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ABSTRACT

USER INTERFACE DESIGN FOR
THE RELATIONAL INDUCTIVE LEARNING ALGORITHM

Kapucu, Utku
M.S.c., Department of Computer Engineering
Supervisor : Assist. Prof. Dr. Reza Z. Hassanpour

December 2010, 52 pages

The study subject of this thesis is developing user interface for the learning algorithm
named RILA which is designed for relational databases. RILA algorithm developed
by adding new features on ILA and ILA2 which are inductive learning algorithms
developed before RILA algorithm. While the user interface is developed, showing of
the rules generated by RILA aimed to be understandable to the user. In addition, the
logs of the process of rule generation are showen to the user. In developmental stage,
the library which contains the graphical elements is used and platform-independent
programming language was chosen. The user interface is also has ability to connect
to multiple relational database. It is observed that; the software provides the
possibility of adding new modules in the future as of the design.

Keywords: Relational Learning Algorithms, Graphical User Interface, Inductive
Algorithm.
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USER INTERFACE DESIGN FOR
THE RELATIONAL INDUCTIVE LEARNING ALGORITHM

Kapucu, Utku
Yiikseklisans, Bilgisayar Miihendisligi Anabilim Dal
Tez Yoneticisi: Assist. Prof. Dr. Reza Z. Hassanpour

Aralik 2010, 52 sayfa

Bu tezin calisma konusu iliskisel veritabanlar1 i¢in tasarlanmis olan RILA adli bir
O0grenme algoritmasi icin kullanic arayiizii gelistirmektir. Bu algoritma kendisinden
once gelistirilen tiimevarimsal 6grenme algoritmalar: olan ILA ve ILA2’ nin iizerine
yeni Ozellikler eklenerek gelistirilmistir. Kullanici arayiizii gelistirilirken 6zellikle
RILA’ nin tiretmis oldugu kurallarin kullaniciya gosteriminin anlasilabilir olmasi
hedeflenmistir. Bunun yaninda kural iretimi siirecinin loglar1 da kullaniciya
gosterilmektedir. Gelisim asamasinda, grafiksel elemanlar iceren kiitiiphane
kullanilmis ve platformdan bagimsiz bir yazilim dili secilmistir. Bu kullanici
arayilizi, birden cok iliskisel veritabanina baglanabilme yetisine de sahiptir.
Gozlenmektedir ki; yazilim, tasarimi itibari ile gelecekte yeni modiiller ekleme
imkani saglamaktadir.

Anahtar Kelimeler: Hiskisel Ogrenme Algoritmasi, Grafiksel Kullanici Arayiizii,
Tiimevarim Algoritmasi.
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CHAPTER 1

INTRODUCTION

Relational database management system (RDBMS) was initiated to cater to the ever
increasing needs of storing complex data in an efficient way. Owing to its enhanced
capabilities, relational databases stored by RDBMS can represent more complex and
structured data as compared to the conventional single tables [1]; [2]. These benefits
have made relational databases much more desirable for the storage and

representation of modern scientific and commercial data.

Data mining systems offer advanced searching mechanism which has a large number
of great benefits. One of these benefits is that only the required pattern of the data is
loaded in the memory, which not only saves time and memory consumption but also
keeps the data free for other queries. To enjoy the benefits offered by the data mining
systems and to overcome the complexities of relational data, collaboration is formed

between these two.

Traditional relational learning algorithms were called ILP-based algorithms [3],
designed for relational data stored in Datalog/Prolog servers in the past. Efforts have
been made to couple ILP-based algorithms with the modern relational database

systems [4], however they have their limitations.



Data mining and machine learning both concern with retrieving interested data and
unknown knowledge from databases [5]. According to [6] learning process that
applied to a database which is used as a training set is called data mining. Learning
rules from database can be made by an automated tool. During time, machine
learning techniques has been developed and applied to large database to get
knowledge in addition to learn rules for expert systems. Because importance of

application of data mining has been rising [7].

So new relational learning algorithm explained first with its strategies and the need
of UI for this learning algorithm is discussed. Then software architecture is
described. It is finished by examining the GUI classes in an example. Finally whole

work is concluded.



CHAPTER 2

RILA - The New Rule Induction System

This chapter is related to a new rule induction system known as RILA [8]. It can be
used to extract recurring patterns from multiple relations which are interconnected.
This rule induction system mainly comprises consists of four steps; Hypotheses
Construction, Rule Selection, Pruning and Conversions to/from SQL. RILA can
make use of two different strategies for rule selection according to the situation;
Select Early Strategy and Select late Strategy. There is also a brief introduction to

Dimension Tables.

2.1 Dimension Table

A Dimension Table is usually a set of interconnected tables which surrounds the Fact
Table in a schema, whereas, a Fact Table has measurements, metrics or facts
regarding a business. Fact Table has the Foreign Keys which are Primary Keys in the
Dimension Table. Dimension Tables are used to summarize, constrain or group data

according to specific criteria while performing data mining queries.

The attributes in the dimension tables portray the fact records in the Fact Table.
Usually, they provide two different type of information to the analyst; descriptive
information about the attributes in the Fact Table and information how the data in

Fact Table should be grouped or summarized. This grouping or summarization is



possible due to hierarchies separating the products in to different categories in a
Dimension Table e.g. a motor showroom containing cars, jeeps which can be

subdivided into cars of different brands or models.

In dimensional modeling the attributes in each dimension are autonomous and do not
depend on any attribute in the other dimension tables e.g. a motor showroom
dimension table will contain data about the different showrooms only, a customer
dimension table contains data about customers and a product dimension table
contains information about products i.e. cars. But queries can join attributes in the
different dimension tables to represent the required information. For example, a
query might use the product, showroom, and time dimensions to ask the question
"What was the cost of Mercedes sold in the northeast region in 2005?" Subsequent
queries might drill down along one or more dimensions to examine more detailed
data, such as "What was the cost of Mercedes-Benz SLR McLaren in New York City

in the third quarter of 2005?"

The data is in the warehouses is stored and can be used for many years to come. As
the time passes changes in the attributes of a dimension table are becoming more and
more evident. For example shipping address of a showroom may change after some

time. This phenomenon can cause discrepancies in the data.

2.2 Referential Integrity

To avoid the discrepancies in the relational data, it is very necessary to maintain
referential integrity between all the dimension tables and fact table as well. The
primary keys of dimension tables reside as foreign keys in the fact table. Referential

integrity means that each entry in the fact table must have a relevant record in the
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dimensional table through primary key/foreign key relation. If there are some records
missing, facts can be missed when the fact table is joined with the set of dimension

tables and the queries will also fetch inconsistent results.

2.3 The ILA and ILLA2 Algorithms

RILA has two predecessors; ILA and ILA2. Actually, RILA is based on ILA2 [9]
which subsequently is the more advanced and noise-tolerant version of ILA [10]. It
will be easier to understand the working of RILA to first go through a short review of

its two forerunners and then the different new features which were added in RILA.

2.3.1 The ILA Algorithm

The ILA algorithm is an inductive algorithm for generating a set of classification
rules for a collection of training examples i.e. extracting rules from a collection of
examples in a given domain. The example is described with reference to a fixed set
of attributes; with each one having its own set of possible values. ILA generates
classifiers in form of ordered rules and due to its hypotheses evaluation criteria it

always generates 100% correct rules for the training data [8].

The ILA algorithm works in a repetitive fashion. Each iteration of the algorithm
searches for a rule which covers a large number of training examples of a single
class. Once ILA has selected a rule it removes the examples covered by it from the
training data by marking them, and appends the selected rule at the end of its set of
rules selected so far. Instead of producing a decision tree ILA produces an ordered

list of rules.



2.3.2 The ILA2 Algorithm

The ILA2 algorithm is a sophisticated and noise-tolerant version of ILA. The ILA2
algorithm has been designed to overcome the performance issues encountered in the
ILA algorithm. These issues are eliminated by implementing a new hypothesis
evaluation function by the selecting multiple rules, instead of selecting single rule as
in ILA, respectively. Another difference from ILA is that the ILA2 takes the noise

factor into account by using a penalty parameter defined by the user.

Generally a hypothesis evaluation function’s score should increase both with the
number tp of the positive instances covered and with the number tn of negatives not
covered. The score should decrease in proportion to the number of negative instances
incorrectly classified, fn. However, the original ILA evaluation metric discards a
hypothesis if the number of incorrect classifications, fn, is greater than zero. For this
reason, ILA does not make any distinction between a hypothesis which
incorrectly classifies 100 instances and another hypothesis which incorrectly
classifies only 1 instance. The ILA evaluation metric can be summarized using the
following terms. If a hypothesis covers any of the negative examples of the current
class then the score is zero. Otherwise the score is equal to the number of positive

examples covered.

This metric assumes no noise to be present in the training data, searching for
a concept description that classifies training data perfectly. However, application

to real-world domains requires methods for handling noisy data.



2.4 New Features in RILA

RILA is based on ILA2 which in turn was based on ILA. Although RILA inherits
many features from its predecessors yet many new features have been added in RILA
in order to overcome the shortcomings of the other two algorithms. This new
inductive learning algorithm adapts following main features; level-wise search
[11];[12] and the example covering approaches from ILA and the hypothesis
evaluation metric and the multiple rule selection idea from ILA2 algorithm. In
addition to the new features for relational learning, RILA also has some new
features that ILA and ILA2 do not have. Here is a brief summary of the new

features in RILA.

- In addition to select early strategy, there is a more efficient rule selection strategy

in RILA known as select late strategy.

- Implementation is carried out more efficiently as hypotheses can be refined by
adding new conditions. They do not need to be generated from scratch in each

learning loop in each level.

- New pruning strategies; the minimum support pruning, the minimum Fmeasure

pruning, and the optimistic estimate pruning heuristics.

- The ILA2 hypothesis evaluation function is normalized by the total number of
examples in the current class and in the other classes. This is needed to take into
account also the varying number of examples in the active class, depending on the

joins made when building a hypothesis.



2.5 Basic Architecture of RILA System

[13] stated RILA as a tightly-coupled data mining application. When RILA runs,
comple training data does not have to be holden in its working memory. Java is used
as the coding language of this system and it uses JAVA JDBC API to communicate
with the database management system. Figure 1 presents a simple illustration of the

architecture of the system.

{f—'_‘—\-\.‘_‘\
/H}’FJDThESES/ SQL, meta data queries | ¢ ~—
Discovery system E «—s [DBMS
Result sets @
0
=

/ Rules / * _

Figure 1. The Basic Architecture of the RILA Induction System [8]

To understand the architecture easily we can virtually divide it into two parts; one is
the database server which not only stores and manages the data but also computes the
results for the queries sent by the learning algorithm, second is the RILA learning
algorithm which performs the actual search for rules by acting on certain steps which

are explained in the next section.

2.5.1 How It Works?

By understanding the working of RILA one can also understand the benefits it offers
while traversing the relational database, generating valid hypotheses and selecting
rules. RILA has components which can construct hypotheses and select rules,
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however, as it is a process for the relational databases, it also has components which

can traverse the relational schema.

The first step in the process can be called initialization as the database is connected,
tables are selected and parameters for rule selections are defined by the user. The
user connects to the desired database and selects the set of tables which stores the

training data. Following are the two general input options for the initialization phase:

1. The names of the tables that constitute the objects to be analyzed

2. The name of the target table, and the name of the class attribute.

Then the user starts the learning process. Meta-data queries are sent to the DBMS
which fetch the descriptions of the columns, primary keys and foreign keys of the
tables. The initialization phase ends here and the queries sent to the database after.
These are generally for building valid hypotheses about the data. On the whole, the
system sends SQL queries to the database system and then by analyzing the results of
these queries it produces new hypotheses. At this point the system has the complete

schema description of the training data.

The two main steps which are performed at this stage are:

1. The system sends SQL queries to the database system and analyzes the
results.
2. Then the system analyzes the results of these queries and generates new

hypotheses.

These two steps are repeated many times to further analyze the data. When a new

row 1s selected the examples which are covered by the rule selected are removed

9



from the active search space. RILA does not delete the rows covered from the input
table. Instead, it creates a temporary table to store the identifiers of the examples
covered. It uses the primary keys in the target table as an identifier for every example
that has already been covered by it. These examples are then excluded from the

search space with the help of a join to the temporary table in the SQL.

The temporary table which stores information about the covered examples is also
used to implement the ‘effective cover’. Effective cover is merely used to avoid
redundant rule selection. The system has a goal to keep the rule set size to minimum,
therefore, redundant rules are not wanted. The effective cover of a rule is defined as
the number of examples it covers that have not been covered so far by any other rule.
If the effective cover of a candidate rule is zero, it means that examples covered by
this candidate rule were already covered by the previously selected rules. So this rule

is not considered and not appended to the final rule list.

The strategy applied by RILA makes sure that the input relational data stays in its
original form and also stays available for the other process. The temporary table
stores only the identifiers of the examples in the current class for which classification

rules are being searched and it is cleared after each class is being processed.

2.5.2 Query Generation

Query generation is the basic functionally of both the hypotheses construction and
rule selection however it acts differently for both of these different steps. During
hypotheses generation the queries gather the recurring patterns and frequency

information about the training data. This helps the system in making the initial and

10



subsequent valid hypotheses. When the rule selection process starts, query generation

acts differently and it evaluates each candidate rule.

RILA traverses the schema by the foreign keys and then builds the initial hypothesis.
This hypothesis is then refined by adding new conditions. The current attribute
column is considered as the new condition. The initial hypotheses are based on only
one condition. Here is the template used to generate the SQL queries for finding

hypotheses and their frequency values.

Select attr, count (distinct targetTable.pk) from covered, path.getTableList() where
path.getJoins() and targetTable.classAttr = currentClass and covered.ild =

targetTable.pk and covered.mark = O group by attr

In this query,

e attr is the name of the current attribute column,

» targetTable is the target table,

* pk is the name of the primary key column in the target table

* covered is the name of the temporary table where identifiers of the objects covered

by the selected rules are stored,

* path refers to the path object that links the current table to the target table.

* classAttr is the column representing the class attribute for the learning task

* currentClass is the current class for which the hypotheses are being searched

11



2.5.3 Pruning

When RILA is applied on large relational data, we can expect a large number of
hypotheses generated, therefore, some kind of heuristic is required. The procedure
used to reduce the number of hypotheses to a reasonable size is called pruning, which
trims or prunes the hypotheses selected. The technical term used for this process is

called pruning heuristic.

There are diverse kinds of pruning heuristics available. Minimum Support Pruning
Heuristic is considered to be the best one and used by the most of the data mining
systems. No doubt, it is an effective approach and keeps the number of selected
hypotheses small but it is not very effective for complex relational databases. The
reason for this is that this pruning approach alone is not always good enough to avoid
the weak hypotheses which are unlikely to produce strong hypotheses when they are

refined.

Therefore, for the larger and more composite problems more advanced and complex
pruning techniques are utilized. These techniques are more likely to produce
comparatively stronger hypotheses which also produce strong hypotheses when
refined. Optimistic Estimate Pruning is one of the most commonly used approaches
by the traditional machine learning systems such as ICL [14] and m-FOIL [15]. The
optimistic estimate pruning is also known as beam search because of its pruning
method. This approach specifies a number of best ‘n’ solutions which are desired.
Any hypothesis and its descendants which fail to fall in the top n solutions are
pruned. However, the user must specify a reasonable size for the parameter ‘n’

because if the ‘n’ is not large enough the system may suffer from the myopia

12



problem i.e. only few hypotheses are selected and some hypotheses which may have

been important are pruned.

RILA supports both minimum support pruning heuristic and optimistic estimate

pruning heuristic.

2.5.4 Rule Selection

In inductive algorithm, there can be many different possible arrangements for
hypotheses construction and rule selection, for example, one strategy may select
rules every time a group of hypotheses is constructed, while another strategy may
activate rule selection after all hypotheses have been constructed for the active class.
RILA makes use of the two different rule selection strategies; The Select Early
Strategy which is inherited from the ILA algorithm [16] and The Select Late Strategy
which was developed with RILA. The difference between the two strategies is the
activation of the rule selection process. The Select early strategy activates rule
selection more frequently as compared to the select late strategy. The select early
strategy activates the rule selection process as soon as the hypothesis is constructed
for the current level whereas the select late strategy postpones the rule selection until
all the hypothesis have been generated for all the levels of the active class. In turn,
RILA works for each class, for example, if the class attribute has three different

values the learning loop is repeated three times.

When RILA is working on the select early strategy, the examples covered by the new
rules are removed from the active search space as soon as a new rule is selected
which results in the reduction of search space. Although it helps in reducing the

training time required for learning tasks but the rules selected towards the need of the

13



learning process are not based on as many examples as available during the early
stages of the learning process. To overcome this problem [17] proposed the weighted
covering algorithm. In the projected algorithm, already covered positive examples
are not deleted from the search space, instead, the algorithm stores a count with each
example which shows how many times the example has been covered. This

information is later used by the weighted relative accuracy heuristic.

The select late strategy is free of this problem, however, because of the postponing
the activation of rule selection until the enumeration of all the hypotheses, the select
late strategy becomes more complex and needs a lot more computational resources.
This more computational cost can cause efficiency problems. In order to avoid these
efficiency problems the number of hypotheses generated is pruned by using

optimistic estimate pruning heuristic.

Now let us understand the working of RILA when these two rule selection strategies

are used separately:

2.5.4.1 Select Early Strategy

Select early strategy activates rule selection more frequently. Every time the
hypotheses are generated for a level, the select early strategy activates the rule

selection process for the hypotheses built so far.
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It level 15 | then build initial hypotheses,
otherwise refine current hypotheses

loop 1 H

select rule(s) using best p
hypotheses

any rules
selected?

no l—lr level++

mark covered objects

Figure 2. The Rila Algorithm Using the Select Early Strategy [8]

Figure 2 demonstrates the working of RILA algorithm while using the select early
strategy for a single class. The process is repeated for every class attribute in this
class. First hypotheses are generated for the current class with one condition by
traversing the input schema graph. Furthermore, two relational queries are executed
for the every attribute column traversed. RILA builds a set of hypotheses on the basis
of the results fetched by these queries. When the schema graph is traversed

completely and query results have been process, the rule selection step starts.

When the rule selection step starts, the hypothesis with maximum score is selected as
the current new rule and this rule is removed from the active search space or
hypothesis set. The ‘effective cover’ rule (described in the beginning) comes in to

play and the examples which have been covered by the new rule are marked as

15



covered. The process of rule selection is repeated ‘p’ times (p is a predefined

parameter).

Once RILA has selected the first rule using select early strategy, it checks whether
the examples covered by the new candidate rule are already covered by the previous
rules or not. If these examples are already covered then this rule is pruned, otherwise,

the new candidate rule is asserted as a new rule in the output rule set.

The above mentioned process is repeated until the rule selection is completed. If the
new rules have been selected and there is still data not covered by these rules then
the initial hypothesis is rebuilt, however, this time that data is considered which is
not covered by the already generated rules. This process is repeated until no new rule
can be selected or all the examples in the currently active class have been covered by

the generated rules. This indicates the completion of rule selection for level 1.

After the completion of level 1, RILA moves to level two. It refines the best n
hypotheses generated in the previous level by traversing the input schema graph and
executing the two relational queries. New hypotheses are built on the basis of the
results fetched by these queries. Once schema is traversed completely and the results
fetched by the queries have been processed, the rule selection process starts once
again. In all the next levels rules are selected as described for the step 1. These steps
are repeated until the system reaches the predefined parameter m, then the algorithm

terminates.
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2.5.4.2 Select Late Strategy

The select late strategy activates rule selection less frequently as compared to the
select early strategy. The select late strategy activates the rule selection only after all
the hypotheses have been generated for all the levels of the active class in the
schema. Therefore, while using the select late strategy, the rules are selected after all
the hypotheses have been constructed. These rule selection algorithms are more
complicated. They have to ensure that the output rule set covers most of the instances
in the training data after the hypotheses have been generated for all the levels of the
current class instead of the rule selection at the end of every level. A simple

illustration of this process is presented in Figure 3.

W

build imtial hypotheses | refine current hypotheses  |<
level++
select rules
no ,
end

Figure 3. Simple Illustration of RILA Algorithm Using the Select Late

Strategy [8]

In the select late strategy, the algorithm generates the hypothesis for the first level

with one condition for the active class. As the rules selection is postponed by the
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algorithm, it moves to level 2 and constructs new hypotheses by refining the n best
hypotheses generated in the previous level, where n is the pruning factor which has
been described previously in the pruning section. These steps are repeated until the
level is equal to the predefined parameter m. When the level is equal to m, it means
that hypotheses for all the levels of the active class have been constructed and rule

selection process starts.

In both cases; the select early and the select late strategies, the construction of
hypothesis for the first level and its refining for the subsequent levels is the same.
However, the difference occurs that unlike select early strategy there is no rule
selection between the levels when using select late strategy. Furthermore, the best n
hypotheses which are in every next level are selected only from the hypotheses
constructed in the preceding level, this is necessary to stop the algorithm from

refining the same hypotheses again at different levels.

Figure 4 shows the rule selection algorithm when using the select late strategy. This
process is also similar to the one used in select early strategy. During the rule
selection, first the hypothesis which has the maximum score is considered the new
rule. This rule is then removed from the search space of active hypothesis set. With
the help of ‘effective cover’ all the examples covered by this rule in the temporary
table are marked as covered, so they may not be reused during the rule selection
process in future. Once the first rule is asserted, the next hypothesis with the highest
score is selected as the new candidate rule. The effective cover of every candidate
rule is determined by traversing the number of examples covered by the new

candidate rule which are not already covered by any previous rule.

18



Start
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no i . _
Is the score Select hypothesiswith
positive? the highest score

yes l

Considerthe selected hypothesis as the new candidate

@:I - rule.

[y .
Find the number of new examples covered by the

candidate rule

Calculate the score ofthe candidate rule

If the candidate rule seems definitely beter than the next
hypothesis then assertit as a new rule otherwise
depending on the parameter 1 push the hvpothesis back
into the sorted tree affer changing its score to the score
ofthe candidate rule.

All examples
covered?
Y85 no

Figure 4. Rule Selection Algorithm When Using the Select Late Strategy [8]

Effective cover is used to recalculate the score of the candidate rule here again. Once
the score is calculated it is compared to the score of the next hypothesis, already
stored in the tree of hypotheses. If the score is higher than the next hypothesis, this
candidate rule is asserted as a new rule and the hypotheses is removed from the
active hypotheses set, to stop it from being compared again in the future. All the
examples covered by this new rule, which are present in the temporary table, are

marked as covered. But if the score of the current candidate rule is less than the score
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of the next hypothesis then the parameter [ is used for the decision making by the

following two methods:

1- If the difference between the current score of the hypothesis and its original score
before the rule selection started is more than the parameter /, then the candidate rule
is selected as a new rule, and the examples covered by the new rule are marked in the

temporary table as covered.

2- If their difference is less than the parameter /, the score of the hypothesis is set to
score of the candidate rule and then the hypothesis is inserted back to the sorted tree
of hypotheses. The rule selection process continues using the next hypothesis as it
now becomes the hypothesis with the highest score. Rule selection is repeated until
all the examples in the active class are covered by the generated rules or until there

are no more hypotheses with a positive score.

2.5.5 Optimistic Estimate Pruning

Optimistic estimate pruning is usually used with select late strategy, and they both
together make a good solution for rule selection process of RILA for complex
relational databases. If this pruning strategy is not applied, the number of hypotheses
generated by select late strategy can become impractically large even for a moderate
size data. The optimistic estimate pruning heuristic exploits the fact that we are
interested in the n best solutions, if a hypotheses or its descendents cannot make it in

the top n list, this branch is pruned by the algorithm.
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2.5.6 Strategy Selection

Both strategies; the select early strategy and the select late strategy, have a different
process for the rule selection and as a result have different benefits to offer according
to different situations. Choice of any rule selection strategy mainly depends on the

performance criteria of a learning task.

As the select early strategy activates rule selection after the generation of hypotheses
for each level, therefore, the individual rules are smaller. If the performance criteria
of the learning tasks require the individual rules to be small, the select early option is
the best choice. The computational cost of the select early strategy is also low, which

can be a factor in selecting this strategy.

The select late strategy requires more computational resources but as it postpones the
activation of rule selection until all the hypotheses have been generated, it selects the
hypotheses with maximum score, as rules. If the learning task has the performance
criteria to select the rules with maximum score, select late strategy is a better choice.
The select late strategy can be optimized for computational expense by collaborating

it with the optimistic estimate pruning heuristic.

Let us take a look at the Table 1 which shows an example of training data to
demonstrate a case where the select late strategy performs better than the select early

Strategy.
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Table 1. Comparing of the Select Early and Select Late Strategies [8]

Attribute A Attribute B Attribute C Class
al bl cl A
al bl 2 A
a2 b2 c3 A
a3 b2 3 A
a4 bl 3 B
a5 bl o3 B
al b2 cd B
al b2 c5 B

According to the training data in Table 1, the two hypotheses generated in the first

level for the class A should be:

Hypothesis 1: IF attribute A = a2 THEN class = A (support = 1)

Hypothesis 2: IF attribute A = a3 THEN class = A (support = 1)

When RILA is using the select early strategy, these two hypotheses are generated
and simultaneously asserted as the new rules at the end of the first level. But if RILA
is using the select late strategy, and the rule selection process is delayed until the end

of the next level, the following hypothesis is generated in the next level:

Hypothesis 3: IF attribute B = b2 AND attribute C = ¢3 THEN class = A (support =

2)
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It is evident that the hypothesis 3 alone covers the two examples which were covered
by hypothesis 1 and hypothesis 2 which means it will have better generalization
capacity as compared to the first two hypotheses. The reason for this is that it is
supported by more number of training examples as compared to the first two
hypotheses. When the selection is completed for all the levels select early strategy
selects a total of eight rules with each rule having one condition on the other hand the

select late strategy selects only four rules with each rule having two conditions.

This example depicts that RILA or any rule induction algorithm would generate
better rules when all hypotheses for one class are evaluated together at the end
instead of evaluating rules for every level separately. However, this way, the number
of hypotheses can become much larger especially in case of large size data. The

solution to this is pruning which has been described earlier.
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CHAPTER 3

GRAPHICAL USER INTERFACE FOR RELATIONAL INDUCTIVE

LEARNING ALGORITHM

This chapter describes the Java-based graphical user interface which is
developed for the relational inductive learning algorithm RILA. RILA GUI consists
of “rila.mygui” package which has relations with other classes by the help of
MySingelton class. Package rila.mygui” has direct relations “rila.run”, “rila.gui”
and “rila.support” packages. By the help of “rila.mygui” package user can interact
with RILA fast and the outputs of RILA can be observed easily. It is shown that Java
programming language is very useful in developing graphical software applications.

Also Java programming language can meet the user interaction requirements. The

whole design of RILA GUI has been made in Java programming language.

3.1 What is GUI?

A GUI is a visual interface to a program with graphical icons, visual indicators, etc.
via which the user can interact with the program easily [18]. An efficient GUI should
provide to the user a consistent appearance and a control mechanism such as menus,
buttons, check boxes etc. which also provides sufficient information about their
functionality for an efficient use. After user performs an action it should be
predictable how the program will behave. Therefore labels and texts on the GUI

should indicate components in a right way.
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3.2 Why does RILA need a GUI?

Increase of the interaction between human and the computer, more imposes the need
to build up a GUI for computer programs. Every program has its own needs
according to their focus area. RILA is a machine learning algorithm and used for rule
generating in a database. It is actually difficult to connect a database and selecting
related tables or columns inside of the RILA code. On top of all RILA’s advance
searching mechanism requires some parameters. Without a GUI it is difficult to input
new parameters in every try of the user for generating rules. Furthermore it is

stressful to read the generated rules from the output console of IDE.

3.3 Why Java?

Java is an object-oriented language so provides the advantages of object-oriented

programming. These benefits can be summarized as below [19]:

e Simplicity: Java objects look like real world object, which reduces the
complexity of the program structure.

e Modularity: Modularity allows to be developed individual modules. Separate
modules can be implemented by different teams.

¢ Modifiability: Any minor changes in any class do not affect the other classes
until their members are not related.

e Extensibility: New features can be added easily by simple modifications in
existing objects and by adding some new ones.

¢ Maintainability: Objects to be maintained can be found with ease and can be
fixed separately.

e Re-Usability: Different programs can use the objects.
25



Furthermore, Java is a platform independent programming language. Java source
code is compiled into byte code which can be run on Java Virtual Machine(JVM).
There are different JVMs for all operating systems so it is not important where
source code is compiled. JVM interprets the byte code for the operating system or

machine on which it runs. (Figure 5)

R WINDOWS
(WINDOWS)

Ty
[LINUX]

Javs CODE EYTE CODE
[JAnA) [.CLASS]

JAvA COMFPILER

Figure 5. Java Byte Code and Platform Independence

Java is considered as an efficient tool, since it also provides additional features such

as:

* Swing is a package in Java standard library which supplies a collection of

GUI elements.

e Multi-threading makes available to execute different threads at the same time

in the same Java program.
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3.4 Software Architecture

RILA has several classes and a number of packages that surrounds these classes. One
more package is added to RILA package hierarchy to develop its GUI and a fast

library; [20] swing is added for this GUI package. Components of Java Swing library

used in GUI package can be seen in the Table 2 [24].

Table 2. Components Used in GUI

COMPONENT NAME [ DESCRIPTION

JLabel Short text string display area for labeling components.

JTextField Single line text area.

JPasswordField It is a single line area. Original characters in this area is not
shown.

JTextArea Multi-Line area that displays plain text.

JComboBox An Editable field with a drop-down list.

JCheckBox A box which can be in a state of selected or deselected.

JButton It is a push button.

JMenuBar A bar that holds the menu.

JMenu A pop-up menu that contains menu items.

JMenultem Any item in a menu.

JPanel It is a container.

JEditorPane It is a text component for editing text content in it.

JTextPane A text component that can be marked up with attributes

JFileChooser It helps user to be able to choose a file.

JScrollPane Provides a scrollable view.

JTable It is used for editing and displaying 2D tables.

JTree It helps to display a set of hierarchical data as an outline.

Table 3 shows new added classes and their packages. All the classes except Run and
RilaDAO are in “rila.mygui” package. RilaDAO is used as a database access object
for querying. HubCenterPanel uses RilaDAO to make a bar chart with the result of
RilaDAO query. Run class is an API class. It provides the relation between GUI and
the RILA. MySingelton class’ duty is catching outputs and some values and carrying

them between GUI and RILA.
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Table 3. New Added Classes

Class Name Package Name
Entity rila.mygui
GridPanel rila.mygui
GuiMain rila.mygui
HTMLPanel rila.mygui
HubBarPanel rila.mygui
HubCenterPanel | rila.mygui
HubPanel rila.mygui
InputPanel rila.mygui
JTreePanel rila.mygui
LoginPanel rila.mygui
MySingelton rila.mygui
Settingsparam | rila.mygui
jEditorPane rila.mygui
Run rila.run
RilaDAO rila.support

This relationship between RILA and GUI is established by the help of Run and
MySingelton classes. Code segments from Run class and InputPanel class are

presented as Figure 6 and Figure 7 to understand this relationship.

Fun r = new Runfi):

r.runbdlgorithmimin3upport, penaltyFactor, Max3iz=eForBRBules,
ignorelUnknownValues, mwinF, maxNuwmHypothExtend,
conInfo.hubTable, conlnfo.Targetlittribute,
conInfo.PrimarvEey, conlInfo.ClassTable,

conInfo.dimTables, latel3trategy) !

Figure 6. InputPanel Calls runAlgortihm Method of a Run Instance

API method runAlgorithm of Run class is called from the GUI class InputPanel with

the parameters minSupport, penaltyFactor, MaxSizeForRules,
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ignoreUnknownValues, minF, maxNumHypothExtend, hubTable, targetAttribute,

PrimaryKey, ClassTable, dimensionTables and lateStrategy.

public wvoid runflgorithm(int mwin3upport, int penalcyFactor,
int MaxbizeForRules, boolean ignorelUnknownWValues, double minF,
int maxMNunHypothExtend, 23tring hubTable, 3tring targetlittribute,
3tring PrimarvyEey, 3tring ClassTable,
Collection<? extends Jtring> dimensionTshles,
boolean lateltrategy)

Globalza.setMinSupport (min3upport) ;
Global=s.setPFipenalcyFactor)

Globhals.setMaxRuleSize (MaxdizeForRules) ;
Globals.setTIgunorefnknownValues [ignorelUnknownValues)

Glohala.setMinFmeasure (minF) ;
zlobals.setNhvpothesesToExtend (maxlNumHypothExtend) ;

Workhench. setOptioni , hubTsahle) ;
Morkhench. set0ptioni , targethitcribuce) :;
WMorkhench. setdptioni , PrimarvEevw):
Workbench.setOption| ; ClassTable) ;

Figure 7. Setting Part of runAlgorithm Method in Run Class

Method runAlgorithm sets these parameters for RILA with the code above and runs
it with the code below in Figure 8. It can be said that all parameters come from GUI

and are used in RILA.
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LEY 1
if [late3trategy == true) {

new Zelectlate (Globals. getlBAccess (), hubhTable,

targethttribute,

dimen=ionTahkhle= ,

ClassTable) .runi(l:
}oelae {

new SelectEarlyi(Globals. getPBAccess (), hubhTable,

targetittribute,
dimensionTables |
ClassTable,
wEmxlanllypothExtend) cruang) ;
H
} catch (Exception e) |
SJtackTraceElement[] err = e.get3tackTracel():;
e.printitackTrace();
JoptionPane.showMessagelialog(null, err, B
JOoptionPane. ERROE MESZAGE) ;
return; B

Figure 8. runAlgortihm Runs Select Late Startegy or Select Early Strategy

Figure 9 presents the running diagram of the code in Figure8.

class Business Process Model/

SelectEarly

+ run(): void

Run InputPanel

+ connect(): void + actionPerformed: void
+ runAlgorithm(): void

SelectLate /

+ run: void

Figure 9. Process Diagram of Selecting Strategy
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All the output of RILA is carried on MySingleton object. Thus MySingelton class
has to be imported in some of the RILA packages. Table 4 shows these classes and

their packages.

Table 4. Class That Imports Mysingelton Class

Classes Packages
RelationallLA rila.algorithms
SelectLate rila.algorithms
SelectEarly rila.algorithms
Metalmporter rila.relation
Hypothesis rila.rule
RelationalRuleSet | rila.rule

Rule rila.rule
Globals rila.util

Run rila.run

MySingelton class has some get / set functions to behave like an inter class between

RILA and GUI. Here is the get / set functions:

¢ public String getMetalnfo()

¢ public void setMetalnfo(String meta)

¢ public String getRules()

¢ public void setRules(String rule)

e public String getRuleSetParameters()

e public void setRuleSetparameters(String str)

e public String getAppliedRules()

e public void setAppliedrules(String appl)

¢ public String getListofParameters()

¢ public void setListofParameters(String listOfParams)

¢ public String getLogofSearchingRule()
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¢ public void setLogofSearchingRule(String str)

¢ public String getNumbers()

¢ public void setNumbers(String num)

e public String getListofgeneratedRules()

public void setListofGeneratedRules(String str)

Above methods are used by the classes SelectEarly,SelectLate, RelationallLLA,

Metalmporter, Hypothesis, RelationalRuleSet, Rule, Globals, Run to set and by

jEditorPane to get the final outputs. Figure 10 illustrated the diagram of above

statement.

Oass Model

SelectBEaryw

Select Late

Rl =t oral 1LA

Metalrmporter

M 4Si mgelton

\

Hypothesis

Rzl =i oral Rd e Set

T

getdpplied Rulegt Sring
getligofgenarate dRule=): String
getli zofPammetar=]: Sring
gethietainfolr Sting
getMumberalt String

getRules]): Sting
getRuleSetPammetera’t String

et Appliedrule 35mng): wid

=et ListofGenerate d Rules{Strng): wid
setlistofParameters/Sinngt wid
et LogofSeamnhingRule(Sting woid
sethietalni]Stings wid
satbumbemSting): void

et Rules3ting ) woid

==t Fule Setparametera)Stingt woid

[

j Editorpane

"1+ JBEditerPaneftring, Sting) : woid

Global= BLn

Figure 10. Class Model for Mysingelton Related Classes
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3.4.1 GUI Package

In Table 5 all the classes in this package and what they extends are presented.

Table 5. Classes and Their Extendings

Entity -
GridPanel JPanel
GuiMain JFrame
HTMLPanel JPanel
HubBarPanel JPanel
HubCenterPanel JPanel
HubPanel JPanel
InputPanel -
JTreePanel JPanel
LoginPanel -
MySingelton -
Settingsparam -
jEditorPane JPanel

GuiMain class is the main class which is responsible for launching GUI. This class
extends JFrame so every panel that is wanted to be displayed is added GuiMain’s
content pane. It is possible to write a panel for the needs and add the panel to RILA
GUI anytime. An example is added with RILA GUI’s screen shots to understand the

classes of GUI package.
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3.4.2 Example for the classes of GUI package

In this work RILA is tried on “gene” database which was first used in KDD Cup
2001 competition [21] and “ensembl” database which is used in ensembl project'.
Gene database is set on local mysql database server with a name “test”. MySQL
Server 5.1 is installed on local machine and its url s
jdbc:mysql://localhost:3306/test. In this database there are three tables:
Composition, Gene, Interaction. If Select Early strategy is applied a table named
“covered” is generated during process. Ensembl database does not let generating or
droping objects from outside. Thus only Select Late strategy is applied to ensemble
database.

Its url is jdbc:mysql://ensembldb.ensembl.org:5306/aedes_aegypti_core_48_1b.
After launching the code the first initialized form is GuiMain and LoginPanel is
added to its contentpane. GUI is presented with its screen shots and some code

segments in the package.

" EMBL - EBI and the Wellcome Trust Sanger Institute works on ensembl project to develop a
software system which produces and maintains automatic annotation on selected eukaryotic
genomes [25].
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RILA - GRAPHICAL USER INTERFACE

Program Menu  Menu

User Name: | |
Password: | |
Driver : |cum.rr|ysql.idbc.Driver | - |

DB Url : |jdbc:mysqI:IIIocthost:SSDﬁnest |

Figure 11. LoginPanel.java

To connect the database user name, password, database url must be correctly written
in corresponding area. In the driver list there are class names of sql driver, mysql
driver, derby driver. After pressing “Login” button if driver class is not found, it is
handled by ClassNotFoundException. A connection is tried to establish by using
“DriverManager.getConnection(dbURL, userName, password)” line. It is handled by

SQLException. Look at Figure 12.
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Connection connection = null;
Lry f
Clazss. forName (driver) ;

try i
JysStem. cut.println("Connecting™) ;
conhnection = DriverManager.getConnection (dblURL,
userMame, password) :
System. cut.println("Connected™) ;

}oocatoch [(SOLEXception ) f
e.print3itackTrace (] :
return:

E

y catch [(ClassMotFoundException e)] |

e.printScackTrace (] :
return;

Figure 12. Code Segment of LoginPanel.Java for Connection a Database

After connection is set, InputPanel and JTreePanel are adding to the main frame.
JTreePanel is located at the WEST and InputPanel is located at the CENTER(Figure

13).

JTreePanel treePanel = new JTreePanel (connection,
connectionInfo, guiMain, perclLabel):
guilMain.removelkll ()l ;guillain.add(treePanel, BorderLayout.WEST)
guilMain.setBorder (null) ;
InputPanel inp = new InputPanel (treePanel,
connectionInfo, guiMain):
treePanel.zetInputPanel (inp) »
HyZingelton. getinstance() .setTreePanel (LreePanel) ;
HyZdingelton. getlinstancea(] .setInputPanel (inp) »
Myoingelton. getlinstancae() .getMenul() .setEnabled(trues) ;!
guiMain.add (inp, BorderLayout.lENTER)
guilMain.repaint () ;guilain.revalidate() :

Figure 13. BorderLayouts of InputPanel and JTreePanel
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JTreePanel is a data presenter in hierarchical way. Database name is shown at the
top. Below from database name, all of the table names are presented at the same
level. When user clicks on any table name, column names relevant to the selected
table name are opened. A mouseReleased event added to the elements of JTreePanel.
In this event myPopupEvent method is triggered and in this method JPopupMenu
object is generated and some menu items are added to the JPopupMenu object with
respect to the EntityType of the tree node that the coordinate of the mouse is on it. In

order to understand EntityType look at Figure 14.

public class Entity |

public enwn EntikyType!{ DATABASE, TABLE, COLUMNY ;

private S3tring wvalue;

private EntitvTvpe type;

public 3tring getWalue()
return wvalue:

k

public void setVWalue (3tring value)] |
this.wvalue = wvalue;

b

public EntitvTvpe getType() |
return type;

b

public woid setType (ExntitvTvpe tyvpe] |
this.tvype = type;

h

Borrerride

public String toStringi){
return this.wvalue;

Figure 14. Entity Class
Menu items of JPopupMenu with respect to the EntityType:
If the EntityType is TABLE:

e Select as hubtable
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o Select as ClassTable

e Select as Dimension Table

If the EntityType is COLUMN:

® Select as PrimaryKey

e Select as Target Attribute

Below code provides the spread of menu items (Figure 15).

Entity enticy = ([(Enticy) obj.getUserdbject():
if (enticy.gecType () .equals (EntityType. TABLE))Y

encity) :
JPopupMenu popup = new JPopupMenu():

item.addictionliscener (actionlistener) ;
popup.add(icem) !
popup .addSeparator () :

iteml.addictionlistensr (actionlLiscensr) ;
popup.add(iceml) :
popup.addSeparator ()

iten? .addiccionliscener (actionlistensr) ;
popup.add(icemz) 2
popup .addSeparacor () ;
popup.show(tree, x, 73
} else if {entitv.getType () .equals(EntstyType. COLUMNY) {

entity) :
JPopupMenu popup = new JPopupMenu():

item.addictionliscener (actionLiscener)

popup.add (item) ;

popup.addSeparator () ;

JHenultem iteml = new JNenultem|
Select as Target Attribute™):

iteml.addActionliscener (actionliscener):

popup.add(iteml) ;

popup.add3eparator () ;

popup.shovitree, X, 7):

JHenultem item = new JHenultem("Select as hubtable™):

JHenulIcem iceml = new JAsnultem("Select as ClasaTable™) :

JHenultem item? = new JHsnultem("Select as Dimension

JEenulcem item = pew JHenultem("Select as PrimargHey”

Actionlistener acciohlListener = new PopupActionListener |

Table"

Actionlistener actionlistener = new PopuplActionlistener |

Figure 15. Jtreepanel.Java Menu with respect to the Tree Node
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For setting the parameters in the JPopupMenu, GUI uses Settingsparam get / set
class. An inner class that implements ActionListener named PopupActionListener is

used to set the parameters by using its actionPerformed method (Figure 16).

public woid actionPerformedictionEvent actionEwvent)

Jtring action = actionEvent.getlctionCommandi ) ;

if [(action.equals(T3elect as Target Attribute™) ) {
params.setTargetAttribute (Chis.entity.getValue ()] ;
inpPanel.setValues (TATTE", this.entitvy.getValus());

¥ else if (action.equals(TIslect as hubtakble™)) |
params.setHubhTable (this.entity.getValue () ) ;
inpPanel.zsetValues ("HUE", thiz.entitv.getValue()l]:;

} else if [(action.equals(fielect a2 ClassTable™) ) |
params.setClassTable (this.entity.getWValue () ;
inpPanel.setValues ("CLLZET, this.entity.getValue()):

} else if [(action.equals(T3elect a= PrimarvEevy™) ) {
parsms . setPrimarvEevithis. entity.getValus ()]
inpPanel.setWalues ("EEY", this.entityv.getWaluei(]):

y else if [(action.equals(TZelect as Dimension Table™)) |
if({'dinTabhleValue.contains (this.entity.getValue (1))
{
dimTableValue.add (this.entity.getWalue (] ) ;
inpPanel.setValues ("DIN", this.entitv.getValue()l]:;

B

else

{
JOoptionPane. showMessagelisloginull,
"fou already add thiz table az dimension takhle. ™,
"Error'", JOptionPane.EREORE MESSAGE) ;

Figure 16 actionperformed Method in the Inner Class Popupactionlistener
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In the above code params value is an instance of Settingsparam class. Here is the

class.

public class Setting=sparam f

private 3tring hubTakble;

private 3tring classTable;

private 3tring Targetlttribute:

private 3tring PrimarvEev:

private List<3tring> dimTable;

public String getHubTable ()

public void setHubTable (String hubTable)

public String getClassTable ()
public woid setClassTahle (3tring classTable) [{...}
public String getTargetAttribute() |[{...}
public wvoid metTargetAttribute (3tring targetittribute)
public 3tring getPrimarvEey ()
public wvoid setPrimaryKey (String primarvEew)
public List<3tring> getDimTable ()
return dimTable:

public void setDimTable (List<String> dimTable)

Figure 17. Settingsparam Class

Duty of InputPanel class is to give user an ability to set all parameters for running

RILA. Here are the parameters:

e Penalty Factor

* Max # of Hypothesis to Extend
®* Min F Value

® Max Size For Rules

¢ Minimum Support

e Select Late Strategy

® Ignore Unknown Values
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Penalty Factor: For the evaluation of the hypothesis RILA needs a score. In the
formula below tp represents the true positives and fn represents false negatives. For

no sensitivity pf should set to 0 [22];[23].

score(h) =tp—pf « fn (2.1

Max # of Hypothesis to Extend: It determines the max number of hypothesis that can

be extended in each level.

Min F Value: Minimum acceptable f measure value. By this value a hypothesis can
be added to active hypothesis set. Thus it can be evaluated at the time of the rule

selection process and new conditions also can be appended to this hypothesis.

Minimum Support: Generated hypothesis should cover this minimum number.

Select Late Strategy: If it is not checked, RILA uses Select Early Strategy

Ignore Unknown Values: If it is checked during rule generation RILA ignore

unknown database values like “?”.

JTreePanel class sets the Hub table, Class Table, Dimension Tables, Primary Key,

Target Attribute.
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public woid setWalues (3tring componentMame, S3tring walue)

if (componentName.equals (THUET) ] {
hubValue.setText (value) ;
}oelse if (componentMNamwe.edquals (TCLLZZT)) L

classValue.secText (value) ;

y else if (conmponentMName.edquals("DINT))1 |
dimifalue.append(valuse + "0
dimfcroll.getVerticall3crollBar () .setWValue (0)

y else if (componentMName.equals ("EEY™)1 |
keyWalue.setText (value) ;

¥} else if (conmponentMName.ecquals (TALATTETI) {
attributeValue.setText (value) ;

Figure 18. Code Segment of InputPanel.java (Values are Set from JTreePanel )

RILA - GRAPHICAL USER INTERFACE
Program Menu Menu

Settings Input
=7 test
o ] campasition i Tatie o
¢ [ gene
[ cenelp Class Table : gene
Ly ceasrita Dimension Tables : I
D Chromosaome =

[ Localization
o= [ interaction

Clear List

Primary Key : GenelD
Target Attribute : Localization
Penalty Factor : Eﬂ
Max # Of Hypothesis To Extend : 1000

Minimum fvalue :

maximum Size For Rules :

Minimum Support :

Select Late Strateqy :

Ignore Unknown Values :

|

Figure 19. InputPanel ScreenShot

After pressing “Run” button RILA generates outputs. User can reach these outputs

by using menu bar.
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Metalnfo

Rules

Rule Set Parameters
Applied Rules

Log Of SearchingRule
Numbers

List Of GeneratedRules
Output

Re Input

View Bar Chart

Figure 20 Menu in GuiMain

In “Menu” except “Re Input” and “View Bar Chart”, all of the menu items link to the
relevant panel. By pressing “Re Input” user can set new values to RILA.”View Bar
Chart” draws a bar chart for the tables in the connected database. All outputs except
“Rules” which RILA generates are added to the appendix. “Rules” is given below for

the parameters.

Hub Table: Gene

Class Table: Gene

Dimension Tables: Composition, Interaction

Primary Key: GenelD

Target Attribute: Localization

Penalty Factor: 5

Max # of Hypothesis to Extend: 1000
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Minimum f Value: 0

Maximum Size for Rules: 2

Minimum Support: 2

Select Late Strategy: False

Ignore Unknown Value: True

Every output panel gives an opportunity to save output to a txt file (Figure 21).

RILA - GRAPHICAL USER INTERFACE EEX]

Program Menu Menu

Fule=s

[»

Rule no1:

IF gene.Chramasome =10 (support=1 false values = 45)
THEM gene Lacalization = cell wall.. |
actual support=1
effective cowver=1
false values = 45

Rule no 2

IF gene Essential = Mon-Essential  {support=1 falzewvalues = 26) AND
gene.Chromosome =14 (support=1 falsevalues = 53)
THEM gene.Localization = endosame..

actual suppart=1

effective caver =1

falze values = 26

Rule no 3:

IF gene Essential = Mon-Essential  {support=1 falsevalues = 34) AND
gene.Chromosaome =11 (support=1 falsevalues = 48)
THEM gene.Localization = endosome..

actual support=1

effective cover =1

false values = 34

4]

|| Browse || Save || View Grid

Figure 21. Rules Output

If the user presses “View Grid” button, rules are shown in a grid. GridPanel class is

added to content pane of the frame. Look at Figure 22.
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RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

RULES DECISION ACCURACY % Actual Support False%alues
gene.Essential = Essential  AMD gene.Chromosome = 9 gene.Localization = transport vesicles 0,167 2| 10
gene.Essential = Mon-Essential  AMD gene.Chromosome = 1 gene.Localization = transport vesicles 0,143 1 5]
gene.Essential = NorrEssential  AND gene.Chrornosome = 14 | gene.Localization = peroxisome.. 0,074 2 25
yene.Essential = Nor-Essential - AMD gene.Chromosome=8 | gene.Localization = peroxsome.. 0,071 il 13
gene.Essential = Essential  AMD gene.Chromosome = 7 gene.Localization = nucleus 0,792 18 ]
gene.Chromosome = 1 peroxisome. 0,083 1 11
gene.Essential = Nor-Essential  AND gene.Chrornosome =11 | gene.Localization = endogame.. 0,029 i 34/
yene.Essential = Nor-Essential  AND gene.Chromosome= 14 | gene.Localization = endogome.. 0,037 il 26
gene.Chromosome =10 i cell wall.. 0,022 1 45
gene.Chromosome = 4 gene.Localization = lipid particles 0,008 1 126
yene.Essential = Esgential  AND gene.Chromogame = 11 gene.Localization = golgi 0,214 3 11
yene.Chromasome =7 gene.Localization = extracellular.. 0,012 il 749
gene.Chromasarme = 10 yene.Localization = extracellular.. 0,023 il 44
gene.Essential = Essential  AMD gene.Chromosome = 3 gene.Localization = ER 0,288 2| &
gene.Essential = NorrEssential  AND gene.Chrornosome= 13 | gene.Localization = integral mermbrane.. 0,023 il 42|
gene.Chromasome =12 gene.Localization = integral mermbrane.. 0,028 2 70

Print HTML

Figure 22. Rules in Grid Panel

If the user presses Print HTML, rules are shown in HTML table. Rules in HTML can

be saved as html extension.
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B RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

HIML
RULES DECISION ACCURACY% Actual Support  |FalseValues
gene. Essential = Essential AND gene. Chromosome = 9 gene Localization = transport vesicles.. 0.16666606606666666 20 1.0
gene Essential = Mon-Essential AND gene. Chromosome = 1 gene Localization = transport vesicles 0.14285714285714285 Lo 6.0
gene. Essential = Non-Essential AND gene. Chromosome = 14 gene Localization = peroxisome.. 0.07407407407407407 20 5.0
gene Essential = Mon-Essential AND gene. Chromosome = 9 gene Localization = peroxisome 0.07142857142857142 Lo 13.0
gene. Essential = Essential AND gene. Chromosome =7 gene Localization = nuclews. 0.7916666660666666 10.0 5.0
gene.Chromosome = 1 gene Localization = peroxisome 0.08333333333333333 Lo 1o
gene. Essential = Non-Essential AND gene. Chromosome = 11 gene Localization = endosome. . 0.02857 142857142857 Lo 34.0
gene Essential = Mon-Essential AND gene. Chromosome = 14 gene Localization = endosome. 0.037037037037037035 Lo 26.0
gene. Chromosome = 10 gene Localization = cell wall. 0.021739130434782608 Lo 45.0
gene. Chromosome = 4 gene Localization = lipid particles 0.007874015748031496 Lo 126.0
gene. Essential = Essential AND gene. Chromosome = 11 gene Localization = golgl. 0.2142857 1428571427 30 1o
gene.Chromosome =7 gene Localization = extracellular 0.0125 Lo 790
gene. Chromosome = 10 gene Localization = extraceliular.. 0.021739130434782608 Lo 45.0
gene Essential = Essential AND gene Chromosome = 3 gene Localization = ER. 0.2857142857 142857 20 5.0
gene. Essential = Non-Essential AND gene. Chromosome = 13 gene Localization = integral membrane 0.023255813053488372 Lo 42.0
gene.Chromosome = 12 gene Localization = mntegral membrane Q027777 F7TTITIG 20 700

Figure 23. HTML Panel that Contains Rules Generated.

For the user generated rules become more meaningful with the bar chart. GUI draws

the bar chart by using the getValues method of RilaDAO class. This method contains

a query which is illustrated in Figure 24.
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public static Listc<Object:> geiWValmes (Connection connection, 3tring table,
String columnniatoe)

List<Ohjects> list = new ArrayList<Chjecti{];

String query = "select distinct (" + table + "7
+ columnMame + ") rowllame, count (" + table + .7 4+ columnMame + T
+ " Rowlurber from " 4+ takhle + " group by " + tahle + 07 4+ coluwnnlame

" order by RowNuber desc'™:
try |
Statement sthnt = connection.createlitatement ()7
BesultSet rst=stmt.executeluery (quUery) ;

whilelrst.next (1) {
Stringl[] arr=s{rst.getitring("rowlame™)  rat.getitring ("Rowlhuher ™) )
System. cut.println (s "4rarr (0] 4+ ————"4arr[1]) !
list.add{arr) ;
H
} catch (SQLException ex) |
Logger.getlLogger(RilabilO.class.getName () ) . log(Level .5EVEES, null, ex):
'
retcurn list:

Figure 24. getValues Method for Drawing Bar Chart

Figure 25 presents the bar chart which is drawed by the query executed in getValues
method. In Figure 25 selected table is gene and selected column is Localization. Thus
executed query is:

select distinct(gene.Localization) rowName,count(gene.L.ocalization) RowNumber

from gene group by gene.Localization order by RowNumber desc
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RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

3 gene
[ Essential
[ chromozarme

[ jLacalization

Localization

Rowhumber

nucleus

366

cytoplasm.

1492

mitochondria

[it2]

cytoskeleton.

54

plasma membrane.

43

43

ER
[
U nuslei sl i . ER anlai

Annle transnar ies i

Iaall_linid narinlels

Figure 25. Bar Chart for Gene Table and Localization Column

3.4.3 Implementation

For development of the software multimedia PC was used with a 1.86 GHz Intel

Pentium M CPU and 1.50 GB Ram. Operating system was Windows XP. In addition,

MySQL Server 5.1 was installed on this computer. For testing the connectivity to

other DBMS, MSSQL Server 2005 and Netbeans IDE 6.9.1 were installed on the

computer which had 2.33 GHz Intel Core 2 Duo CPU and 3 GB Ram. Connectivity

is tested locally.
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RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

User Name : |Sa |

Password : |""" |
Driver : |cnm.micrnsnﬂ.sqlsenmr.idhc.SQLSewerDriver | - |
DB Url: |idbc:sqlSer\rer:.frlncaIhDst;database:master;integratedSecuri|

Message

@ Database connection established.(com.microsoft.sqlserver.jdbc.SQLServerDriver)

Please wait while loading...

Figure 26. SQL SERVER Connectivity

For testing the platform independence of Java GUI, OpenSUSE 11.3 and Java
Version of Netbeans IDE 6.9.1 were installed on the computer which had 2.33 GHz
Intel Core 2 Duo CPU and 3 GB Ram. All of the platforms had JDK 1.6.0. No third

party tool was used.
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gene Essential gene. Localization
gene. Essential gene.Localization
gene. Essential gene Localization
gene Essential . gene. Localization
gene. Essential gene.Localization
gene. Essential gene Localization
gene Essential gene. Localization
gene. Essential gene.Localization =
gene. Essential gene.Localization
gene. Chromosome = 13 gene Localization

emre@ sthlkpcglE0:~= cat /etc/issue
\Welcome to openSUSE 11.3 "Teal' - Kernel \r (\1).
- RILA - GRAPHICAL USERINTERFACE
emre@isthlkpcgls0: -= uname -r T
GNOME Terminal K RULES DECISION Suppert FalsaValues
emre@ sthlkpeg150:~> [] 92ne Essential = Essential 92ne Localization = mitochon.. 13 0
gene. Essential gene Localization = lipid par. 1 0
gene. Essential = Non-Essent... | gene Localization = mitochon 55 0
gene. Chromosome = 4 gene Localization 7| 0
[M=t8z=ns INE 6.9 gene Essential = Non-Essent. | gene Localization 0]
gene. Essential gene.Localization 2 ]
gene. Essential gene Localization 1 0
gene.Chromosome = 4 gene Localization = ER. 0
gne Essential = Non-Essent... | gene Localization = extracel.. H ]
gene. Essential = Non-Essent... | gene. Localization = nucleus 184 0
gene. Chromosome = 12 gene. Localization = mitochon B 0
gene.Essential = Essential gene.Localization = nucleus.. 164 ]
gene. Chromosome = 4 gene Localization = nucleus 6 0
gene. Essential = Non-Essent._ | gene Localization = peroxiso. o|=
gene.Chromosome = 12 gene.Localization = peroxiso. ]
gene. Essential ssent...| gene Localization = plasma 3 0
gene.Essential = Essential gene.Localization = plasma... ]
gene. Chromosome = 15 gene Localization 0
gene. Essential i gene. Localization 0
0|
0|
0]
0|
0|
0]
0|
0|
0|
0|

transpor. 3

Print HTML

RILATGRAPHICALUS Y [E] linux-uzc Eld 17:00 @

Figure 27. GUI on LINUX
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CHAPTER 4

CONCLUSION
In chapter two the basic architecture, predecessors and the rule selection strategies of
RILA have been explained. Two different strategies which are applied by RILA;
select early and select late strategy, have been discussed which are very important to
be considered for the efficient performance of the system according to the situation.
In chapter three the main part of the work which was designing a user interface for

RILA had been described.

In conclusion, RILA makes use of the SQL queries and directly uses the data in
RDBS and collaborates with the DBMS. This way, it optimizes the query execution
procedure. RILA is able to mine relational data stored in the relational database
without requiring a local copy of the data. RILA is simple but powerful inductive
algorithm used in the process of machine learning. However before this work it was
difficult to work with RILA due to the lack of user-interface. Swing library has been

used for making user interface graphical and more user friendly.

Designed GUI provided to users :

e A connection to jdbc database and hierarchy in the tables and columns get

retrieved by this connection.
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® A chance for selecting the “rule selection strategy” and a chance for setting
parameters of the chosen strategy easily.

e Logs of the processes of the chosen algorithm.

e List of the rules with their support values.

® A bar chart which is designed according to the values in training set.

The design approach of GUI permits enlargement. There are some practical issues
that can apply to the GUI. Showing the history of rules generated gives benefits to
user. Also “select queries” executing ability without using any third party database
tool provides user to work easy with RILA. Above ideas have considered as a future

work.
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APPENDIX A

OUTPUTS OF RULES GENERATED BY RILA

Metalnfo:

£ RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

Mztalnfo

[»

Getting metadata information for the table: composition
Column: Class, type=YARCHAR, size=20

Column: Camplex, type=VARCHAR, size=30

Column: Phenotype, type=vARCHAR, size=30

Colum: Motif, type=LOMNGTEXT, cize=2147483647
Calumn: Function, type=LORGTEXT, size=2147453647
Column: GenelD, type=VARCHAR, size=10

Imported table: compasition

Cetting metadata informmation for the table: gene

Column: GenelD, type=YARCHAR, size=10

Column: Essential, type=LOMGTEXT, size=2147483647
Column: Chromosome, type=LOMGTEXT, 5ize=2147483647
Column: Localization, type="YARCHAR, size=22

Imparted table: gene

Getling metadata information for the table: interaction
Column: aeneid?, type=sLOMGTEXT, size=2147483647
Column: geneid2, type=LOMGTERT, size=2147483647
Column: type, type=LOMNGTEXT, sze=2147400G47
Column: expar, type=FLOAT, size=12

Imported takle: interaction

4

|| Browse || Save |
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Rule Set Parameters:

EJ RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

Rule Set Parameters

targetTahle=gene

minimumsupponP=2%
maxSizeFarHypothesis=2

penaltyFactar=5
ignarelnknownialues=true
minFrmeasure=0.0
maxtumhberOHypothesesToExend="1000

|| Browse || Save |

Numbers:

RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

Numbers
null
Rules coverage summary.
tlass #0Objects, #rovered, Gcovered
cellwall 1.0 1.0 100%
eytoplasm 192.0 [Ri} oo
eytoskeletan &880 0o 0.0
endasome. 4.0 2n 50%
ER. 430 20 4,65%
extracellular. 20 20 100%
olgi 35.0 30 8.57%
integral membrane a0 an 100%
lipid particles. 1.0 1.0 100%
mitachondria. 69.0 (R} oo
nucleus 366.0 19.0 519%
pergisome 100 40 40%
plastna mermbrane. 43.0 0.0 0.0
transportvesicles. 170 an 17,69%
wacunle 180 oo oo
ALL ae2.0 400 4 64%

max class: nucleus. has 366 rows. (default rule)
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Log of Searching Rules:

RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

Log 0f SearchingRule

Building hypotheses using table: gene

Building hypotheses using column: Essential
Building hypotheses using column: Chromosome
Built fypotheses using table: gene #of hypotheses=5

Generating rules farthe class: ER.

Mumber of class examples: 43

Building hypotheses using table: gene

Building hypotheses using column: Essential

Building hypotheses using column: Chromosome
Built hypotheses using table: gene #of hypotheses=17

Generating rules for the class: exracellular,
Mumber of class examples: 2

Building hypotheses using table: gene

Building hypotheses using column: Essential
Building hypotheses using column: Chramosome
Built hypotheses using table: gene #of hypotheses=3
Rule selection out of 3 hypotheses

Mew rule generated
IF

gene.Chromosome = 10 (suppont=112 false values=45/860 fmeasure=0,0417 score=0,2384)

THEM gene Localization = exdracellular
actual support=1
effective cover on the target table = 1
false values = 45

Mew rule generated
IF
gene.Chromasame =7 (suppot=1/2 false values=T Y860 frneasure=0,0244 score=0,0407)

THEM gene.Localization = extracellular.
actual support=1
effective cover on the target table = 1

fal las — 70

Applied Rules:

RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

Applied Rules

YETE G ITOTOSUTTE = 10 (SUPHOT= 172 T615E TallEs—4 Ora0 0 TTEdSHE=1,0% 17 SLOTE=1, Z305]

THEM gene Localization = esdracellular
actual suppart=1

effective cover on the targetiable=10
falsevalues =10

True predictions: 0

False predictions: 0

IF
gene.Chromosome = 7 (support=1i2 false values=73/860 fmeasure=0,0244 score=0,0407)

THEM gene. Localization = esdracellular
actual suppart=1

effective cover on the targettable=0
false values =10

True predictions: 1

False predictions: 85

F

gene.Chromosome = 4 (suppor=1i1 false values=126/861 fmeasure=0,0156 score=0,2683)

THEM gene Localization = lipid particles
actual support=1
effective cover on the targettable=0
false values =10
True predictions: 1
False predictions: 126
Default rule: gene.Localization = nucleus.
True predictions: 154
False predictions: 219

Total # of true predictions: 191
Total # of false predictions: 671

Accuracy and Predictions

Humber of objects predicted: true=191, false=671, total=882

Accuracy=0 221 577726218057 46
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List of Generated Rules:

RILA - GRAPHICAL USER INTERFACE

Program Menu Menu

List Of GeneratedRules

iy

gene.Chromosome =9 (suppor=1M10 false values=291852 fmeasure=0,05 score=-0,0702)

THEM gene Localization = peroxisame.
actual support=1

effective cover on the targettable =1
false values =13

accuracy: 7,14%

tlass examples coverad (suppor 0%

Rule ho 15:

IF

gene.Essential = Essential (support=2/17 false values=10/845 Tmeasure=0,1379 score=0,117)
AMD

gene.Chromosome = 9 (SUppor=2iT false values=28/845 fmeasure=0,0851 score=-0,0961)

THEM gene Localization = transport vesicles
actual support=2
effective cover on the target table = 2
false values =10
accuracy. 16,67%
class examples covered {support): 0%

Rule ho 18

IF

gene.Essential = Non-Essential (support=1/17 false values=6/845 fmeasure=0,0833 score=0,0233)
AMD

gene.Chramasarme =1 (sUppot=1717 false values=11/245 fmeasure=0,069 score=-0,0062)

THEM gene.Localization = transport vesicles

actual support=1

effective cover on the target table = 1

false values = 6

accuracy: 14,29%

class examples covered {support): 0%
surm of suppart values: 40

sum of false covers: 474
Murnber of canditions in all rules: 26
Fredicted average accuracy = 0,43
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