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The study subject of this thesis is developing user interface for the learning algorithm 

named RILA which is designed for relational databases. RILA algorithm developed 

by adding new features  on ILA and ILA2 which are inductive learning algorithms 

developed before RILA algorithm. While the user interface is developed,  showing of 

the rules generated by RILA aimed to be understandable to the user. In addition,  the 

logs of the process of rule generation are showen to the user. In developmental stage, 

the library which contains the graphical elements is used and platform-independent 

programming language was chosen. The user interface is also has ability to connect 

to multiple relational database. It is observed that; the software provides the 

possibility of adding new modules in the future as of the design. 
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Bu tezin çalışma konusu ilişkisel veritabanları için tasarlanmış olan RILA adlı bir 
öğrenme algoritması için kullanıcı arayüzü geliştirmektir. Bu algoritma kendisinden 
önce  geliştirilen tümevarımsal öğrenme algoritmaları olan ILA ve ILA2’ nin üzerine 
yeni özellikler eklenerek geliştirilmiştir. Kullanıcı arayüzü geliştirilirken özellikle 
RILA’ nın üretmiş olduğu kuralların kullanıcıya gösteriminin anlaşılabilir olması 
hedeflenmiştir. Bunun yanında kural üretimi sürecinin logları da kullanıcıya 
gösterilmektedir. Gelişim aşamasında, grafiksel elemanlar içeren kütüphane 
kullanılmış ve platformdan bağımsız bir yazılım dili seçilmiştir. Bu kullanıcı 
arayüzü, birden çok ilişkisel veritabanına bağlanabilme yetisine de sahiptir. 
Gözlenmektedir ki; yazılım, tasarımı itibari ile gelecekte yeni modüller ekleme 
imkanı sağlamaktadır. 
 
 
 
 
 
 
 
 
Anahtar Kelimeler: Đlişkisel Öğrenme Algoritması, Grafiksel Kullanıcı Arayüzü, 
Tümevarım Algoritması. 
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CHAPTER 1 

INTRODUCTION 

Relational database management system (RDBMS) was initiated to cater to the ever 

increasing needs of storing complex data in an efficient way. Owing to its enhanced 

capabilities, relational databases stored by RDBMS can represent more complex and 

structured data as compared to the conventional single tables [1]; [2]. These benefits 

have made relational databases much more desirable for the storage and 

representation of modern scientific and commercial data. 

Data mining systems offer advanced searching mechanism which has a large number 

of great benefits. One of these benefits is that only the required pattern of the data is 

loaded in the memory, which not only saves time and memory consumption but also 

keeps the data free for other queries. To enjoy the benefits offered by the data mining 

systems and to overcome the complexities of relational data, collaboration is formed 

between these two. 

Traditional relational learning algorithms were called ILP-based algorithms [3], 

designed for relational data stored in Datalog/Prolog servers in the past. Efforts have 

been made to couple ILP-based algorithms with the modern relational database 

systems [4], however they have their limitations. 
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Data mining and machine learning both concern with retrieving interested data and 

unknown knowledge from databases [5]. According to [6] learning process that 

applied to a database which is used as a training set is called data mining. Learning 

rules from database can be made by an automated tool. During time, machine 

learning techniques has been developed and applied to large database to get 

knowledge in addition to learn rules for expert systems. Because importance of 

application of data mining has been rising [7]. 

So new relational learning algorithm explained first with its strategies and the need 

of UI for this learning algorithm is discussed. Then software architecture is 

described. It is finished by examining the GUI classes in an example. Finally whole 

work is concluded. 
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CHAPTER 2 

RILA – The New Rule Induction System 

This chapter is related to a new rule induction system known as RILA [8]. It can be 

used to extract recurring patterns from multiple relations which are interconnected. 

This rule induction system mainly comprises consists of four steps; Hypotheses 

Construction, Rule Selection, Pruning and Conversions to/from SQL. RILA can 

make use of two different strategies for rule selection according to the situation; 

Select Early Strategy and Select late Strategy.  There is also a brief introduction to 

Dimension Tables. 

2.1 Dimension Table 

A Dimension Table is usually a set of interconnected tables which surrounds the Fact 

Table in a schema, whereas, a Fact Table has measurements, metrics or facts 

regarding a business. Fact Table has the Foreign Keys which are Primary Keys in the 

Dimension Table. Dimension Tables are used to summarize, constrain or group data 

according to specific criteria while performing data mining queries. 

The attributes in the dimension tables portray the fact records in the Fact Table. 

Usually, they provide two different type of information to the analyst; descriptive 

information about the attributes in the Fact Table and information how the data in 

Fact Table should be  grouped  or  summarized.  This  grouping  or  summarization is 
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possible due to hierarchies separating the products in to different categories in a 

Dimension Table e.g. a motor showroom containing cars, jeeps which can be 

subdivided into cars of different brands or models.  

In dimensional modeling the attributes in each dimension are autonomous and do not 

depend on any attribute in the other dimension tables e.g. a motor showroom 

dimension table will contain data about the different showrooms only, a customer 

dimension table contains data about customers and a product dimension table 

contains information about products i.e. cars. But queries can join attributes in the 

different dimension tables to represent the required information. For example, a 

query might use the product, showroom, and time dimensions to ask the question 

"What was the cost of Mercedes sold in the northeast region in 2005?" Subsequent 

queries might drill down along one or more dimensions to examine more detailed 

data, such as "What was the cost of Mercedes-Benz SLR McLaren in New York City 

in the third quarter of 2005?"  

The data is in the warehouses is stored and can be used for many years to come. As 

the time passes changes in the attributes of a dimension table are becoming more and 

more evident. For example shipping address of a showroom may change after some 

time. This phenomenon can cause discrepancies in the data. 

2.2 Referential Integrity 

To avoid the discrepancies in the relational data, it is very necessary to maintain 

referential integrity between all the dimension tables and fact table as well. The 

primary keys of dimension tables reside as foreign keys in the fact table. Referential 

integrity means that each entry in the fact table must have a relevant record in the 
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dimensional table through primary key/foreign key relation. If there are some records 

missing, facts can be missed when the fact table is joined with the set of dimension 

tables and the queries will also fetch inconsistent results. 

2.3 The ILA and ILA2 Algorithms 

RILA has two predecessors; ILA and ILA2. Actually, RILA is based on ILA2 [9] 

which subsequently is the more advanced and noise-tolerant version of ILA [10]. It 

will be easier to understand the working of RILA to first go through a short review of 

its two forerunners and then the different new features which were added in RILA.  

2.3.1 The ILA Algorithm 

The ILA algorithm is an inductive algorithm for generating a set of classification 

rules for a collection of training examples i.e. extracting rules from a collection of 

examples in a given domain.  The example is described with reference to a fixed set 

of attributes; with each one having its own set of possible values. ILA generates 

classifiers in form of ordered rules and due to its hypotheses evaluation criteria it 

always generates 100% correct rules for the training data [8]. 

The ILA algorithm works in a repetitive fashion. Each iteration of the algorithm 

searches for a rule which covers a large number of training examples of a single 

class. Once ILA has selected a rule it removes the examples covered by it from the 

training data by marking them, and appends the selected rule at the end of its set of 

rules selected so far. Instead of producing a decision tree ILA produces an ordered 

list of rules. 
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2.3.2 The ILA2 Algorithm 

The ILA2 algorithm is a sophisticated and noise-tolerant version of ILA. The ILA2 

algorithm has been designed to overcome the performance issues encountered in the 

ILA algorithm. These issues are eliminated by implementing a new hypothesis 

evaluation function by the selecting multiple rules, instead of selecting single rule as 

in ILA, respectively. Another difference from ILA is that the ILA2 takes the noise 

factor into account by using a penalty parameter defined by the user. 

Generally a hypothesis evaluation function’s score should increase both with the 

number tp of the positive instances covered and with the number tn of negatives not 

covered. The score should decrease in proportion to the number of negative instances 

incorrectly classified, fn. However, the original ILA evaluation metric discards a 

hypothesis if the number of incorrect classifications, fn, is greater than zero. For this 

reason,  ILA  does  not make  any  distinction  between  a  hypothesis which  

incorrectly classifies  100  instances  and  another  hypothesis which  incorrectly  

classifies  only  1 instance. The ILA evaluation metric can be summarized using the 

following terms. If a hypothesis covers any of the negative examples of the current 

class then the score is zero. Otherwise the score is equal to the number of positive 

examples covered.   

This  metric  assumes  no  noise  to  be  present  in  the  training  data,  searching  for  

a concept description  that  classifies  training  data  perfectly.  However, application 

to real-world domains requires methods for handling noisy data.  
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2.4 New Features in RILA 

RILA is based on ILA2 which in turn was based on ILA. Although RILA inherits 

many features from its predecessors yet many new features have been added in RILA 

in order to overcome the shortcomings of the other two algorithms. This new 

inductive learning algorithm adapts following main features; level-wise  search 

[11];[12]  and  the  example covering  approaches  from  ILA and the  hypothesis  

evaluation  metric  and  the  multiple  rule selection  idea  from ILA2 algorithm.  In  

addition  to  the  new  features  for  relational  learning,  RILA  also  has some  new  

features  that  ILA  and  ILA2  do  not  have.  Here is a brief summary of the new 

features in RILA.  

-  In addition to select early strategy, there is a more efficient rule selection strategy 

in RILA known as select late strategy.  

-  Implementation is carried out more efficiently as hypotheses can be refined by 

adding new conditions. They do not need to be generated from scratch in each 

learning loop in each level.  

-  New pruning strategies; the minimum support pruning, the minimum Fmeasure 

pruning, and the optimistic estimate pruning heuristics.  

-  The ILA2 hypothesis evaluation function is normalized by the total number of 

examples in the current class and in the other classes. This is needed to take into 

account also the varying number of examples in the active class, depending on the 

joins made when building a hypothesis. 
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2.5 Basic Architecture of RILA System 

[13] stated RILA as a  tightly-coupled data mining application. When RILA runs, 

comple training data does not have to be holden in its working memory.  Java is used 

as the coding language of this system and it uses JAVA JDBC API to communicate 

with the database management system. Figure 1 presents a simple illustration of the 

architecture of the system. 

 

Figure 1. The Basic Architecture of the RILA Induction System [8] 

To understand the architecture easily we can virtually divide it into two parts; one is 

the database server which not only stores and manages the data but also computes the 

results for the queries sent by the learning algorithm, second is the RILA learning 

algorithm which performs the actual search for rules by acting on certain steps which 

are explained in the next section. 

2.5.1 How It Works? 

By understanding the working of RILA one can also understand the benefits it offers 

while traversing the relational database, generating valid hypotheses and selecting 

rules. RILA has components which can construct hypotheses and select rules, 
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however, as it is a process for the relational databases, it also has components which 

can traverse the relational schema. 

The first step in the process can be called initialization as the database is connected, 

tables are selected and parameters for rule selections are defined by the user. The 

user connects to the desired database and selects the set of tables which stores the 

training data. Following are the two general input options for the initialization phase: 

1. The names of the tables that constitute the objects to be analyzed  

2. The name of the target table, and the name of the class attribute. 

Then the user starts the learning process. Meta-data queries are sent to the DBMS 

which fetch the descriptions of the columns, primary keys and foreign keys of the 

tables. The initialization phase ends here and the queries sent to the database after. 

These are generally for building valid hypotheses about the data. On the whole, the 

system sends SQL queries to the database system and then by analyzing the results of 

these queries it produces new hypotheses. At this point the system has the complete 

schema description of the training data.  

The two main steps which are performed at this stage are: 

1. The system sends SQL queries to the database system and analyzes the 

results.  

2. Then the system analyzes the results of these queries and generates new 

hypotheses. 

These two steps are repeated many times to further analyze the data.  When a new 

row is selected the examples which are covered by the rule selected are removed 
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from the active search space. RILA does not delete the rows covered from the input 

table. Instead, it creates a temporary table to store the identifiers of the examples 

covered. It uses the primary keys in the target table as an identifier for every example 

that has already been covered by it. These examples are then excluded from the 

search space with the help of a join to the temporary table in the SQL. 

The temporary table which stores information about the covered examples is also 

used to implement the ‘effective cover’. Effective cover is merely used to avoid 

redundant rule selection. The system has a goal to keep the rule set size to minimum, 

therefore, redundant rules are not wanted. The effective cover of a rule is defined as 

the number of examples it covers that have not been covered so far by any other rule. 

If the effective cover of a candidate rule is zero, it means that examples covered by 

this candidate rule were already covered by the previously selected rules. So this rule 

is not considered and not appended to the final rule list. 

The strategy applied by RILA makes sure that the input relational data stays in its 

original form and also stays available for the other process. The temporary table 

stores only the identifiers of the examples in the current class for which classification 

rules are being searched and it is cleared after each class is being processed.  

2.5.2 Query Generation 

Query generation is the basic functionally of both the hypotheses construction and 

rule selection however it acts differently for both of these different steps. During 

hypotheses generation the queries gather the recurring patterns and frequency 

information about the training data. This helps the system in making the initial and 
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subsequent valid hypotheses. When the rule selection process starts, query generation 

acts differently and it evaluates each candidate rule. 

RILA traverses the schema by the foreign keys and then builds the initial hypothesis. 

This hypothesis is then refined by adding new conditions. The current attribute 

column is considered as the new condition. The initial hypotheses are based on only 

one condition. Here is the template used to generate the SQL queries for finding 

hypotheses and their frequency values. 

Select attr, count (distinct targetTable.pk) from covered, path.getTableList() where 

path.getJoins() and targetTable.classAttr = currentClass and covered.id = 

targetTable.pk and covered.mark = 0 group by attr 

In this query, 

• attr is the name of the current attribute column, 

• targetTable is the target table, 

• pk is the name of the primary key column in the target table 

• covered is the name of the temporary table where identifiers of the objects covered 

by the selected rules are stored, 

• path refers to the path object that links the current table to the target table. 

• classAttr is the column representing the class attribute for the learning task 

• currentClass is the current class for which the hypotheses are being searched 
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2.5.3 Pruning 

When RILA is applied on large relational data, we can expect a large number of 

hypotheses generated, therefore, some kind of heuristic is required. The procedure 

used to reduce the number of hypotheses to a reasonable size is called pruning, which 

trims or prunes the hypotheses selected. The technical term used for this process is 

called pruning heuristic. 

There are diverse kinds of pruning heuristics available. Minimum Support Pruning 

Heuristic is considered to be the best one and used by the most of the data mining 

systems. No doubt, it is an effective approach and keeps the number of selected 

hypotheses small but it is not very effective for complex relational databases. The 

reason for this is that this pruning approach alone is not always good enough to avoid 

the weak hypotheses which are unlikely to produce strong hypotheses when they are 

refined. 

Therefore, for the larger and more composite problems more advanced and complex 

pruning techniques are utilized. These techniques are more likely to produce 

comparatively stronger hypotheses which also produce strong hypotheses when 

refined. Optimistic Estimate Pruning is one of the most commonly used approaches 

by the traditional machine learning systems such as ICL [14] and m-FOIL [15]. The 

optimistic estimate pruning is also known as beam search because of its pruning 

method. This approach specifies a number of best ‘n’ solutions which are desired. 

Any hypothesis and its descendants which fail to fall in the top n solutions are 

pruned. However, the user must specify a reasonable size for the parameter ‘n’ 

because if the ‘n’ is not large enough the system may suffer from the myopia 



 13

problem i.e. only few hypotheses are selected and some hypotheses which may have 

been important are pruned. 

RILA supports both minimum support pruning heuristic and optimistic estimate 

pruning heuristic. 

2.5.4 Rule Selection 

In inductive algorithm, there can be many different possible arrangements for 

hypotheses construction and rule selection, for example, one strategy may select 

rules every time a group of hypotheses is constructed, while another strategy may 

activate rule selection after all hypotheses have been constructed for the active class. 

RILA makes use of the two different rule selection strategies; The Select Early 

Strategy which is inherited from the ILA algorithm [16] and The Select Late Strategy 

which was developed with RILA. The difference between the two strategies is the 

activation of the rule selection process. The Select early strategy activates rule 

selection more frequently as compared to the select late strategy. The select early 

strategy activates the rule selection process as soon as the hypothesis is constructed 

for the current level whereas the select late strategy postpones the rule selection until 

all the hypothesis have been generated for all the levels of the active class. In turn, 

RILA works for each class, for example, if the class attribute has three different 

values the learning loop is repeated three times. 

When RILA is working on the select early strategy, the examples covered by the new 

rules are removed from the active search space as soon as a new rule is selected 

which results in the reduction of search space. Although it helps in reducing the 

training time required for learning tasks but the rules selected towards the need of the 
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learning process are not based on as many examples as available during the early 

stages of the learning process. To overcome this problem [17] proposed the weighted 

covering algorithm. In the projected algorithm, already covered positive examples 

are not deleted from the search space, instead, the algorithm stores a count with each 

example which shows how many times the example has been covered. This 

information is later used by the weighted relative accuracy heuristic.  

The select late strategy is free of this problem, however, because of the postponing 

the activation of rule selection until the enumeration of all the hypotheses, the select 

late strategy becomes more complex and needs a lot more computational resources. 

This more computational cost can cause efficiency problems. In order to avoid these 

efficiency problems the number of hypotheses generated is pruned by using 

optimistic estimate pruning heuristic.  

Now let us understand the working of RILA when these two rule selection strategies 

are used separately: 

2.5.4.1 Select Early Strategy 

Select early strategy activates rule selection more frequently. Every time the 

hypotheses are generated for a level, the select early strategy activates the rule 

selection process for the hypotheses built so far.  
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Figure 2. The Rila Algorithm Using the Select Early Strategy [8] 

Figure 2 demonstrates the working of RILA algorithm while using the select early 

strategy for a single class. The process is repeated for every class attribute in this 

class. First hypotheses are generated for the current class with one condition by 

traversing the input schema graph. Furthermore, two relational queries are executed 

for the every attribute column traversed. RILA builds a set of hypotheses on the basis 

of the results fetched by these queries. When the schema graph is traversed 

completely and query results have been process, the rule selection step starts. 

When the rule selection step starts, the hypothesis with maximum score is selected as 

the current new rule and this rule is removed from the active search space or 

hypothesis set. The ‘effective cover’ rule (described in the beginning) comes in to 

play and the examples which have been covered by the new rule are marked as 
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covered. The process of rule selection is repeated ‘p’ times (p is a predefined 

parameter).  

Once RILA has selected the first rule using select early strategy, it checks whether 

the examples covered by the new candidate rule are already covered by the previous 

rules or not. If these examples are already covered then this rule is pruned, otherwise, 

the new candidate rule is asserted as a new rule in the output rule set. 

The above mentioned process is repeated until the rule selection is completed. If the 

new rules have been selected and there is still data not covered by these rules then 

the initial hypothesis is rebuilt, however, this time that data is considered which is 

not covered by the already generated rules. This process is repeated until no new rule 

can be selected or all the examples in the currently active class have been covered by 

the generated rules. This indicates the completion of rule selection for level 1. 

After the completion of level 1, RILA moves to level two. It refines the best n 

hypotheses generated in the previous level by traversing the input schema graph and 

executing the two relational queries. New hypotheses are built on the basis of the 

results fetched by these queries. Once schema is traversed completely and the results 

fetched by the queries have been processed, the rule selection process starts once 

again. In all the next levels rules are selected as described for the step 1. These steps 

are repeated until the system reaches the predefined parameter m, then the algorithm 

terminates. 
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2.5.4.2 Select Late Strategy 

The select late strategy activates rule selection less frequently as compared to the 

select early strategy. The select late strategy activates the rule selection only after all 

the hypotheses have been generated for all the levels of the active class in the 

schema. Therefore, while using the select late strategy, the rules are selected after all 

the hypotheses have been constructed. These rule selection algorithms are more 

complicated. They have to ensure that the output rule set covers most of the instances 

in the training data after the hypotheses have been generated for all the levels of the 

current class instead of the rule selection at the end of every level. A simple 

illustration of this process is presented in Figure 3. 

 

Figure 3. Simple Illustration of RILA Algorithm Using the Select Late 

Strategy [8] 

In the select late strategy, the algorithm generates the hypothesis for the first level 

with one condition for the active class. As the rules selection is postponed by the 
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algorithm, it moves to level 2 and constructs new hypotheses by refining the n best 

hypotheses generated in the previous level, where n is the pruning factor which has 

been described previously in the pruning section. These steps are repeated until the 

level is equal to the predefined parameter m. When the level is equal to m, it means 

that hypotheses for all the levels of the active class have been constructed and rule 

selection process starts. 

In both cases; the select early and the select late strategies, the construction of 

hypothesis for the first level and its refining for the subsequent levels is the same. 

However, the difference occurs that unlike select early strategy there is no rule 

selection between the levels when using select late strategy. Furthermore, the best n 

hypotheses which are in every next level are selected only from the hypotheses 

constructed in the preceding level, this is necessary to stop the algorithm from 

refining the same hypotheses again at different levels. 

Figure 4 shows the rule selection algorithm when using the select late strategy. This 

process is also similar to the one used in select early strategy. During the rule 

selection, first the hypothesis which has the maximum score is considered the new 

rule. This rule is then removed from the search space of active hypothesis set. With 

the help of ‘effective cover’ all the examples covered by this rule in the temporary 

table are marked as covered, so they may not be reused during the rule selection 

process in future. Once the first rule is asserted, the next hypothesis with the highest 

score is selected as the new candidate rule. The effective cover of every candidate 

rule is determined by traversing the number of examples covered by the new 

candidate rule which are not already covered by any previous rule. 
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Figure 4.  Rule Selection Algorithm When Using the Select Late Strategy [8] 

Effective cover is used to recalculate the score of the candidate rule here again. Once 

the score is calculated it is compared to the score of the next hypothesis, already 

stored in the tree of hypotheses. If the score is higher than the next hypothesis, this 

candidate rule is asserted as a new rule and the hypotheses is removed from the 

active hypotheses set, to stop it from being compared again in the future. All the 

examples covered by this new rule, which are present in the temporary table, are 

marked as covered. But if the score of the current candidate rule is less than the score 
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of the next hypothesis then the parameter l is used for the decision making by the 

following two methods:  

1- If the difference between the current score of the hypothesis and its original score 

before the rule selection started is more than the parameter l, then the candidate rule 

is selected as a new rule, and the examples covered by the new rule are marked in the 

temporary table as covered.  

2- If their difference is less than the parameter l, the score of the hypothesis is set to 

score of the candidate rule and then the hypothesis is inserted back to the sorted tree 

of hypotheses. The rule selection process continues using the next hypothesis as it 

now becomes the hypothesis with the highest score. Rule selection is repeated until 

all the examples in the active class are covered by the generated rules or until there 

are no more hypotheses with a positive score.  

2.5.5 Optimistic Estimate Pruning 

Optimistic estimate pruning is usually used with select late strategy, and they both 

together make a good solution for rule selection process of RILA for complex 

relational databases. If this pruning strategy is not applied, the number of hypotheses 

generated by select late strategy can become impractically large even for a moderate 

size data. The optimistic estimate pruning heuristic exploits the fact that we are 

interested in the n best solutions, if a hypotheses or its descendents cannot make it in 

the top n list, this branch is pruned by the algorithm. 
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2.5.6 Strategy Selection 

Both strategies; the select early strategy and the select late strategy, have a different 

process for the rule selection and as a result have different benefits to offer according 

to different situations. Choice of any rule selection strategy mainly depends on the 

performance criteria of a learning task. 

As the select early strategy activates rule selection after the generation of hypotheses 

for each level, therefore, the individual rules are smaller. If the performance criteria 

of the learning tasks require the individual rules to be small, the select early option is 

the best choice. The computational cost of the select early strategy is also low, which 

can be a factor in selecting this strategy. 

The select late strategy requires more computational resources but as it postpones the 

activation of rule selection until all the hypotheses have been generated, it selects the 

hypotheses with maximum score, as rules. If the learning task has the performance 

criteria to select the rules with maximum score, select late strategy is a better choice. 

The select late strategy can be optimized for computational expense by collaborating 

it with the optimistic estimate pruning heuristic. 

Let us take a look at the Table 1 which shows an example of training data to 

demonstrate a case where the select late strategy performs better than the select early 

strategy. 



 22

Table 1. Comparing of the Select Early and Select Late Strategies [8] 

Attribute A Attribute B Attribute C Class 

a1 

 
b1 c1 A 

a1 

 
b1 c2 A 

a2 

 
b2 c3 A 

a3 

 
b2 c3 A 

a4 

 
b1 c3 B 

a5 

 
b1 c3 B 

a1 

 
b2 c4 B 

a1 

 
b2 c5 B 

 

According to the training data in Table 1, the two hypotheses generated in the first 

level for the class A should be:   

Hypothesis 1: IF attribute A = a2 THEN class = A (support = 1)  

Hypothesis 2: IF attribute A = a3 THEN class = A (support = 1)   

When RILA is using the select early strategy, these two hypotheses are generated 

and simultaneously asserted as the new rules at the end of the first level. But if RILA 

is using the select late strategy, and the rule selection process is delayed until the end 

of the next level, the following hypothesis is generated in the next level:  

Hypothesis 3: IF attribute B = b2 AND attribute C = c3 THEN class = A (support = 

2)    
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It is evident that the hypothesis 3 alone covers the two examples which were covered 

by hypothesis 1 and hypothesis 2 which means it will have better generalization 

capacity as compared to the first two hypotheses. The reason for this is that it is 

supported by more number of training examples as compared to the first two 

hypotheses. When the selection is completed for all the levels select early strategy 

selects a total of eight rules with each rule having one condition on the other hand the 

select late strategy selects only four rules with each rule having two conditions. 

This example depicts that RILA or any rule induction algorithm would generate 

better rules when all hypotheses for one class are evaluated together at the end 

instead of evaluating rules for every level separately. However, this way, the number 

of hypotheses can become much larger especially in case of large size data. The 

solution to this is pruning which has been described earlier. 
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CHAPTER 3 

 GRAPHICAL USER INTERFACE FOR RELATIONAL INDUCTIVE 

LEARNING ALGORITHM 

This chapter describes the Java-based graphical user interface which is 

developed for the relational inductive learning algorithm RILA. RILA GUI consists 

of “rila.mygui” package which has relations with other classes by the help of 

MySingelton class. Package ”rila.mygui” has direct relations “rila.run”, “rila.gui” 

and “rila.support” packages. By the help of “rila.mygui” package user can interact 

with RILA fast and the outputs of RILA can be observed easily. It is shown that Java 

programming language is very useful in developing graphical software applications. 

Also Java programming language can meet the user interaction requirements. The 

whole design of RILA GUI has been made in Java programming language. 

3.1 What is GUI? 

A GUI is a visual interface to a program with graphical icons, visual indicators, etc. 

via which the user can interact with the program easily [18]. An efficient GUI should 

provide to the user a consistent appearance and a control mechanism such as menus, 

buttons, check boxes etc. which also provides sufficient information about their 

functionality for an efficient use. After user performs an action it should be 

predictable how the program will behave. Therefore labels and texts on the GUI 

should indicate components in a right way. 
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3.2 Why does RILA need a GUI? 

Increase of the interaction between human and the computer, more imposes the need 

to build up a GUI for computer programs. Every program has its own needs 

according to their focus area. RILA is a machine learning algorithm and used for rule 

generating in a database. It is actually difficult to connect a database and selecting 

related tables or columns inside of the RILA code. On top of all RILA’s advance 

searching mechanism requires some parameters. Without a GUI it is difficult to input 

new parameters in every try of the user for generating rules. Furthermore it is 

stressful to read the generated rules from the output console of IDE.  

3.3 Why Java? 

Java is an object-oriented language so provides the advantages of object-oriented 

programming. These benefits can be summarized as below [19]: 

• Simplicity: Java objects look like real world object, which reduces the 

complexity of the program structure. 

• Modularity: Modularity allows to be developed individual modules. Separate 

modules can be implemented by different teams. 

• Modifiability: Any minor changes in any class do not affect the other classes 

until their members are not related. 

• Extensibility: New features can be added easily by simple modifications in 

existing objects and by adding some new ones. 

• Maintainability: Objects to be maintained can be found with ease and can be 

fixed separately. 

• Re-Usability: Different programs can use the objects. 
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Furthermore, Java is a platform independent programming language.  Java source 

code is compiled into byte code which can be run on Java Virtual Machine(JVM). 

There are different JVMs for all operating systems so it is not important where 

source code is compiled. JVM interprets the byte code for the operating system or 

machine on which it runs. (Figure 5) 

 

Figure 5. Java Byte Code and Platform Independence 

 Java is considered as an efficient tool, since it also provides additional features such 

as: 

•        Swing is a package in Java standard library which supplies a collection of 

GUI elements. 

• Multi-threading makes available to execute different threads at the same time 

in the same Java program. 
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3.4 Software Architecture 

RILA has several classes and a number of packages that surrounds these classes. One 

more package is added to RILA package hierarchy to develop its GUI and a fast 

library; [20] swing is added for this GUI package. Components of Java Swing library 

used in GUI package can be seen in the Table 2 [24]. 

Table 2.  Components Used in GUI 

COMPONENT NAME DESCRIPTION 

JLabel Short text string display area for labeling components. 

JTextField Single line text area. 

JPasswordField It is a single line area. Original characters in this area is not 
shown. 

JTextArea Multi-Line area that displays plain text. 

JComboBox An Editable field with a drop-down list. 

JCheckBox A box which can be in a state of selected or deselected. 

JButton It is a push button. 

JMenuBar A bar that holds the menu. 

JMenu A pop-up menu that contains menu items. 

JMenuItem Any item in a menu. 

JPanel It is a container. 

JEditorPane It is a text component for editing text content in it. 

JTextPane A text component that can be marked up with attributes 

JFileChooser It helps user to be able to choose a file. 

JScrollPane Provides a scrollable view. 

JTable It is used for editing and displaying 2D tables. 

JTree It helps to display a set of hierarchical data as an outline. 

Table 3 shows new added classes and their packages. All the classes except Run and 

RilaDAO are in “rila.mygui” package. RilaDAO is used as a database access object 

for querying. HubCenterPanel uses RilaDAO to make a bar chart with the result of 

RilaDAO query. Run class is an API class. It provides the relation between GUI and 

the RILA. MySingelton class’ duty is catching outputs and some values and carrying 

them between GUI and RILA. 
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                                                Table 3. New Added Classes 

Class Name Package Name 

Entity rila.mygui 

GridPanel rila.mygui 

GuiMain rila.mygui 

HTMLPanel rila.mygui 

HubBarPanel rila.mygui 

HubCenterPanel rila.mygui 

HubPanel rila.mygui 

InputPanel rila.mygui 

JTreePanel rila.mygui 

LoginPanel rila.mygui 

MySingelton rila.mygui 

Settingsparam rila.mygui 

jEditorPane rila.mygui 

Run rila.run 

RilaDAO rila.support 

This relationship between RILA and GUI is established by the help of Run and 

MySingelton classes. Code segments from Run class and InputPanel class are 

presented as Figure 6 and Figure 7  to understand this relationship. 

 

Figure 6.  InputPanel Calls runAlgortihm Method of a Run Instance 

API method runAlgorithm of Run class is called from the GUI class InputPanel with 

the parameters minSupport, penaltyFactor, MaxSizeForRules, 
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ignoreUnknownValues, minF, maxNumHypothExtend, hubTable, targetAttribute, 

PrimaryKey, ClassTable, dimensionTables and lateStrategy. 

 

Figure 7.  Setting Part of runAlgorithm Method in Run Class 

Method runAlgorithm sets these parameters for RILA with the code above and runs 

it with the code below in Figure 8. It can be said that all parameters come from GUI 

and are used in RILA. 
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Figure 8. runAlgortihm Runs Select Late Startegy or Select Early Strategy 

Figure 9 presents the running diagram of the code in Figure8. 

class Business Process Model

InputPanel

+ actionPerformed:  void

Run

+ connect():  void

+ runAlgorithm():  void

SelectEarly

+ run():  void

SelectLate

+ run:  void

 

Figure 9. Process Diagram of Selecting Strategy 
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All the output of RILA is carried on MySingleton object. Thus MySingelton class 

has to be imported in some of the RILA packages. Table 4 shows these classes and 

their packages.                          

Table 4. Class That Imports Mysingelton Class 

Classes Packages 

RelationalILA rila.algorithms 

SelectLate rila.algorithms 

SelectEarly rila.algorithms 

MetaImporter rila.relation 

Hypothesis rila.rule 

RelationalRuleSet rila.rule 

Rule rila.rule 

Globals rila.util 

Run rila.run 

 

MySingelton class has some get / set functions to behave like an inter class between 

RILA and GUI. Here is the get / set functions: 

• public String getMetaInfo() 

• public void setMetaInfo(String meta) 

• public String getRules() 

• public void setRules(String rule) 

• public String getRuleSetParameters() 

• public void setRuleSetparameters(String str) 

• public String getAppliedRules() 

• public void setAppliedrules(String appl) 

• public String getListofParameters() 

• public void setListofParameters(String listOfParams) 

• public String getLogofSearchingRule() 
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• public void setLogofSearchingRule(String str) 

• public String getNumbers() 

• public void setNumbers(String num) 

• public String getListofgeneratedRules() 

• public void setListofGeneratedRules(String str) 

Above methods are used by the classes SelectEarly,SelectLate, RelationalILA, 

MetaImporter, Hypothesis, RelationalRuleSet, Rule, Globals, Run to set and by 

jEditorPane to get the final outputs. Figure 10 illustrated the diagram of above 

statement. 

 

Figure 10. Class Model for Mysingelton Related Classes 
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3.4.1 GUI Package 

In Table 5 all the classes in this package and what they extends are presented. 

Table 5. Classes and Their Extendings 

Entity - 

GridPanel JPanel 

GuiMain JFrame 

HTMLPanel JPanel 

HubBarPanel JPanel 

HubCenterPanel JPanel 

HubPanel JPanel 

InputPanel - 

JTreePanel JPanel 

LoginPanel - 

MySingelton - 

Settingsparam - 

jEditorPane JPanel 

 

GuiMain class is the main class which is responsible for launching GUI. This class 

extends JFrame so every panel that is wanted to be displayed is added GuiMain’s 

content pane. It is possible to write a panel for the needs and add the panel to RILA 

GUI anytime. An example is added with RILA GUI’s screen shots to understand the 

classes of GUI package. 
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3.4.2 Example for the classes of GUI package 

In this work RILA is tried on “gene” database which was first used in KDD Cup 

2001  competition  [21] and “ensembl” database which is used in ensembl project
1
. 

Gene database is set on local mysql database server with a name “test”. MySQL 

Server 5.1 is installed on local machine and its url is 

jdbc:mysql://localhost:3306/test. In this database there are three tables: 

Composition, Gene, Interaction. If Select Early strategy is applied a table named 

“covered” is generated during process. Ensembl database does not let generating or 

droping objects from outside. Thus only Select Late strategy is applied to ensemble 

database.  

Its url is jdbc:mysql://ensembldb.ensembl.org:5306/aedes_aegypti_core_48_1b. 

After launching the code the first initialized form is GuiMain and LoginPanel is 

added to its contentpane. GUI is presented with its screen shots and some code 

segments in the package. 

                                                
1 EMBL - EBI and the Wellcome Trust Sanger Institute works on ensembl project to develop a 
software system which produces and maintains automatic annotation on selected eukaryotic 
genomes [25]. 
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Figure 11. LoginPanel.java 

To connect the database user name, password, database url must be correctly written 

in corresponding area. In the driver list there are class names of sql driver, mysql 

driver, derby driver. After pressing “Login” button if driver class is not found, it is 

handled by ClassNotFoundException. A connection is tried to establish by using  

“DriverManager.getConnection(dbURL, userName, password)” line. It is handled by 

SQLException. Look at Figure 12. 
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Figure 12. Code Segment of LoginPanel.Java for Connection a Database 

After connection is set, InputPanel and JTreePanel are adding to the main frame. 

JTreePanel is located at the WEST and InputPanel is located at the CENTER(Figure 

13). 

 

Figure 13. BorderLayouts of InputPanel and JTreePanel 
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JTreePanel is a data presenter in hierarchical way. Database name is shown at the 

top. Below from database name, all of the table names are presented at the same 

level. When user clicks on any table name, column names relevant to the selected 

table name are opened. A mouseReleased event added to the elements of JTreePanel. 

In this event myPopupEvent method is triggered and in this method JPopupMenu 

object is generated and some menu items are added to the JPopupMenu object with 

respect to the EntityType of the tree node that the coordinate of the mouse is on it. In 

order to understand EntityType look at Figure 14. 

 

Figure 14. Entity Class 

Menu items of JPopupMenu with respect to the EntityType: 

 If the EntityType is TABLE: 

• Select as hubtable 
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• Select as ClassTable 

• Select as Dimension Table 

If the EntityType is COLUMN: 

• Select as PrimaryKey 

• Select as Target Attribute 

Below code provides the spread of menu items (Figure 15). 

 

Figure 15.  Jtreepanel.Java Menu with respect to the Tree Node 
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For setting the parameters in the JPopupMenu, GUI uses Settingsparam get / set 

class. An inner class that implements ActionListener named  PopupActionListener is 

used to set the parameters by using its actionPerformed method (Figure 16). 

 

Figure 16 actionperformed Method in the Inner Class Popupactionlistener 
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In the above code params value is an instance of Settingsparam class. Here is the 

class. 

 

Figure 17. Settingsparam Class 

Duty of InputPanel class is to give user an ability to set all parameters for running 

RILA. Here are the parameters: 

• Penalty Factor 

• Max # of Hypothesis to Extend 

• Min F Value 

• Max Size For Rules 

• Minimum Support 

• Select Late Strategy 

• Ignore Unknown Values 
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Penalty Factor: For the evaluation of the hypothesis RILA needs a score. In the 

formula below tp represents the true positives and fn represents false negatives. For 

no sensitivity pf should set to 0 [22];[23]. 

            (2.1) 

Max # of Hypothesis to Extend: It determines the max number of hypothesis that can 

be extended in each level. 

Min F Value:   Minimum acceptable f measure value. By this value a hypothesis can 

be added to active hypothesis set. Thus it can be evaluated at the time of the rule 

selection process and new conditions also can be appended to this hypothesis. 

Minimum Support: Generated hypothesis should cover this minimum number. 

Select Late Strategy: If it is not checked, RILA uses Select Early Strategy 

Ignore Unknown Values: If it is checked during rule generation RILA ignore 

unknown database values like “?”. 

JTreePanel class sets the Hub table, Class Table, Dimension Tables, Primary Key, 

Target Attribute. 
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Figure 18. Code Segment of InputPanel.java (Values are Set from JTreePanel ) 

 

Figure 19. InputPanel ScreenShot 

After pressing “Run” button RILA generates outputs. User can reach these outputs 

by using menu bar. 
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                                                 Figure 20 Menu in GuiMain  

In “Menu” except “Re Input” and “View Bar Chart”, all of the menu items link to the 

relevant panel. By pressing “Re Input” user can set new values to RILA.”View Bar 

Chart” draws a bar chart for the tables in the connected database. All outputs except 

“Rules” which RILA generates are added to the appendix. “Rules” is given below for 

the parameters.   

Hub Table: Gene 

Class Table: Gene 

Dimension Tables: Composition, Interaction 

Primary Key: GeneID 

Target Attribute: Localization 

Penalty Factor: 5 

Max # of Hypothesis to Extend: 1000 
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Minimum f Value: 0 

Maximum Size for Rules: 2 

Minimum Support: 2 

Select Late Strategy: False 

Ignore Unknown Value: True 

Every output panel gives an opportunity to save output to a txt file (Figure 21). 

 

Figure 21. Rules Output 

If the user presses “View Grid” button, rules are shown in a grid. GridPanel class is 

added to content pane of the frame. Look at Figure 22. 
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Figure 22. Rules in Grid Panel 

If the user presses Print HTML, rules are shown in HTML table. Rules in HTML can 

be saved as html extension. 
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Figure 23. HTML Panel that Contains Rules Generated. 

For the user generated rules become more meaningful with the bar chart. GUI draws 

the bar chart by using the getValues method of RilaDAO class. This method contains 

a query which is illustrated in Figure 24. 
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Figure 24. getValues Method for Drawing Bar Chart 

Figure 25 presents the bar chart which is drawed by the query executed in getValues 

method. In Figure 25 selected table is gene and selected column is Localization. Thus 

executed query is:  

select distinct(gene.Localization) rowName,count(gene.Localization) RowNumber 

from gene group by gene.Localization order by RowNumber desc 
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Figure 25. Bar Chart for Gene Table and Localization Column 

3.4.3 Implementation 

For development of the software multimedia PC was used with a 1.86 GHz Intel 

Pentium M CPU and 1.50 GB Ram. Operating system was Windows XP. In addition, 

MySQL Server 5.1 was installed on this computer. For testing the connectivity to 

other DBMS, MSSQL Server 2005 and Netbeans IDE 6.9.1 were installed on the 

computer which had 2.33 GHz Intel Core 2 Duo CPU and 3 GB Ram. Connectivity 

is tested locally. 
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Figure 26. SQL SERVER Connectivity 

For testing the platform independence of Java GUI, OpenSUSE 11.3 and Java 

Version of Netbeans IDE 6.9.1 were installed on the computer which had 2.33 GHz 

Intel Core 2 Duo CPU and 3 GB Ram. All of the platforms had JDK 1.6.0. No third 

party tool was used. 
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Figure 27. GUI on LINUX 
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CHAPTER 4 

 

 
CONCLUSION 

In chapter two the basic architecture, predecessors and the rule selection strategies of 

RILA have been explained. Two different strategies which are applied by RILA; 

select early and select late strategy, have been discussed which are very important to 

be considered for the efficient performance of the system according to the situation. 

In chapter three the main part of the work which was designing a user interface for 

RILA had been described.  

In conclusion, RILA makes use of the SQL queries and directly uses the data in 

RDBS and collaborates with the DBMS. This way, it optimizes the query execution 

procedure. RILA is able to mine relational data stored in the relational database 

without requiring a local copy of the data. RILA is simple but powerful inductive 

algorithm used in the process of machine learning. However before this work it was 

difficult to work with RILA due to the lack of user-interface. Swing library has been 

used for making user interface graphical and more user friendly.  

Designed GUI provided to users : 

• A connection to jdbc database and hierarchy in the tables and columns get 

retrieved by this connection. 
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• A chance for selecting the “rule selection strategy” and a chance for setting 

parameters of the chosen strategy easily. 

• Logs of the processes of the chosen algorithm. 

• List of the rules with their support values. 

• A bar chart which is designed according to the values in training set. 

The design approach of GUI permits enlargement. There are some practical issues 

that can apply to the GUI. Showing the history of rules generated gives benefits to 

user. Also “select queries” executing ability without using any third party database 

tool provides user to work easy with RILA. Above ideas have considered as a future 

work. 
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OUTPUTS OF RULES GENERATED BY RILA 

 

 
MetaInfo: 
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Rule Set Parameters: 

 
 

 

Numbers:
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Log of Searching Rules: 

 

 

Applied Rules: 
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List of Generated Rules: 
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