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Abstract: Propagation of stochastic electromagnetic beams through 
paraxial ABCD optical systems operating through turbulent atmosphere is 
investigated with the help of the ABCD matrices and the generalized 
Huygens-Fresnel integral. In particular, the analytic formula is derived for 
the cross-spectral density matrix of an electromagnetic Gaussian Schell-
model (EGSM) beam. We applied our analysis for the ABCD system with a 
single lens located on the propagation path, representing, in a particular 
case, the unfolded double-pass propagation scenario of active laser radar. 
Through a number of numerical examples we investigated the effect of local 
turbulence strength and lens’ parameters on spectral, coherence and 
polarization properties of the EGSM beam.    
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1. Introduction 

Over the past several decades, scalar partially coherent beams have found wide applications in 
optical projection, laser scanning, inertial confinement fusion, free space optical 
communications, imaging applications and nonlinear optics [1-9]. Gaussian Schell-model 
beam (GSM) is a conventional mathematical model for describing a typical scalar partially 
coherent beam whose spectral density and spectral degree of coherence are Gaussian 
functions  [10-11]. Generation and propagation of a scalar GSM beam in various media and in 
imaging and non-imaging optical systems are now well understood [12-19]. 

In the past decades the two important properties of light waves: coherence and polarization 
were studied separately (cf. [1], [20]). After the unified theory of coherence and polarization 
was formulated [21] it became evident that these properties are interrelated. Scalar Gaussian 
Schell-model (GSM) beams were then extended to electromagnetic domain (called EGSM 
beams) and studied in details [21-38].  

Propagation characteristics of different types of beams propagating in the turbulent 
atmosphere are of interest for optical communications, imaging and remote sensing 
applications [28, 33, 38-52]. In Refs. [28], [33] and [38] various statistical properties of 
EGSM beams propagating in the atmosphere have been studied. More importantly, it was 
found that under suitable conditions the EGSM beams may have reduced levels of intensity 
fluctuations (scintillations) compared to the scalar GSM beams (i.e. fully polarized GSM 
beam) [38], which makes them attractive for free-space optical communications.  

In practice, atmospheric propagation is often combined with the passage of the beam 
through optical elements located within the transmitter or receiver system as well as anywhere 
in between. In such situations the ABCD matrix approach is used to characterize the effect of 
the optical elements on the beam [53]. To our knowledge no results have been reported up 
until now on propagation of EGSM beams through such systems operating in turbulence. In 
fact, little attention was paid even to interaction of laser beams with these systems [54-56] 
(see also [40]).   

In this paper, we analyze various phenomena arising on propagation of an EGSM beam 
through a paraxial ABCD optical system in a turbulent atmosphere by deriving relating 
analytic formulas. To illustrate the usefulness of our analytic results we apply them to the case 
when the ABCD system consists of a single lens which may be located anywhere between the 
source and the receiving system [see Fig. 1(a)]. Such example may also be used for study of 
reflection of a beam from a mirror target in a bistatic mode [see Fig. 1(b)], the problem that 
was studied previously only in the framework of scalar theory [57]. We will pay special 
attention to spectral properties, and the states of coherence and polarization in such systems.  
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2. Theory 

Within the validity of the paraxial approximation, propagation of a laser beam through an 
astigmatic ABCD optical system situated in the turbulent atmosphere can be studied with the 
help of the following generalized Huygens-Fresnel integral [54-56] 

   

( ) ( )

1 11/ 2

1 1 1
1 1 1 1 1 1 1 1 1

( , ) ( ,0)
[det( )]
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2
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∞ ∞
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where det stands for the determinant of a matrix, ( ) ( )1 1,0  and ,E E lr ρ  are the electric fields of 

the laser beam in the source plane (z=0) and the output plane (z=l), respectively. 

( ) ( )1 1 1 1 1 1 and T T
x yx y ρ ρ= =r ρ with 1r  and 1ρ  being the position vectors in the source 

plane and output planes, ( )1 1,Ψ r ρ  is the Rytov perturbation being the random part of the 

complex phase of the beam induced by atmospheric fluctuations, λπ /2=k  is the wave 
number, λ  is the wavelength of light. Here we note that ,  and A B,C D are the 2 2×  sub-
matrices of the astigmatic optical system [58, 59], satisfying the following Luneburg relations 
that describe the symplecticity of an astigmatic optical system [60] 

1 1 1 1 1 T 1( ) ,     ( ) ( ),    ( ) .                          (2)T T− − − − − −= − = − =B A B A B C DB A DB DB  

Denoting the optical fields at the two arbitrary points 1 2,r r in the source plane by 

1 2( ), ( )E Er r and the optical fields at the two arbitrary points 1 2,ρ ρ  in the output plane by 

1 2( ), ( )E Eρ ρ , respectively, we may write the expressions for the cross-spectral density in the 

source and output planes as:  

     
1 2 1 2 1 2 1 2( , , 0) ( ,0) ( ,0) ,  W( , , ) ( , ) ( , )W E E l E l E l∗ ∗= =r r r r ρ ρ ρ ρ .                 (3) 

Here “< >” denotes ensemble average. Using Eqs. (1) and (3) we find that the cross-spectral 
density of a scalar partially coherent beam propagating through a general astigmatic optical 
system is given by the expression  
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where “*” denotes the complex conjugate. The expression in the angular brackets in Eq. (4) 
can be expressed as [5, 42, 43, 54-55] 
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0ρ  being the coherence length of a spherical wave propagating in the turbulent medium given 

by the expression [54-56] 

( ) 3/5
1/ 2 2 2 5/6

0 0
Det[ ] 1.46 Det[ ( )] ,                                     (6)

l

nk C z dzρ
−

= ∫B B  

Here ( )zB  is the sub-matrix for back-propagation from output plane to propagation distance z 
[54-56], and 2

nC is the structure constant of turbulent atmosphere. Here, following [42-56], we 

have applied the Kolmogorov turbulence spectrum and a quadratic approximation for wave 
structure function. 

(C) 2008 OSA 29 September 2008 / Vol. 16,  No. 20 / OPTICS EXPRESS  15837
#96769 - $15.00 USD Received 29 May 2008; revised 30 Aug 2008; accepted 12 Sep 2008; published 22 Sep 2008



After some arrangement Eq. (4) can be expressed in the tensor form as 
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I being a 2 2×  unit matrix. In the absence of turbulence (
0ρ → ∞ , i.e., 2 0nC = ), 0=�P , Eq. 

(7) reduces to the generalized Collins formula for treating propagation of a partially coherent 
beam through a general astigmatic ABCD optical system in free space [16]. Due to its 
generality, Eq. (7) can be used to investigate the paraxial propagation of any partially coherent 
beam through a general astigmatic ABCD optical system in a turbulent atmosphere. 
        Now we apply Eq. (7) to study propagation of an EGSM beam through a general 
astigmatic ABCD optical system in a turbulent atmosphere. The second-order statistical 
properties of the EGSM beam can be characterized by the 2 2×  cross-spectral density 

matrix 1 2W( , ,0)r r
�

 specified at any two points with position vectors 1r  and 2r  in the source 

plane with elements [21-25] 
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Here Aα , ( ) *expB B i Bαβ αβ αβ βαφ= = , ασ  and αβδ  are independent of position but, in 

general, depend on the frequency. In Eq. (9) and everywhere else in this paper we have 
omitted the dependence on the oscillation frequency for conciseness. The nine real parameters 

xA , yA , xσ , yσ , xyB , xyφ , xxδ , yyδ  and xyδ  entering the general model are shown to 

satisfy several intrinsic constraints and obey some simplifying assumptions (e.g. the phase 

difference between the x- an y-components of the field is removable, i.e. 0αβφ =  [29,30]. 

The elements of the cross-spectral density matrix in Eq. (9) can alternatively be expressed in 
the following tensor form [16, 27]  
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Substituting from Eq. (10) into Eq. (7), after some vector integration and tensor operations, 
we obtain (see Appendix A) the following expression for the elements of the cross-spectral 
density matrix of a EGSM beam after propagating through an astigmatic ABCD optical 
system in a turbulent atmosphere 
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In the absence of turbulence (when 2 0nC = , and hence, 
0ρ → ∞ ) 0=�P . Equation (12) then 

reduces to the propagation formula for an EGSM beam passing through a general astigmatic 
ABCD optical system in free space [31], and Eq. (13) reduces to the known tensor ABCD law 
for a partially coherent beam [16, 31]. Equations (12) and (13) also can be applied to study 
propagation of an anisotropic  EGSM beam whose 1

0αβ
−M  can be expressed as [35] 
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where 2 2 2,   and a β αβσ σ δ all are 2 2×  matrices with transpose symmetry [15, 16].  

In the absence of an optical system but with presence of atmospheric turbulence, the 
transformation matrix between the source plane and the output plane is given by 
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Eq. (12) reduces to expression 
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with ( ) 3/52 2
0 0.545 nC k lρ

−
= . Equation (16) agrees well with existing propagation formula for a 

scalar partially coherent GSM beam for atmospheric propagation [48], and it can be applied to 
study all the second-order statistical properties of isotropic and anisotropic EGSM beams [61]. 

3. Focusing properties of an EGSM beam in a turbulent atmosphere 

In this section we study the behavior of spectral density, spectral degree of coherence and the 
spectral degree of polarization (which we will call for the case under study the focusing 
properties) of an EGSM beam on propagation in a turbulent atmosphere by applying the 
formulae derived in section 2.  

The propagation geometry is shown in Fig. 1(a). Here the transformation matrix of the 
total optical system between the source plane and the output plane has the form  

 

( ) ( ) ( )
1

1

0 0
.        (17)

1/ 1/ 1 /0 0

ff l

f f l f

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

I I I IA B I I I I

I I I IC D I I I
 

For 
10 z l< ≤ , the transformation matrix for back-propagation from output plane to plane 

located at distance z from the source is given by 
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( ) ( )
( ) ( ) ( ) ( )

1
1

(1 )0( )
.        (18)

1/0 0
1/ 0

z l
fz z l z f

f
fz z

f

−⎛ ⎞+⎛ ⎞ − ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎜ ⎟−⎝ ⎠
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For 
1 1l z l f< ≤ + , the transformation matrix for back-propagation from output plane to plane 

located at distance z from the source is given by 

( ) ( )
( ) ( )

( )1 .                                             (19)
0

z z f l z

z z

⎛ ⎞ ⎛ + − ⎞
=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

A B I I

C D I I
 

Substituting the expression for ( )zB  into Eq. (6), we obtain (after integration) 
3/52 2

0 10.1825 (3 8 ) .                                   (20)nC k f lρ
−

⎡ ⎤= +⎣ ⎦  

  
 

                               (a)                                                                                        (b) 
 

Fig. 1 (a). Focusing geometry, (b). Schematic of laser radar configuration  
 

The spectral density and the degree of polarization of an EGSM beam at point are defined 
by the expressions 

( ) ( )1 1 1, TrW , ,                                               (21)I l l=ρ ρ ρ

�

 

and  

( ) ( )
( )

1 1
1 2

1 1

4DetW , ,
, 1 .                                              (22)
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l
P l

l
= −

⎡ ⎤
⎣ ⎦

ρ ρ
ρ

ρ ρ

�

�

The spectral degree of coherence of the EGSM beam at a pair of transverse points 
1 2 and ρ ρ  is 

defined by the formula 

( ) ( )
( ) ( )

1 2
1 2

1 1 2 2
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, , .                                          (23)
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Fig. 2. Normalized intensity distribution and corresponding cross line (y=0) of an EGSM beam 
at the geometrical focal plane for three different values of the structure constant of turbulent 
atmosphere. 

 

    
 

 
 

Fig. 3. Normalized intensity distribution (cross line, y=0) of an EGSM beam at the geometrical 
focal plane for different values of the structure constant of turbulent atmosphere and the source 
correlation coefficients 
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Fig. 4. Degree of polarization and corresponding cross line (y=0) of an EGSM beam at the 
geometrical focal plane for three different values of the structure constant of turbulent 
atmosphere. 

 

 

   
 

Fig. 5. Degree of polarization (cross line, y=0) of an EGSM beam at the geometrical focal 
plane for different values of the structure constant of turbulent atmosphere and the source 
correlation coefficients. 
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Fig. 6. Spectral degree of coherence and corresponding cross line (y1-y2=0) of an EGSM beam 
at the geometrical focal plane for three different values of the structure constant of turbulent 
atmosphere. 

 

 
Fig. 7. Spectral degree of coherence (cross line, y1-y2=0) of an EGSM beam at the geometrical 
focal lane for different values of the structure constant of turbulent atmosphere and the source 
correlation coefficients. 

On substituting from Eqs. (17) and (20) into Eqs. (12), (13) and (21)-(23), we can 
calculate the statistical properties of an EGSM beams at the geometrical focal plane in a 
turbulent atmosphere. For all the figures in this paper, the parameters of the source of the 
beam and of the optical system are chosen to be 
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0.707,  x yA A= = 0.2,xy yxB B= = 1 ,  590 ,x y mm nmσ σ λ= = = 50f m= 1and  4.95l km= . The 

polarization properties are uniform across the source plane with ( )1P ,0 0.2=r . 

Figures 2 and 3 show the normalized intensity distribution and corresponding cross line 
(y=0) of an EGSM beam at the geometrical focal plane for different values of the structure 
constant of turbulent atmosphere and of the source correlation coefficients. One can see from 
that all the statistical properties of the EGSM beam in turbulent atmospheric are closely 
related to the structure constant 2

nC  and the source correlation coefficients. It is clear from 

Fig. 2 that the intensity distribution of the EGSM beam at the geometrical focal plane is of 
Gaussian distribution, and its width increases as the value of the structure constant 2

nC  

increases (i.e., the local strength of atmospheric turbulence increases), which shows that an 
EGSM beam can be focused more tightly in free space than in turbulent atmosphere. From 
Fig. 2 (d) and Figs. 3(a) and 3(b) one finds that an EGSM beam with lower values of the 
source correlation coefficients is less affected by the atmospheric turbulence than that with 
higher values of the source correlation coefficients, which is similar to the fact that a scalar 
GSM beam with lower degree of coherence is less affected by the atmospheric turbulence [5, 
42, 43, 46, 48]. One also finds from Figs. 3(c) and 3(d) that source correlation coefficients 
control the intensity distribution of the focused EGSM beam both in free space and in 
turbulent atmosphere, and an EGSM beam with higher values of the source correlation 
coefficients can be focused more tightly, which is also similar to the fact that a scalar GSM 
beam with higher coherence can be focused more tightly [1].  

Figures 4 and 5 show the degree of polarization and corresponding cross line (y=0) of an 
EGSM beam at the geometrical focal plane for different values of the structure constant of 
turbulent atmosphere and the source correlation coefficients. One finds that the initial 
uniformly polarized EGSM beam becomes non-uniformly polarized after focusing, and the 
degree of polarization is of Gaussian profile. It is evident from Fig. 4 that as the strength of 
atmospheric turbulence increases, the width of the Gaussian profile increases, the value of the 
on-axis polarization decreases while the value of the off-axis polarization increases gradually. 
From Figs. 5(a) - 5(d), one finds that the shape of the Gaussian profile is affected differently 
by the refractive index structure parameter 2

nC and by the source correlation coefficients: with 

increase in 2
nC the distribution becomes shorter and flatter, with increase in source correlations 

it becomes higher and narrower.  The later statement is valid in free space as well.  
Figures 6 and 7 show the spectral degree of coherence and corresponding cross lines (y1-

y2=0) of an EGSM beam versus the spatial difference vectors x1-x2 and y1-y2 at the 
geometrical focal plane for different values of the structure constant of turbulent atmosphere 
and the source correlation coefficients. One can see from these figures that the spectral degree 
of coherence is of Gaussian profile. The width of the Gaussian profile decreases as the value 
of the structure constant increases, which means the atmospheric turbulence degrades the 
coherence of the EGSM beam. Similar phenomenon is known for laser (coherent) Gaussian 
beams [62]. One also finds from Fig. 7 that the initial source correlation coefficients have 
obvious influence on the spectral degree of coherence of the focused EGSM beam in free 
space, while in turbulent atmosphere their influence is small although the width of the 
Gaussian distribution increases gradually as the value of the structure constant increases. This 
is caused by the fact the influence of atmospheric turbulence on spectral degree of coherence 
largely surpasses the influence of the initial source correlation coefficients at sufficiently large 
propagation distances from the source. 

4. Summary 

We have derived laws for the cross-spectral density matrix of an EGSM beam propagating 
through a paraxial ABCD optical system in the turbulent atmosphere based on the generalized 
Huygens-Fresnel integral with the help of a tensor method. In particular, we have obtained the 
closed-form propagation formula for the cross-spectral density matrix of an EGSM beam. The 
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statistical properties of an EGSM beam focused by a thin lens in the turbulent atmosphere 
have been studied as a numerical example. We have found that the beam spot of an EGSM 
beam with higher values of the initial source correlation coefficients can be focused more 
tightly, the initial uniformly polarized EGSM beam will become non-uniformly polarized 
after focusing, the atmospheric turbulence will degrade the coherence of the EGSM beam, and 
the EGSM beam with lower values of the source correlation coefficients is less affected by the 
atmospheric turbulence. The focusing properties of an EGSM beam can be closely controlled 
by the structure constant of the turbulent atmosphere and the statistical properties of the 
EGSM beam.  

Our results might find uses in optimization of bistatic LIDAR systems. 

Appendix A. Derivation of propagation Eq. (12) 

Substituting Eq. (10) into Eq. (7) and after some arrangement, we obtain 
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 Then after applying the integral formula  
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Eq. (A1) reduces (after vector integration) to the expression 
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By applying the following operations 
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and by setting  
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( )( ) 11 1 1
1 0 0 ,                      (A6)αβ αβ αβ

−− − −= + + + +M C DM DP A BM BP� �� � � � � �  

then Eq. (A3) reduces to Eq. (12) in the text. In (A5) and (A6) we have used the Luneburg 

relations (Eq. (2)) and the relations 1 1  and T T− −= =B B P P� � � � . 
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