM and NDepend are discussed, which are

the most mature examples, and an experimental program called DeMatrix.[26]

6.4 Lattix LDM

Lattix, Inc. was the first company to release a commercial support tool for software

development which applies DSMs as abstract representations of software

implementations. The product is called Lattix LDM and is primarily promoted as a

tool for analyzing and managing large-scale software development projects. Lattix

LDM and its underlying methodology have been demonstrated in talks at

conferences and in a number of articles. A trial version have experimented with

Lattix LDM [26].

Figure 6-8 Lattix LDM Eclipse plug-in showing a DSM for Apache Ant

48

Lattix LDM reverse engineers Java, C/C++ and .NET code to DSM diagrams and

comes as a stand-alone application (for Windows or Linux) and as a plug-in for the

Eclipse development environment . Figure 6-6 shows a screenshot of the Eclipse

plug-in displaying a DSM visualization of the Apache Ant source code. [26]

The user interface of Lattix LDM uses a tree-based DSM visualization, which

aggregates classes per package level and allows packages to be collapsed and

expanded. While this was a source of inspiration for DSMBrowser, Lattix does not

offer the same level of detail, as it does not document dependencies below the level

of classes.[26]

Lattix computes package-level dependencies by summing class-level dependencies.

Class level dependency values (which are referred to as dependency strengths) are

numerical and can be configured to be knowledge-based on usage-based. The

available documentation lacks a formal explanation of both configurations, but as

far as the knowledge based configuration only takes into account which classes

know one another, while the usage-based configuration expresses the degree to

which classes use each other's functionality. Knowledge-based dependency

strengths seem to be limited to a scale from 0 to 2.

The usage-based configuration results in a much wider range of dependency

strengths and clearly provides a more detailed approximation of implementation

level dependencies. However, due to the lack of method-level dependencies, even

Lattix LDM's usage-based configuration fails to provide the same level of detail

DSMBrowser offers [26].

Other notable features of Lattix LDM include a number of dependency filtering

settings and the definition of design rules to capture and enforce architectural intent.

Software architects can create design rules with Lattix LDM to express the nature of

dependencies between subsystems or classes. Dependencies that violate such design

rules are then highlighted in the visualization. [26]

49

6.5 NDepend

NDepend, is another commercial software development tool that applies DSM

diagrams. It is a dependency management tool that is intended to facilitate

controlling the complexity, quality and evolution of source code. NDepend

exclusively targets the .NET software development platform and integrates with the

Microsoft Visual Studio IDE [26].

The tool analyses source code and compiled .NET assemblies to generate reports

and interactive graphical visualizations, based on tree-based DSMs and other

diagrams. It also includes over 60 predefined metrics to analyze different aspects of

software implementations. Moreover, it provides metaprogramming facilities by

means of an SQL-like query language called Code Query Language (CQL), which

allows users to write queries against the code structure of .NET applications and

which can be used to write custom metrics. [26]

6.6 DeMatrix

DeMatrix is a tool created by Sushil Bajracharya et al. at the University of

California, Irvine. It was developed in connection with a larger research project that

aims to create an infrastructure, named Sourcerer, for large-scale analysis of open

source code repositories. DeMatrix is a front-end for Sourcerer that visualizes

software using DSMs.

Currently DeMatrix is only available as a Java applet embedded on a demonstration

webpage http://mine7.ics.uci.edu/repo2/dsm.html. The applet displays DSM

visualizations of Java source code of various open source projects hosted at

SourceForge http://sourceforge.net. The screenshot in Figure 6-7, on the previous

page, shows the DeMatrix applet visualizing the code of the JAPAN project.

Figure 6-9 DeMatrix applet di

DeMatrix provides a basic, fairly static

no analysis features. The design parameters, which are confronted in the DSM,

correspond to Java classes. Modules, corresponding

yellow bordered boxes on the diagonal. The DSM is not tree

cannot be collapsed or expanded. The module level can be shifted to correspond to

a higher or a lower package level, which respectively results i

module boxes but does not otherwise alter the

50

DeMatrix applet displaying a DSM for the source code of JAPAN

DeMatrix provides a basic, fairly static visualization based on (binary) DSMs and

no analysis features. The design parameters, which are confronted in the DSM,

correspond to Java classes. Modules, corresponding to packages, are indicated using

yellow bordered boxes on the diagonal. The DSM is not tree-based so packages

cannot be collapsed or expanded. The module level can be shifted to correspond to

a higher or a lower package level, which respectively results in larger or smaller

module boxes but does not otherwise alter the visualization.

splaying a DSM for the source code of JAPAN

based on (binary) DSMs and

no analysis features. The design parameters, which are confronted in the DSM,

to packages, are indicated using

based so packages

cannot be collapsed or expanded. The module level can be shifted to correspond to

n larger or smaller

51

CHAPTER VII

DSM INTERFACE IMPLEMENTATION

In this chapter a tool to support the visualization of DSMs will be implemented and

optimization of system dependencies by using the partitioning algorithm. First some

well known algorithms will be introduced. Then the sample application developed

using C#.Net will be shown.

7.1 Algorithms

This section will present some graph representations that are commonly used in

computer science. Some methods for manipulating these data structures will also be

discussed. [22]

Adjacency Matrix: The digraph model of the dependency is a useful mathematical

construct for depicting the relationships between the objects, components or

methods, but is of little use for computational purposes. Hence, the graph must be

modeled by using a data structure that is simple to operate on by means of

programming. [22]

In mathematics and computer science, an adjacency matrix is a means of

representing which vertices of a graph are adjacent to which other vertices.

Specifically, the adjacency matrix of a finite graph G on n vertices is the n × n

matrix where the non-diagonal entry aij is the number of edges from vertex to vertex

52

j, and the diagonal entry aii, depending on the convention, is either once or twice the

number of edges (loops) from vertex i to itself. Undirected graphs often use the

former convention of counting loops twice, whereas directed graphs typically use

the latter convention.

There exists a unique adjacency matrix for each graph (up to permuting rows and

columns), and it is not the adjacency matrix of any other graph. In the special case

of a finite simple graph, the adjacency matrix is a (0, 1)-matrix with zeros on its

diagonal. If the graph is undirected, the adjacency matrix is symmetric. [11]

(Figure 7-1).

1 2 3 4 5 6

1 1 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

Figure 7-1 An example directed graph and its corresponding adjacency matrix

The parameter dependency graph that will be represented by an adjacency matrix

imposes unique restrictions on it, namely:

In case of a digraph representing a dependency structure, a self-loop on a node

would indicate that the corresponding item depend on itself an impossible situation.

Thus, the adjacency matrix of the digraph must have a zero trace vector (i.e. zero

elements on the main diagonal).

Between each two connected knowledge items a and b, there must be at most one

directed edge from a to b, and at most one from b to a. For each two elements a, b in

53

the graph, if there's a relationship between a and b such that a depends on b, then

the corresponding entry in the adjacency matrix M[a; b] = 1.Otherwise, M[a; b] = 0.

Reachability Matrix: While the adjacency matrix represents only the direct

connections between the nodes, it cannot show the indirect dependencies between

the items. The reachability matrix of a directed graph G with m nodes is a m x m

matrix R = (r(i, j)), where r(i, j) is a 1 if and only if there is a path from node i and

node j, otherwise the element is 0.

1 2 3 4 5 6 7 8

1 0 1 1 1 1 1 1 1

2 0 0 1 1 1 1 1 1

3 0 0 0 0 0 0 1 1

4 0 0 0 0 0 1 1 1

5 0 0 0 0 0 1 1 1

6 0 0 0 0 0 0 1 1

7 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0

Figure 7-2 Reachability matrix

It should be noted that while every digraph has a single reachability matrix, the

inverse is not true there might be graphs which share one and the same reachability

matrix, but are topologically different.

Warshall's Algorithm: A more efficient algorithm for calculating the reachability

matrix was originally presented in [35], and is usually referred to in literature as

Warshall's algorithm. From a programming point of view the algorithm is defined in

the following way:

 W = AdjacencyMatrix;
 for (k = 0; k <= n - 1; k++){
 for (i = 0; i <= n - 1; i++)
 {
 for (j = 0; j <= n - 1; j++)
 {
 W(i, j) = W(i, j) | (W(i, k) & W(k, j));
 }
 }}

54

Warren's Algorithm An improvement over Warshall's algorithm has been

proposed and proved in [34]. The algorithm is slightly more sophisticated, and

looks as follows:

 for (i = 2; i <= n; i++)
 {
 for (j = 1; j <= i - 1; j++)
 {
 if (M(i, j) == true)
 {
 for (k = 0; k <= n - 1; k++)
 {
 M(i, k) = M(i, k) | M(j, k);
 }
 }
 }
 }

 for (i = 1; i <= n - 1; i++)
 {
 for (j = i + 1; j <= n; j++)
 {
 if (M(i, j) == true)
 {
 for (k = 0; k <= n - 1; k++)
 {
 M(i, k) = M(i, k) | M(j, k);
 }
 }
 }
 }

Partitioning Algorithm

In [22] it is stated that a popular DSM partitioning method has been presented in

(Warfield, 1973). The algorithm presented is essentially a variation of the topology

sorting of a digraph, with one important difference the author uses the reachability

matrix to solve the dependency sequence, and cycles in the digraph are

transparently processed without special treatment. For acyclic digraphs, the

adjacency matrix is sufficient to partition the DSM correctly.

55

 private void PartitionDsm(BinaryMatrix ReachabilityMatrix)
 {
 int MatrixSize = ReachabilityMatrix.Count;
 SequenceCollection<int> ReachabilitySet = new
 SequenceCollection<int>(MatrixSize);
 SequenceCollection<int> AntecedentSet = new
 SequenceCollection<int>(MatrixSize);
 List<bool> ConsideredList = new List<bool>(MatrixSize);

 for (int i = 0; i <= MatrixSize - 1; i++)
 {
 ReachabilitySet.AddLevel(new List<int>());
 AntecedentSet.AddLevel(new List<int>());
 ConsideredList.Add(false);
 }

 for (int i = 0; i <= MatrixSize - 1; i++)
 {
 for (int j = 0; j <= MatrixSize - 1; j++)
 {
 if (ReachabilityMatrix(i, j) != 0)
 {
 ReachabilitySet(i).Add(j);
 AntecedentSet(j).Add(i);
 }
 }
 }

 int Unlabelled = MatrixSize;
 int CurrentLevel = 0;
 SequenceCollection<int> VarSequence = new SequenceCollection<int>();

 while (Unlabelled > 0)
 {
 VarSequence.AddNewLevel();

 for (int i = 0; i <= MatrixSize - 1; i++)
 {
 if (ConsideredList[i] == false &&
 NoDependencies(ReachabilitySet(i),
 AntecedentSet(i)) == true)
 {
 VarSequence.AddToLevel(CurrentLevel, i);
 }
 }

 RemoveDependencies(ReachabilitySet,
 VarSequence.Level(CurrentLevel));
 RemoveDependencies(AntecedentSet, VarSequence.Level(CurrentLevel));

 foreach (int CurrentObject in VarSequence.Level(CurrentLevel))
 {
 ConsideredList[CurrentObject] = true;
 }

 Unlabelled = Unlabelled –
 VarSequence.CurrentLevelCount(CurrentLevel);
 CurrentLevel = CurrentLevel + 1;
 }
 }
 }

56

1. Create a new partition level.

2. Calculate the reachability and antecedent sets R(s) and A(s).

3. For each element in the DSM, calculate the set product R(s)A(s).

4. If R(s)A(s) = R(s), add the elements to the current level.

5. Remove the elements from the list, and all references to it from the

 reachability and antecedent sets of all other elements.

6. Repeat from step 1, if the item list is not empty.

7.2 DSM Interface Component

The designed user interface manages interaction with the user for the purpose of

partitioning the original matrix. The application acquires data from the user as a

.cvs file and interprets events that are caused by user actions and finally displays the

resulting partitioned DSM.

For the specific process the ILNumerics.Net.dll library is obtained from an open

source project. The project source code is available from the link http://debris-

kbe.sourceforge.net/.

Below sample screen shots of the application are given. The blue squares indicate a

dependency that is satisfied by the current arrangement, while the red ones show

when an item depends on another that appears after it in the current view. The

alternating green and white background for the items in the DSM mark the separate

levels into which the DSM has been partitioned [22].

57

Figure 7-3 Original DSM

Figure 7-4 Optimized and partitioned DSM

58

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this study first, an introduction to dependency concept is worked out in great

detail. At this stage the perspective of OO concepts with UML considerations are

provided. In the second part of the study definitions of the terminology used for the

DSM basics, DSM based algorithms, representation details and related works are

provided. In the previous chapter a developed prototype is introduced with the main

algorithms used for the partitioning.

The application of the DSM to software, with modules playing the role of tasks, is

straightforward and yet appears to have several advantages over more widely used

dependency representations. The matrix representation itself scales better than box-

and line diagrams. The partitioning algorithms provide an automatic mechanism for

architectural discovery in a large code base. Partitioning eliminates cycles by

forming subsystems. The groupings and orderings recommended by these

algorithms can be applied straightforwardly to reorganize the code base so that its

inherent structure matches the desired structure. [24]

The main purpose of software engineering is to provide higher quality for the

products. And it can be concluded that the identification of dependencies is

important when scalability, performance, manageability, reuse, business context and

granularity are considered.

59

The DSM method supports a major need in engineering design management:

documenting information that is exchanged. The method provides visually powerful

means for capturing, communicating, and organizing engineering design activities

and architectural issues such as project team formation and product architecture.

[37]

8.2 Future Work

An area of future development may be the implementation of interactive tools that

is more flexible, with rule definitions and navigation properties. There are

commercial and non commercial reflectors developed for analyzing .NET

assemblies. A new DSM based component should be integrated with the current

reflectors. For the .Net environment, it should analyze dependencies with the

property of showing the source code which causes the dependency and representing

dependency structure matrix automatically.

R1

REFERENCES

[1] Alda, S., Won, M., and Cremers, A. B. (2003), Managing Dependencies in
Component-Based Distributed Applications, In Revised Papers From the
international Workshop on Scientific Engineering for Distributed Java
Applications (November 28 - 29, 2002). N. Guelfi, E. Astesiano, and G.
Reggio, Eds. Lecture Notes In Computer Science, vol. 2604. Springer-
Verlag, London, 143-154.

[2] Booch G, et. al. (1998), Unified Modeling Language User Guide, Addison
Wesley Massachusetts

[3] Carimo, R.G. , Evaluation of UML Profile for Quality of Service from the
User Perspective, M.S School of Engineering Blekinge Institute of
Technology, Ronneby Sweden

[4] Chaves, L.F.C.P (2008), Deployment of Mobile Systems Using Clustering
Techniques, Federal University of Pernambuco Department of Computer
Science

[5] Cox, L., Delugach, H. S., and Skipper, D. (2001), Dependency Analysis
Using Conceptual Graphs, Proceedings of the 9th International Conference
on Conceptual Structures, Palo Alto, CA

[6] Cox, L., Delugach, H. S., and Skipper, D., Representing Software
Component Dependencies Using Conceptual Graphs

[7] Donald V. Steward (1981), The Design Structure System: A Method for
Managing the Design of Complex Systems, IEEE Transactions on
Engineering Management, 28(3):71-74

[8] Eppinger, et. al. (1994), A Model-Based Method for Organizing Tasks in
Product Development, Research in Engineering Design 6 (1994): 1-13.

R2

[9] Garland J., Anthony R. (2003), Large-Scale Software architecture A
Practical Guide using UML, West SussexPO19

[10] Heron, T. (2002), Programming with Dependency, M.S, Department of
Computer Science University of Warwick, Warwickshire, U.K

[11] http://en.wikipedia.org/wiki/Adjacency_matrix

[12] http://www.merriam-webster.com/dictionary/

[13] Ian Graham , Alan Wills, UML Tutorial Trireme International Ltd

[14] J. Schmuller (2004), Teach Yourself UML in 24 Hours, Third Edition, Sams
Publishing

[15] Karl-Linus Blomberg et. al. (2005), Mapping of Relations and
Dependencies Using DSM/DMM-Analysis Casting Mold Manufacturing,
Internationel L A Handelshögskolan, Sweeden

[16] Keller, A. Blumenthal, U. and Kar, G. (2000), Classification and
Computation of Dependencies for Distributed Management, Proceedings of
the IEEE Symposium on Computers and Communication (ISCC 2000), IEEE
Computer Society

[17] Knublauch, H. (2002), An Agile Development Methodology for Knowledge-
Based Systems Including a Java Framework for Knowledge Modeling and
Appropriate Tool Support, PhD. Thesis, Universty of Ulm

[18] Krzysztof Czarnecki. (Oct. 1998), Generative Programming : Principles
and Techniques of Software Engineering Based on Automated Configuration
and Fragment-Based Component Models, Ph. D. thesis, Technische
Universitat Ilmenau, Germany.

[19] L. A. Tuura. (2003), Ignominy: Tool for Analyzing Software Dependencies
and for Reducing Complexity in Large Software System. In Proceedings of
the VIII International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, volume 502, pages 684–686

[20] L. Bixin. (2003), Managing Dependencies in Component-Based Systems
Based on Matrix Model, In Proceedings of NETObject-Days’03

R3

[21] MARTIN R. (1994), OO Design Quality Metrics - An Analysis of
Dependencies, Proc. of Workshop Pragmatic and Theoretical Directions in
Object-Oriented Software Metrics, OOPSLA’94

[22] Martin Tapankov (2009), Managing Dependencies In Knowledge-Based
Systems: A Graph-Based Approach, Thesis Work Product Development And
Materials Engineering, Jönköping University, Sweeden

[23] N. Wilde (August 1990), Understanding Program Dependencies, Software
Engineering, Institute Carnegie Mellon University, Report no: CM-26

[24] Neeraj Sangal et. al. (2005), Using Dependency Models to Manage Complex
Software Architecture, In OOPSLA '05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object Oriented Programming, Systems,
Languages, and Applications, pages 167-176. ACM Press, New York, NY,
USA

[25] Rumbaugh J. et. al. (1999), The Unified Modeling Language Reference
Manual, ADDISON-WESLEY Massachusetts

[26] Stevens, M. (2007), Design Structure Matrices for Software Development,
M.S Thesis, Faculty of Science Department of Computer Science, The Vrije
Universiteit Brussel

[27] The Design Structure Matrix Web Site (DSM Community Site).
http://www.dsmweb.org.

[28] The International DSM Conference.
http://www.dsm-conference.org

[29] Thomas A. Black et. al. (1990), A Method for Systems Design Using
Precedence Relationships: An Application to Automotive Brake Systems,
Working Paper WP #3208-90-MS, Leaders for Manufacturing Program, MIT
Sloan School of Management, Cambridge, MA, USA

[30] Thomas W. Malone and Kevin Crowston. (1994.), The Interdisciplinary
Study of Coordination, ACM Comput. Surv., 26(1):87–119

[31] Trigos, E.D. (2009) ,Service Dependency Analysis Based on Process Models
and Service Level Agreement, M.S Thesis, Dresden University of
Technology, Dresten

R4

[32] Tyson R. Browning, Mike Danilovic (2007), Managing Complex Product
Development Projects with Design Structure Matrices and Domain Mapping
Matrices, International Journal of Project Management 25 : 300–314

[33] Tyson R. Browning. (2001), Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions.,
IEEE Transactions on Engineering Management, 48(3):292 – 306

[34] Warren Jr., Henry S. (1975), A Modification of Warshall's Algorithm for
the Transitive Closure of Binary Relations, Communications of the ACM
18(4), 218-220.

[35] Warshall, Stephen (1962), A Theorem on Boolean Matrices, Journal of the
ACM 9(1), 11-12.

[36] Xinyi Dong et.al, System-level Usage Dependency Analysis of Object-
Oriented Systems, Software Architecture Group (SWAG), School of
Computer Science University of Waterloo

[37] Yassine, A. (2004), An Introduction to Modeling and Analyzing Complex
Product Development Processes Using the Design Structure Matrix (DSM)
Method, Quaderni di Management, no. 9.

[38] Zhang, Z. (2009), An Ontology-Based Reengineering Methodology for
Service Orientation, PhD. Thesis, Software Technology Research
Laboratory, De Montfort University

A1

APPENDIX

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Yücetürk, Oğuzhan
Nationality: Turkish (TC)
Date and Place of Birth: 19 April 1975, Çorum
Marital Status: Married
Phone: +90 312 289 12 09
email: oguzhan.yuceturk@gmail.com

EDUCATION

Degree Institution Year of Graduation
MS Çankaya Univ.Computer

Engineering, Ankara
2010

BS METU Electrical and Electronics
Engineering, Ankara

1998

High School Kayseri Science High School,
Kayseri

1993

WORK EXPERIENCE

Year Place Enrollment
2004 - Present FINTEK Senior Software Engineer
2002 - 2004 TUBITAK MAM Researcher
2000 - 2002 ERICSSON Network Configuration Engineer
1998 - 1999 PAMUKBANK Software Engineer

FOREIGN LANGUAGES

Advanced English

A2

COMPUTER SKILLS

System Knowledge : Windows XP
Programming Languages : C,C++, C#, Java, PHP, HTML
Application Software : Visual Studio.Net, Borland Builder, Rational Rose

 RT, Visio, Clear Case, Visual Source Safe, MS
 Office Applications, Business Objects Reporting
 Tool, Reflector

Database Applications : Oracle 10g, PL SQL Developer 7.0, MS Access

HOBBIES

Football, movies, reading.

	Page 1
	Page 1
	Page 1

