
USER INTERFACE DESIGN FOR THE

RELATIONAL INDUCTIVE LEARNING ALGORITHM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

UTKU KAPUCU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

DECEMBER 2010

Title of the Thesis : User Interface Design For The Relational Inductive
Learning Algorithm

Submitted by Utku Kapucu

Approval of the Graduate School of Natural and Applied Sciences, Çankaya
University

Prof. Dr. Taner ALTUNOK
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Mehmet Reşit TO
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Examination Date : 0 1 . ^ U?10

Assist. Prof. Dr. Reza Z. HASSANPOUR
Supervisor

Examining Committee Members

Prof. Dr. Mehmet Reşit Tolun

Assist. Prof. Dr. Reza Z. Hassanpour

Assoc. Prof. Ferda Nur Alpaslan

(Çankaya Univ.)

(Çankaya Univ.)

(METU)

Ç . H , ñj.
n

STATEMENT OF NON-PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last Name :Utku Kapucu

Signature

Date : O l ' I X ^ Q i Q

iii

 iv

ABSTRACT

USER INTERFACE DESIGN FOR

THE RELATIONAL INDUCTIVE LEARNING ALGORITHM

Kapucu, Utku

M.S.c., Department of Computer Engineering

 Supervisor : Assist. Prof. Dr. Reza Z. Hassanpour

December 2010, 52 pages

The study subject of this thesis is developing user interface for the learning algorithm

named RILA which is designed for relational databases. RILA algorithm developed

by adding new features on ILA and ILA2 which are inductive learning algorithms

developed before RILA algorithm. While the user interface is developed, showing of

the rules generated by RILA aimed to be understandable to the user. In addition, the

logs of the process of rule generation are showen to the user. In developmental stage,

the library which contains the graphical elements is used and platform-independent

programming language was chosen. The user interface is also has ability to connect

to multiple relational database. It is observed that; the software provides the

possibility of adding new modules in the future as of the design.

Keywords: Relational Learning Algorithms, Graphical User Interface, Inductive

Algorithm.

 v

ÖZ

USER INTERFACE DESIGN FOR

THE RELATIONAL INDUCTIVE LEARNING ALGORITHM

Kapucu, Utku
Yükseklisans, Bilgisayar Mühendisliği Anabilim Dalı
Tez Yöneticisi: Assist. Prof. Dr. Reza Z. Hassanpour

Aralık 2010, 52 sayfa

Bu tezin çalışma konusu ilişkisel veritabanları için tasarlanmış olan RILA adlı bir
öğrenme algoritması için kullanıcı arayüzü geliştirmektir. Bu algoritma kendisinden
önce geliştirilen tümevarımsal öğrenme algoritmaları olan ILA ve ILA2’ nin üzerine
yeni özellikler eklenerek geliştirilmiştir. Kullanıcı arayüzü geliştirilirken özellikle
RILA’ nın üretmiş olduğu kuralların kullanıcıya gösteriminin anlaşılabilir olması
hedeflenmiştir. Bunun yanında kural üretimi sürecinin logları da kullanıcıya
gösterilmektedir. Gelişim aşamasında, grafiksel elemanlar içeren kütüphane
kullanılmış ve platformdan bağımsız bir yazılım dili seçilmiştir. Bu kullanıcı
arayüzü, birden çok ilişkisel veritabanına bağlanabilme yetisine de sahiptir.
Gözlenmektedir ki; yazılım, tasarımı itibari ile gelecekte yeni modüller ekleme
imkanı sağlamaktadır.

Anahtar Kelimeler: Đlişkisel Öğrenme Algoritması, Grafiksel Kullanıcı Arayüzü,
Tümevarım Algoritması.

 vi

ACKNOWLEDGMENTS

The author wishes to express his thanks to Prof. Dr. Mehmet Reşit TOLUN and to

his supervisor Assist. Prof. Dr. Reza Z. Hassanpour for their suggestions and

comments.

The author would also like to deepest gratitude Dr. Mahmut ULUDAĞ for his

guidance, advice, criticism, encouragements and insight throughout the research.

 vii

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISM .. iii

ABSTRACT ...iv

ÖZ ... v

ACKNOWLEDGMENTS ...vi

TABLE OF CONTENTS .. vii

LIST OF TABLES ..ix

LIST OF FIGURES ... x

LIST OF ABBREVIATION ... xii

CHAPTERS:

1. INTRODUCTION.. 1

2. RILA- THE NEW RULE INDUCTION SYSTEM 3

 2.1 Dimension Table .. 3

 2.2 Referential Integrity ... 4

 2.3 ILA and ILA2 Algorithms ... 5

2.3.1 The ILA algorithm .. 5

2.3.2. The ILA2 algorithm ... 6

2.4 New Features in RILA .. 7

2.5 Basic Architecture of RILA System .. 8

2.5.1 How it works? ... 8

2.5.2 Query generation... 10

2.5.3 Pruning ... 12

2.5.4 Rule selection ... 13

 viii

2.5.4.1 Select early strategy ... 14

2.5.4.2 Select late strategy ... 17

2.5.5 Optimistic estimate pruning .. 20

2.5.6 Strategy selection .. 21

3. GRAPHICAL USER INTERFACE FOR RELATIONAL INDUCTIVE
LEARNING ALGORITHM ... 24

 3.1 What is GUI? ... 24

 3.2 Why does RILA need a GUI? .. 25

 3.3 Why Java? ... 25

 3.4 Software Architecture .. 27

3.4.1 GUI package ... 33

 3.4.2 Example for the classes of GUI package 34

 3.4.3 Implementation ... 48

4. CONCLUSION .. 51

REFERENCES ... R1

APPENDIX .. A1

CV

 ix

 LIST OF TABLES

TABLES

Table 1. Comparing of the Select Early and Select Late Strategies 22

Table 2. Components Used in GUI .. 27

Table 3. New Added Classes .. 28

Table 4. Class That Imports MySingelton Class .. 31

Table 5. Classes and Their Extendings ... 33

 x

LIST OF FIGURES

FIGURES

Figure 1. The Basic Architecture of the RILA Induction System 8

Figure 2. The RILA Algorithm Using the Select Early Strategy 15

Figure 3. Simple Illustration of Rila Algorithm Using the Select Late Strategy17

Figure 4. Rule Selection Algorithm When Using the Select Late Strategy 19

Figure 5. Java Byte Code and Platform Independence 26

Figure 6. InputPanel Calls runAlgortihm Method of a Run Instance 28

Figure 7. Setting Part of runAlgorithm Method in Run Class 29

Figure 8. runAlgortihm Runs Select Late Startegy or Select Early Strategy 30

Figure 9. Process Diagram of Selecting Strategy .. 30

Figure 10. Class Model for MySingelton Related Classes 32

Figure 11. LoginPanel.java .. 35

Figure 12. Code Segment of LoginPanel.java for Connection a Database 36

Figure 13. BorderLayouts of InputPanel and JTreePanel 36

Figure 14. Entity Class ... 37

Figure 15. JTreePanel.java Menu with respect to the Tree Node 38

Figure 16. actionperformed Method in the Inner Class PopupActionListener . 39

Figure 17. Settingsparam Class .. 40

Figure 18. Code Segment of InputPanel.java (Values are Set from

JTreePanel) ... 42

 xi

Figure 19. InputPanel ScreenShot .. 42

Figure 20 Menu in GuiMain ... 43

Figure 21. Rules Output ... 44

Figure 22. Rules in Grid Panel ... 45

Figure 23. HTML Panel That Contains Rules Generated 46
.
Figure 24. getValues Method for Drawing Bar Chart 47

Figure 25. Bar Chart for Gene Table and Localization Column 48

Figure 26. SQL SERVER Connectivity ... 49

Figure 27. GUI on LINUX ... 50

 xii

LIST OF ABBREVIATIONS

ABBREVIATIONS

RILA Relational Inductive Learning Algorithm

ILA Inductive Learning Algorithm

GUI Graphical User Interface

UI User Interface

RDBMS Relational Database Management System

DBMS Database Management System

IDE Integrated Development Environment

JDK Java Development Kit

SQL Structured Query Language

CPU Central Processing Unit

GB Gigabyte

Ghz Gigahertz

 1

CHAPTER 1

INTRODUCTION

Relational database management system (RDBMS) was initiated to cater to the ever

increasing needs of storing complex data in an efficient way. Owing to its enhanced

capabilities, relational databases stored by RDBMS can represent more complex and

structured data as compared to the conventional single tables [1]; [2]. These benefits

have made relational databases much more desirable for the storage and

representation of modern scientific and commercial data.

Data mining systems offer advanced searching mechanism which has a large number

of great benefits. One of these benefits is that only the required pattern of the data is

loaded in the memory, which not only saves time and memory consumption but also

keeps the data free for other queries. To enjoy the benefits offered by the data mining

systems and to overcome the complexities of relational data, collaboration is formed

between these two.

Traditional relational learning algorithms were called ILP-based algorithms [3],

designed for relational data stored in Datalog/Prolog servers in the past. Efforts have

been made to couple ILP-based algorithms with the modern relational database

systems [4], however they have their limitations.

 2

Data mining and machine learning both concern with retrieving interested data and

unknown knowledge from databases [5]. According to [6] learning process that

applied to a database which is used as a training set is called data mining. Learning

rules from database can be made by an automated tool. During time, machine

learning techniques has been developed and applied to large database to get

knowledge in addition to learn rules for expert systems. Because importance of

application of data mining has been rising [7].

So new relational learning algorithm explained first with its strategies and the need

of UI for this learning algorithm is discussed. Then software architecture is

described. It is finished by examining the GUI classes in an example. Finally whole

work is concluded.

 3

CHAPTER 2

RILA – The New Rule Induction System

This chapter is related to a new rule induction system known as RILA [8]. It can be

used to extract recurring patterns from multiple relations which are interconnected.

This rule induction system mainly comprises consists of four steps; Hypotheses

Construction, Rule Selection, Pruning and Conversions to/from SQL. RILA can

make use of two different strategies for rule selection according to the situation;

Select Early Strategy and Select late Strategy. There is also a brief introduction to

Dimension Tables.

2.1 Dimension Table

A Dimension Table is usually a set of interconnected tables which surrounds the Fact

Table in a schema, whereas, a Fact Table has measurements, metrics or facts

regarding a business. Fact Table has the Foreign Keys which are Primary Keys in the

Dimension Table. Dimension Tables are used to summarize, constrain or group data

according to specific criteria while performing data mining queries.

The attributes in the dimension tables portray the fact records in the Fact Table.

Usually, they provide two different type of information to the analyst; descriptive

information about the attributes in the Fact Table and information how the data in

Fact Table should be grouped or summarized. This grouping or summarization is

 4

possible due to hierarchies separating the products in to different categories in a

Dimension Table e.g. a motor showroom containing cars, jeeps which can be

subdivided into cars of different brands or models.

In dimensional modeling the attributes in each dimension are autonomous and do not

depend on any attribute in the other dimension tables e.g. a motor showroom

dimension table will contain data about the different showrooms only, a customer

dimension table contains data about customers and a product dimension table

contains information about products i.e. cars. But queries can join attributes in the

different dimension tables to represent the required information. For example, a

query might use the product, showroom, and time dimensions to ask the question

"What was the cost of Mercedes sold in the northeast region in 2005?" Subsequent

queries might drill down along one or more dimensions to examine more detailed

data, such as "What was the cost of Mercedes-Benz SLR McLaren in New York City

in the third quarter of 2005?"

The data is in the warehouses is stored and can be used for many years to come. As

the time passes changes in the attributes of a dimension table are becoming more and

more evident. For example shipping address of a showroom may change after some

time. This phenomenon can cause discrepancies in the data.

2.2 Referential Integrity

To avoid the discrepancies in the relational data, it is very necessary to maintain

referential integrity between all the dimension tables and fact table as well. The

primary keys of dimension tables reside as foreign keys in the fact table. Referential

integrity means that each entry in the fact table must have a relevant record in the

 5

dimensional table through primary key/foreign key relation. If there are some records

missing, facts can be missed when the fact table is joined with the set of dimension

tables and the queries will also fetch inconsistent results.

2.3 The ILA and ILA2 Algorithms

RILA has two predecessors; ILA and ILA2. Actually, RILA is based on ILA2 [9]

which subsequently is the more advanced and noise-tolerant version of ILA [10]. It

will be easier to understand the working of RILA to first go through a short review of

its two forerunners and then the different new features which were added in RILA.

2.3.1 The ILA Algorithm

The ILA algorithm is an inductive algorithm for generating a set of classification

rules for a collection of training examples i.e. extracting rules from a collection of

examples in a given domain. The example is described with reference to a fixed set

of attributes; with each one having its own set of possible values. ILA generates

classifiers in form of ordered rules and due to its hypotheses evaluation criteria it

always generates 100% correct rules for the training data [8].

The ILA algorithm works in a repetitive fashion. Each iteration of the algorithm

searches for a rule which covers a large number of training examples of a single

class. Once ILA has selected a rule it removes the examples covered by it from the

training data by marking them, and appends the selected rule at the end of its set of

rules selected so far. Instead of producing a decision tree ILA produces an ordered

list of rules.

 6

2.3.2 The ILA2 Algorithm

The ILA2 algorithm is a sophisticated and noise-tolerant version of ILA. The ILA2

algorithm has been designed to overcome the performance issues encountered in the

ILA algorithm. These issues are eliminated by implementing a new hypothesis

evaluation function by the selecting multiple rules, instead of selecting single rule as

in ILA, respectively. Another difference from ILA is that the ILA2 takes the noise

factor into account by using a penalty parameter defined by the user.

Generally a hypothesis evaluation function’s score should increase both with the

number tp of the positive instances covered and with the number tn of negatives not

covered. The score should decrease in proportion to the number of negative instances

incorrectly classified, fn. However, the original ILA evaluation metric discards a

hypothesis if the number of incorrect classifications, fn, is greater than zero. For this

reason, ILA does not make any distinction between a hypothesis which

incorrectly classifies 100 instances and another hypothesis which incorrectly

classifies only 1 instance. The ILA evaluation metric can be summarized using the

following terms. If a hypothesis covers any of the negative examples of the current

class then the score is zero. Otherwise the score is equal to the number of positive

examples covered.

This metric assumes no noise to be present in the training data, searching for

a concept description that classifies training data perfectly. However, application

to real-world domains requires methods for handling noisy data.

 7

2.4 New Features in RILA

RILA is based on ILA2 which in turn was based on ILA. Although RILA inherits

many features from its predecessors yet many new features have been added in RILA

in order to overcome the shortcomings of the other two algorithms. This new

inductive learning algorithm adapts following main features; level-wise search

[11];[12] and the example covering approaches from ILA and the hypothesis

evaluation metric and the multiple rule selection idea from ILA2 algorithm. In

addition to the new features for relational learning, RILA also has some new

features that ILA and ILA2 do not have. Here is a brief summary of the new

features in RILA.

- In addition to select early strategy, there is a more efficient rule selection strategy

in RILA known as select late strategy.

- Implementation is carried out more efficiently as hypotheses can be refined by

adding new conditions. They do not need to be generated from scratch in each

learning loop in each level.

- New pruning strategies; the minimum support pruning, the minimum Fmeasure

pruning, and the optimistic estimate pruning heuristics.

- The ILA2 hypothesis evaluation function is normalized by the total number of

examples in the current class and in the other classes. This is needed to take into

account also the varying number of examples in the active class, depending on the

joins made when building a hypothesis.

 8

2.5 Basic Architecture of RILA System

[13] stated RILA as a tightly-coupled data mining application. When RILA runs,

comple training data does not have to be holden in its working memory. Java is used

as the coding language of this system and it uses JAVA JDBC API to communicate

with the database management system. Figure 1 presents a simple illustration of the

architecture of the system.

Figure 1. The Basic Architecture of the RILA Induction System [8]

To understand the architecture easily we can virtually divide it into two parts; one is

the database server which not only stores and manages the data but also computes the

results for the queries sent by the learning algorithm, second is the RILA learning

algorithm which performs the actual search for rules by acting on certain steps which

are explained in the next section.

2.5.1 How It Works?

By understanding the working of RILA one can also understand the benefits it offers

while traversing the relational database, generating valid hypotheses and selecting

rules. RILA has components which can construct hypotheses and select rules,

 9

however, as it is a process for the relational databases, it also has components which

can traverse the relational schema.

The first step in the process can be called initialization as the database is connected,

tables are selected and parameters for rule selections are defined by the user. The

user connects to the desired database and selects the set of tables which stores the

training data. Following are the two general input options for the initialization phase:

1. The names of the tables that constitute the objects to be analyzed

2. The name of the target table, and the name of the class attribute.

Then the user starts the learning process. Meta-data queries are sent to the DBMS

which fetch the descriptions of the columns, primary keys and foreign keys of the

tables. The initialization phase ends here and the queries sent to the database after.

These are generally for building valid hypotheses about the data. On the whole, the

system sends SQL queries to the database system and then by analyzing the results of

these queries it produces new hypotheses. At this point the system has the complete

schema description of the training data.

The two main steps which are performed at this stage are:

1. The system sends SQL queries to the database system and analyzes the

results.

2. Then the system analyzes the results of these queries and generates new

hypotheses.

These two steps are repeated many times to further analyze the data. When a new

row is selected the examples which are covered by the rule selected are removed

 10

from the active search space. RILA does not delete the rows covered from the input

table. Instead, it creates a temporary table to store the identifiers of the examples

covered. It uses the primary keys in the target table as an identifier for every example

that has already been covered by it. These examples are then excluded from the

search space with the help of a join to the temporary table in the SQL.

The temporary table which stores information about the covered examples is also

used to implement the ‘effective cover’. Effective cover is merely used to avoid

redundant rule selection. The system has a goal to keep the rule set size to minimum,

therefore, redundant rules are not wanted. The effective cover of a rule is defined as

the number of examples it covers that have not been covered so far by any other rule.

If the effective cover of a candidate rule is zero, it means that examples covered by

this candidate rule were already covered by the previously selected rules. So this rule

is not considered and not appended to the final rule list.

The strategy applied by RILA makes sure that the input relational data stays in its

original form and also stays available for the other process. The temporary table

stores only the identifiers of the examples in the current class for which classification

rules are being searched and it is cleared after each class is being processed.

2.5.2 Query Generation

Query generation is the basic functionally of both the hypotheses construction and

rule selection however it acts differently for both of these different steps. During

hypotheses generation the queries gather the recurring patterns and frequency

information about the training data. This helps the system in making the initial and

 11

subsequent valid hypotheses. When the rule selection process starts, query generation

acts differently and it evaluates each candidate rule.

RILA traverses the schema by the foreign keys and then builds the initial hypothesis.

This hypothesis is then refined by adding new conditions. The current attribute

column is considered as the new condition. The initial hypotheses are based on only

one condition. Here is the template used to generate the SQL queries for finding

hypotheses and their frequency values.

Select attr, count (distinct targetTable.pk) from covered, path.getTableList() where

path.getJoins() and targetTable.classAttr = currentClass and covered.id =

targetTable.pk and covered.mark = 0 group by attr

In this query,

• attr is the name of the current attribute column,

• targetTable is the target table,

• pk is the name of the primary key column in the target table

• covered is the name of the temporary table where identifiers of the objects covered

by the selected rules are stored,

• path refers to the path object that links the current table to the target table.

• classAttr is the column representing the class attribute for the learning task

• currentClass is the current class for which the hypotheses are being searched

 12

2.5.3 Pruning

When RILA is applied on large relational data, we can expect a large number of

hypotheses generated, therefore, some kind of heuristic is required. The procedure

used to reduce the number of hypotheses to a reasonable size is called pruning, which

trims or prunes the hypotheses selected. The technical term used for this process is

called pruning heuristic.

There are diverse kinds of pruning heuristics available. Minimum Support Pruning

Heuristic is considered to be the best one and used by the most of the data mining

systems. No doubt, it is an effective approach and keeps the number of selected

hypotheses small but it is not very effective for complex relational databases. The

reason for this is that this pruning approach alone is not always good enough to avoid

the weak hypotheses which are unlikely to produce strong hypotheses when they are

refined.

Therefore, for the larger and more composite problems more advanced and complex

pruning techniques are utilized. These techniques are more likely to produce

comparatively stronger hypotheses which also produce strong hypotheses when

refined. Optimistic Estimate Pruning is one of the most commonly used approaches

by the traditional machine learning systems such as ICL [14] and m-FOIL [15]. The

optimistic estimate pruning is also known as beam search because of its pruning

method. This approach specifies a number of best ‘n’ solutions which are desired.

Any hypothesis and its descendants which fail to fall in the top n solutions are

pruned. However, the user must specify a reasonable size for the parameter ‘n’

because if the ‘n’ is not large enough the system may suffer from the myopia

 13

problem i.e. only few hypotheses are selected and some hypotheses which may have

been important are pruned.

RILA supports both minimum support pruning heuristic and optimistic estimate

pruning heuristic.

2.5.4 Rule Selection

In inductive algorithm, there can be many different possible arrangements for

hypotheses construction and rule selection, for example, one strategy may select

rules every time a group of hypotheses is constructed, while another strategy may

activate rule selection after all hypotheses have been constructed for the active class.

RILA makes use of the two different rule selection strategies; The Select Early

Strategy which is inherited from the ILA algorithm [16] and The Select Late Strategy

which was developed with RILA. The difference between the two strategies is the

activation of the rule selection process. The Select early strategy activates rule

selection more frequently as compared to the select late strategy. The select early

strategy activates the rule selection process as soon as the hypothesis is constructed

for the current level whereas the select late strategy postpones the rule selection until

all the hypothesis have been generated for all the levels of the active class. In turn,

RILA works for each class, for example, if the class attribute has three different

values the learning loop is repeated three times.

When RILA is working on the select early strategy, the examples covered by the new

rules are removed from the active search space as soon as a new rule is selected

which results in the reduction of search space. Although it helps in reducing the

training time required for learning tasks but the rules selected towards the need of the

 14

learning process are not based on as many examples as available during the early

stages of the learning process. To overcome this problem [17] proposed the weighted

covering algorithm. In the projected algorithm, already covered positive examples

are not deleted from the search space, instead, the algorithm stores a count with each

example which shows how many times the example has been covered. This

information is later used by the weighted relative accuracy heuristic.

The select late strategy is free of this problem, however, because of the postponing

the activation of rule selection until the enumeration of all the hypotheses, the select

late strategy becomes more complex and needs a lot more computational resources.

This more computational cost can cause efficiency problems. In order to avoid these

efficiency problems the number of hypotheses generated is pruned by using

optimistic estimate pruning heuristic.

Now let us understand the working of RILA when these two rule selection strategies

are used separately:

2.5.4.1 Select Early Strategy

Select early strategy activates rule selection more frequently. Every time the

hypotheses are generated for a level, the select early strategy activates the rule

selection process for the hypotheses built so far.

 15

Figure 2. The Rila Algorithm Using the Select Early Strategy [8]

Figure 2 demonstrates the working of RILA algorithm while using the select early

strategy for a single class. The process is repeated for every class attribute in this

class. First hypotheses are generated for the current class with one condition by

traversing the input schema graph. Furthermore, two relational queries are executed

for the every attribute column traversed. RILA builds a set of hypotheses on the basis

of the results fetched by these queries. When the schema graph is traversed

completely and query results have been process, the rule selection step starts.

When the rule selection step starts, the hypothesis with maximum score is selected as

the current new rule and this rule is removed from the active search space or

hypothesis set. The ‘effective cover’ rule (described in the beginning) comes in to

play and the examples which have been covered by the new rule are marked as

 16

covered. The process of rule selection is repeated ‘p’ times (p is a predefined

parameter).

Once RILA has selected the first rule using select early strategy, it checks whether

the examples covered by the new candidate rule are already covered by the previous

rules or not. If these examples are already covered then this rule is pruned, otherwise,

the new candidate rule is asserted as a new rule in the output rule set.

The above mentioned process is repeated until the rule selection is completed. If the

new rules have been selected and there is still data not covered by these rules then

the initial hypothesis is rebuilt, however, this time that data is considered which is

not covered by the already generated rules. This process is repeated until no new rule

can be selected or all the examples in the currently active class have been covered by

the generated rules. This indicates the completion of rule selection for level 1.

After the completion of level 1, RILA moves to level two. It refines the best n

hypotheses generated in the previous level by traversing the input schema graph and

executing the two relational queries. New hypotheses are built on the basis of the

results fetched by these queries. Once schema is traversed completely and the results

fetched by the queries have been processed, the rule selection process starts once

again. In all the next levels rules are selected as described for the step 1. These steps

are repeated until the system reaches the predefined parameter m, then the algorithm

terminates.

 17

2.5.4.2 Select Late Strategy

The select late strategy activates rule selection less frequently as compared to the

select early strategy. The select late strategy activates the rule selection only after all

the hypotheses have been generated for all the levels of the active class in the

schema. Therefore, while using the select late strategy, the rules are selected after all

the hypotheses have been constructed. These rule selection algorithms are more

complicated. They have to ensure that the output rule set covers most of the instances

in the training data after the hypotheses have been generated for all the levels of the

current class instead of the rule selection at the end of every level. A simple

illustration of this process is presented in Figure 3.

Figure 3. Simple Illustration of RILA Algorithm Using the Select Late

Strategy [8]

In the select late strategy, the algorithm generates the hypothesis for the first level

with one condition for the active class. As the rules selection is postponed by the

 18

algorithm, it moves to level 2 and constructs new hypotheses by refining the n best

hypotheses generated in the previous level, where n is the pruning factor which has

been described previously in the pruning section. These steps are repeated until the

level is equal to the predefined parameter m. When the level is equal to m, it means

that hypotheses for all the levels of the active class have been constructed and rule

selection process starts.

In both cases; the select early and the select late strategies, the construction of

hypothesis for the first level and its refining for the subsequent levels is the same.

However, the difference occurs that unlike select early strategy there is no rule

selection between the levels when using select late strategy. Furthermore, the best n

hypotheses which are in every next level are selected only from the hypotheses

constructed in the preceding level, this is necessary to stop the algorithm from

refining the same hypotheses again at different levels.

Figure 4 shows the rule selection algorithm when using the select late strategy. This

process is also similar to the one used in select early strategy. During the rule

selection, first the hypothesis which has the maximum score is considered the new

rule. This rule is then removed from the search space of active hypothesis set. With

the help of ‘effective cover’ all the examples covered by this rule in the temporary

table are marked as covered, so they may not be reused during the rule selection

process in future. Once the first rule is asserted, the next hypothesis with the highest

score is selected as the new candidate rule. The effective cover of every candidate

rule is determined by traversing the number of examples covered by the new

candidate rule which are not already covered by any previous rule.

 19

Figure 4. Rule Selection Algorithm When Using the Select Late Strategy [8]

Effective cover is used to recalculate the score of the candidate rule here again. Once

the score is calculated it is compared to the score of the next hypothesis, already

stored in the tree of hypotheses. If the score is higher than the next hypothesis, this

candidate rule is asserted as a new rule and the hypotheses is removed from the

active hypotheses set, to stop it from being compared again in the future. All the

examples covered by this new rule, which are present in the temporary table, are

marked as covered. But if the score of the current candidate rule is less than the score

 20

of the next hypothesis then the parameter l is used for the decision making by the

following two methods:

1- If the difference between the current score of the hypothesis and its original score

before the rule selection started is more than the parameter l, then the candidate rule

is selected as a new rule, and the examples covered by the new rule are marked in the

temporary table as covered.

2- If their difference is less than the parameter l, the score of the hypothesis is set to

score of the candidate rule and then the hypothesis is inserted back to the sorted tree

of hypotheses. The rule selection process continues using the next hypothesis as it

now becomes the hypothesis with the highest score. Rule selection is repeated until

all the examples in the active class are covered by the generated rules or until there

are no more hypotheses with a positive score.

2.5.5 Optimistic Estimate Pruning

Optimistic estimate pruning is usually used with select late strategy, and they both

together make a good solution for rule selection process of RILA for complex

relational databases. If this pruning strategy is not applied, the number of hypotheses

generated by select late strategy can become impractically large even for a moderate

size data. The optimistic estimate pruning heuristic exploits the fact that we are

interested in the n best solutions, if a hypotheses or its descendents cannot make it in

the top n list, this branch is pruned by the algorithm.

 21

2.5.6 Strategy Selection

Both strategies; the select early strategy and the select late strategy, have a different

process for the rule selection and as a result have different benefits to offer according

to different situations. Choice of any rule selection strategy mainly depends on the

performance criteria of a learning task.

As the select early strategy activates rule selection after the generation of hypotheses

for each level, therefore, the individual rules are smaller. If the performance criteria

of the learning tasks require the individual rules to be small, the select early option is

the best choice. The computational cost of the select early strategy is also low, which

can be a factor in selecting this strategy.

The select late strategy requires more computational resources but as it postpones the

activation of rule selection until all the hypotheses have been generated, it selects the

hypotheses with maximum score, as rules. If the learning task has the performance

criteria to select the rules with maximum score, select late strategy is a better choice.

The select late strategy can be optimized for computational expense by collaborating

it with the optimistic estimate pruning heuristic.

Let us take a look at the Table 1 which shows an example of training data to

demonstrate a case where the select late strategy performs better than the select early

strategy.

 22

Table 1. Comparing of the Select Early and Select Late Strategies [8]

Attribute A Attribute B Attribute C Class

a1

b1 c1 A

a1

b1 c2 A

a2

b2 c3 A

a3

b2 c3 A

a4

b1 c3 B

a5

b1 c3 B

a1

b2 c4 B

a1

b2 c5 B

According to the training data in Table 1, the two hypotheses generated in the first

level for the class A should be:

Hypothesis 1: IF attribute A = a2 THEN class = A (support = 1)

Hypothesis 2: IF attribute A = a3 THEN class = A (support = 1)

When RILA is using the select early strategy, these two hypotheses are generated

and simultaneously asserted as the new rules at the end of the first level. But if RILA

is using the select late strategy, and the rule selection process is delayed until the end

of the next level, the following hypothesis is generated in the next level:

Hypothesis 3: IF attribute B = b2 AND attribute C = c3 THEN class = A (support =

2)

 23

It is evident that the hypothesis 3 alone covers the two examples which were covered

by hypothesis 1 and hypothesis 2 which means it will have better generalization

capacity as compared to the first two hypotheses. The reason for this is that it is

supported by more number of training examples as compared to the first two

hypotheses. When the selection is completed for all the levels select early strategy

selects a total of eight rules with each rule having one condition on the other hand the

select late strategy selects only four rules with each rule having two conditions.

This example depicts that RILA or any rule induction algorithm would generate

better rules when all hypotheses for one class are evaluated together at the end

instead of evaluating rules for every level separately. However, this way, the number

of hypotheses can become much larger especially in case of large size data. The

solution to this is pruning which has been described earlier.

 24

CHAPTER 3

 GRAPHICAL USER INTERFACE FOR RELATIONAL INDUCTIVE

LEARNING ALGORITHM

This chapter describes the Java-based graphical user interface which is

developed for the relational inductive learning algorithm RILA. RILA GUI consists

of “rila.mygui” package which has relations with other classes by the help of

MySingelton class. Package ”rila.mygui” has direct relations “rila.run”, “rila.gui”

and “rila.support” packages. By the help of “rila.mygui” package user can interact

with RILA fast and the outputs of RILA can be observed easily. It is shown that Java

programming language is very useful in developing graphical software applications.

Also Java programming language can meet the user interaction requirements. The

whole design of RILA GUI has been made in Java programming language.

3.1 What is GUI?

A GUI is a visual interface to a program with graphical icons, visual indicators, etc.

via which the user can interact with the program easily [18]. An efficient GUI should

provide to the user a consistent appearance and a control mechanism such as menus,

buttons, check boxes etc. which also provides sufficient information about their

functionality for an efficient use. After user performs an action it should be

predictable how the program will behave. Therefore labels and texts on the GUI

should indicate components in a right way.

 25

3.2 Why does RILA need a GUI?

Increase of the interaction between human and the computer, more imposes the need

to build up a GUI for computer programs. Every program has its own needs

according to their focus area. RILA is a machine learning algorithm and used for rule

generating in a database. It is actually difficult to connect a database and selecting

related tables or columns inside of the RILA code. On top of all RILA’s advance

searching mechanism requires some parameters. Without a GUI it is difficult to input

new parameters in every try of the user for generating rules. Furthermore it is

stressful to read the generated rules from the output console of IDE.

3.3 Why Java?

Java is an object-oriented language so provides the advantages of object-oriented

programming. These benefits can be summarized as below [19]:

• Simplicity: Java objects look like real world object, which reduces the

complexity of the program structure.

• Modularity: Modularity allows to be developed individual modules. Separate

modules can be implemented by different teams.

• Modifiability: Any minor changes in any class do not affect the other classes

until their members are not related.

• Extensibility: New features can be added easily by simple modifications in

existing objects and by adding some new ones.

• Maintainability: Objects to be maintained can be found with ease and can be

fixed separately.

• Re-Usability: Different programs can use the objects.

 26

Furthermore, Java is a platform independent programming language. Java source

code is compiled into byte code which can be run on Java Virtual Machine(JVM).

There are different JVMs for all operating systems so it is not important where

source code is compiled. JVM interprets the byte code for the operating system or

machine on which it runs. (Figure 5)

Figure 5. Java Byte Code and Platform Independence

 Java is considered as an efficient tool, since it also provides additional features such

as:

• Swing is a package in Java standard library which supplies a collection of

GUI elements.

• Multi-threading makes available to execute different threads at the same time

in the same Java program.

 27

3.4 Software Architecture

RILA has several classes and a number of packages that surrounds these classes. One

more package is added to RILA package hierarchy to develop its GUI and a fast

library; [20] swing is added for this GUI package. Components of Java Swing library

used in GUI package can be seen in the Table 2 [24].

Table 2. Components Used in GUI

COMPONENT NAME DESCRIPTION

JLabel Short text string display area for labeling components.

JTextField Single line text area.

JPasswordField It is a single line area. Original characters in this area is not
shown.

JTextArea Multi-Line area that displays plain text.

JComboBox An Editable field with a drop-down list.

JCheckBox A box which can be in a state of selected or deselected.

JButton It is a push button.

JMenuBar A bar that holds the menu.

JMenu A pop-up menu that contains menu items.

JMenuItem Any item in a menu.

JPanel It is a container.

JEditorPane It is a text component for editing text content in it.

JTextPane A text component that can be marked up with attributes

JFileChooser It helps user to be able to choose a file.

JScrollPane Provides a scrollable view.

JTable It is used for editing and displaying 2D tables.

JTree It helps to display a set of hierarchical data as an outline.

Table 3 shows new added classes and their packages. All the classes except Run and

RilaDAO are in “rila.mygui” package. RilaDAO is used as a database access object

for querying. HubCenterPanel uses RilaDAO to make a bar chart with the result of

RilaDAO query. Run class is an API class. It provides the relation between GUI and

the RILA. MySingelton class’ duty is catching outputs and some values and carrying

them between GUI and RILA.

 28

 Table 3. New Added Classes

Class Name Package Name

Entity rila.mygui

GridPanel rila.mygui

GuiMain rila.mygui

HTMLPanel rila.mygui

HubBarPanel rila.mygui

HubCenterPanel rila.mygui

HubPanel rila.mygui

InputPanel rila.mygui

JTreePanel rila.mygui

LoginPanel rila.mygui

MySingelton rila.mygui

Settingsparam rila.mygui

jEditorPane rila.mygui

Run rila.run

RilaDAO rila.support

This relationship between RILA and GUI is established by the help of Run and

MySingelton classes. Code segments from Run class and InputPanel class are

presented as Figure 6 and Figure 7 to understand this relationship.

Figure 6. InputPanel Calls runAlgortihm Method of a Run Instance

API method runAlgorithm of Run class is called from the GUI class InputPanel with

the parameters minSupport, penaltyFactor, MaxSizeForRules,

 29

ignoreUnknownValues, minF, maxNumHypothExtend, hubTable, targetAttribute,

PrimaryKey, ClassTable, dimensionTables and lateStrategy.

Figure 7. Setting Part of runAlgorithm Method in Run Class

Method runAlgorithm sets these parameters for RILA with the code above and runs

it with the code below in Figure 8. It can be said that all parameters come from GUI

and are used in RILA.

 30

Figure 8. runAlgortihm Runs Select Late Startegy or Select Early Strategy

Figure 9 presents the running diagram of the code in Figure8.

class Business Process Model

InputPanel

+ actionPerformed: void

Run

+ connect(): void

+ runAlgorithm(): void

SelectEarly

+ run(): void

SelectLate

+ run: void

Figure 9. Process Diagram of Selecting Strategy

 31

All the output of RILA is carried on MySingleton object. Thus MySingelton class

has to be imported in some of the RILA packages. Table 4 shows these classes and

their packages.

Table 4. Class That Imports Mysingelton Class

Classes Packages

RelationalILA rila.algorithms

SelectLate rila.algorithms

SelectEarly rila.algorithms

MetaImporter rila.relation

Hypothesis rila.rule

RelationalRuleSet rila.rule

Rule rila.rule

Globals rila.util

Run rila.run

MySingelton class has some get / set functions to behave like an inter class between

RILA and GUI. Here is the get / set functions:

• public String getMetaInfo()

• public void setMetaInfo(String meta)

• public String getRules()

• public void setRules(String rule)

• public String getRuleSetParameters()

• public void setRuleSetparameters(String str)

• public String getAppliedRules()

• public void setAppliedrules(String appl)

• public String getListofParameters()

• public void setListofParameters(String listOfParams)

• public String getLogofSearchingRule()

 32

• public void setLogofSearchingRule(String str)

• public String getNumbers()

• public void setNumbers(String num)

• public String getListofgeneratedRules()

• public void setListofGeneratedRules(String str)

Above methods are used by the classes SelectEarly,SelectLate, RelationalILA,

MetaImporter, Hypothesis, RelationalRuleSet, Rule, Globals, Run to set and by

jEditorPane to get the final outputs. Figure 10 illustrated the diagram of above

statement.

Figure 10. Class Model for Mysingelton Related Classes

 33

3.4.1 GUI Package

In Table 5 all the classes in this package and what they extends are presented.

Table 5. Classes and Their Extendings

Entity -

GridPanel JPanel

GuiMain JFrame

HTMLPanel JPanel

HubBarPanel JPanel

HubCenterPanel JPanel

HubPanel JPanel

InputPanel -

JTreePanel JPanel

LoginPanel -

MySingelton -

Settingsparam -

jEditorPane JPanel

GuiMain class is the main class which is responsible for launching GUI. This class

extends JFrame so every panel that is wanted to be displayed is added GuiMain’s

content pane. It is possible to write a panel for the needs and add the panel to RILA

GUI anytime. An example is added with RILA GUI’s screen shots to understand the

classes of GUI package.

 34

3.4.2 Example for the classes of GUI package

In this work RILA is tried on “gene” database which was first used in KDD Cup

2001 competition [21] and “ensembl” database which is used in ensembl project
1
.

Gene database is set on local mysql database server with a name “test”. MySQL

Server 5.1 is installed on local machine and its url is

jdbc:mysql://localhost:3306/test. In this database there are three tables:

Composition, Gene, Interaction. If Select Early strategy is applied a table named

“covered” is generated during process. Ensembl database does not let generating or

droping objects from outside. Thus only Select Late strategy is applied to ensemble

database.

Its url is jdbc:mysql://ensembldb.ensembl.org:5306/aedes_aegypti_core_48_1b.

After launching the code the first initialized form is GuiMain and LoginPanel is

added to its contentpane. GUI is presented with its screen shots and some code

segments in the package.

1 EMBL - EBI and the Wellcome Trust Sanger Institute works on ensembl project to develop a
software system which produces and maintains automatic annotation on selected eukaryotic
genomes [25].

 35

Figure 11. LoginPanel.java

To connect the database user name, password, database url must be correctly written

in corresponding area. In the driver list there are class names of sql driver, mysql

driver, derby driver. After pressing “Login” button if driver class is not found, it is

handled by ClassNotFoundException. A connection is tried to establish by using

“DriverManager.getConnection(dbURL, userName, password)” line. It is handled by

SQLException. Look at Figure 12.

 36

Figure 12. Code Segment of LoginPanel.Java for Connection a Database

After connection is set, InputPanel and JTreePanel are adding to the main frame.

JTreePanel is located at the WEST and InputPanel is located at the CENTER(Figure

13).

Figure 13. BorderLayouts of InputPanel and JTreePanel

 37

JTreePanel is a data presenter in hierarchical way. Database name is shown at the

top. Below from database name, all of the table names are presented at the same

level. When user clicks on any table name, column names relevant to the selected

table name are opened. A mouseReleased event added to the elements of JTreePanel.

In this event myPopupEvent method is triggered and in this method JPopupMenu

object is generated and some menu items are added to the JPopupMenu object with

respect to the EntityType of the tree node that the coordinate of the mouse is on it. In

order to understand EntityType look at Figure 14.

Figure 14. Entity Class

Menu items of JPopupMenu with respect to the EntityType:

 If the EntityType is TABLE:

• Select as hubtable

 38

• Select as ClassTable

• Select as Dimension Table

If the EntityType is COLUMN:

• Select as PrimaryKey

• Select as Target Attribute

Below code provides the spread of menu items (Figure 15).

Figure 15. Jtreepanel.Java Menu with respect to the Tree Node

 39

For setting the parameters in the JPopupMenu, GUI uses Settingsparam get / set

class. An inner class that implements ActionListener named PopupActionListener is

used to set the parameters by using its actionPerformed method (Figure 16).

Figure 16 actionperformed Method in the Inner Class Popupactionlistener

 40

In the above code params value is an instance of Settingsparam class. Here is the

class.

Figure 17. Settingsparam Class

Duty of InputPanel class is to give user an ability to set all parameters for running

RILA. Here are the parameters:

• Penalty Factor

• Max # of Hypothesis to Extend

• Min F Value

• Max Size For Rules

• Minimum Support

• Select Late Strategy

• Ignore Unknown Values

 41

Penalty Factor: For the evaluation of the hypothesis RILA needs a score. In the

formula below tp represents the true positives and fn represents false negatives. For

no sensitivity pf should set to 0 [22];[23].

 (2.1)

Max # of Hypothesis to Extend: It determines the max number of hypothesis that can

be extended in each level.

Min F Value: Minimum acceptable f measure value. By this value a hypothesis can

be added to active hypothesis set. Thus it can be evaluated at the time of the rule

selection process and new conditions also can be appended to this hypothesis.

Minimum Support: Generated hypothesis should cover this minimum number.

Select Late Strategy: If it is not checked, RILA uses Select Early Strategy

Ignore Unknown Values: If it is checked during rule generation RILA ignore

unknown database values like “?”.

JTreePanel class sets the Hub table, Class Table, Dimension Tables, Primary Key,

Target Attribute.

 42

Figure 18. Code Segment of InputPanel.java (Values are Set from JTreePanel)

Figure 19. InputPanel ScreenShot

After pressing “Run” button RILA generates outputs. User can reach these outputs

by using menu bar.

 43

 Figure 20 Menu in GuiMain

In “Menu” except “Re Input” and “View Bar Chart”, all of the menu items link to the

relevant panel. By pressing “Re Input” user can set new values to RILA.”View Bar

Chart” draws a bar chart for the tables in the connected database. All outputs except

“Rules” which RILA generates are added to the appendix. “Rules” is given below for

the parameters.

Hub Table: Gene

Class Table: Gene

Dimension Tables: Composition, Interaction

Primary Key: GeneID

Target Attribute: Localization

Penalty Factor: 5

Max # of Hypothesis to Extend: 1000

 44

Minimum f Value: 0

Maximum Size for Rules: 2

Minimum Support: 2

Select Late Strategy: False

Ignore Unknown Value: True

Every output panel gives an opportunity to save output to a txt file (Figure 21).

Figure 21. Rules Output

If the user presses “View Grid” button, rules are shown in a grid. GridPanel class is

added to content pane of the frame. Look at Figure 22.

 45

Figure 22. Rules in Grid Panel

If the user presses Print HTML, rules are shown in HTML table. Rules in HTML can

be saved as html extension.

 46

Figure 23. HTML Panel that Contains Rules Generated.

For the user generated rules become more meaningful with the bar chart. GUI draws

the bar chart by using the getValues method of RilaDAO class. This method contains

a query which is illustrated in Figure 24.

 47

Figure 24. getValues Method for Drawing Bar Chart

Figure 25 presents the bar chart which is drawed by the query executed in getValues

method. In Figure 25 selected table is gene and selected column is Localization. Thus

executed query is:

select distinct(gene.Localization) rowName,count(gene.Localization) RowNumber

from gene group by gene.Localization order by RowNumber desc

 48

Figure 25. Bar Chart for Gene Table and Localization Column

3.4.3 Implementation

For development of the software multimedia PC was used with a 1.86 GHz Intel

Pentium M CPU and 1.50 GB Ram. Operating system was Windows XP. In addition,

MySQL Server 5.1 was installed on this computer. For testing the connectivity to

other DBMS, MSSQL Server 2005 and Netbeans IDE 6.9.1 were installed on the

computer which had 2.33 GHz Intel Core 2 Duo CPU and 3 GB Ram. Connectivity

is tested locally.

 49

Figure 26. SQL SERVER Connectivity

For testing the platform independence of Java GUI, OpenSUSE 11.3 and Java

Version of Netbeans IDE 6.9.1 were installed on the computer which had 2.33 GHz

Intel Core 2 Duo CPU and 3 GB Ram. All of the platforms had JDK 1.6.0. No third

party tool was used.

 50

Figure 27. GUI on LINUX

 51

CHAPTER 4

CONCLUSION

In chapter two the basic architecture, predecessors and the rule selection strategies of

RILA have been explained. Two different strategies which are applied by RILA;

select early and select late strategy, have been discussed which are very important to

be considered for the efficient performance of the system according to the situation.

In chapter three the main part of the work which was designing a user interface for

RILA had been described.

In conclusion, RILA makes use of the SQL queries and directly uses the data in

RDBS and collaborates with the DBMS. This way, it optimizes the query execution

procedure. RILA is able to mine relational data stored in the relational database

without requiring a local copy of the data. RILA is simple but powerful inductive

algorithm used in the process of machine learning. However before this work it was

difficult to work with RILA due to the lack of user-interface. Swing library has been

used for making user interface graphical and more user friendly.

Designed GUI provided to users :

• A connection to jdbc database and hierarchy in the tables and columns get

retrieved by this connection.

 52

• A chance for selecting the “rule selection strategy” and a chance for setting

parameters of the chosen strategy easily.

• Logs of the processes of the chosen algorithm.

• List of the rules with their support values.

• A bar chart which is designed according to the values in training set.

The design approach of GUI permits enlargement. There are some practical issues

that can apply to the GUI. Showing the history of rules generated gives benefits to

user. Also “select queries” executing ability without using any third party database

tool provides user to work easy with RILA. Above ideas have considered as a future

work.

 53

REFERENCES

[1] ELMASRI, R., NAVATHE, S.B. (1989), Fundamentals of Database Systems,

Benjamin/Cummings, Redwood City, CA.

[2] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S. (2002), Database

System Concepts, McGraw-Hill Companies Inc.

[3] MUGGLETON, S. (1992), Inductive Logic Programming, Academic Press,

London.

[4] BLOCKEEL, H., SEBAG, M. (2003), Scalability and Efficiency in Multi-

Relational Data Mining, Special Issue on Multi-Relational Mining, SIGKDD

Explorations, 17-30. Vol.5

[[[[5]]]] DEOGUN, J. S. et. al. (1997), Data Mining: Research Trends, Challenges, and

Applications, Proceedings of ACM CSC ’95, Kluwer Academic Publishers.

[[[[6]]]] HOLSHEIMER, M., SIEBES, A. (1994), Data Mining-The Search for

Knowledge in Databases, Report No. CS-R9406, CWI, Amsterdam, The

Netherlands.

[7] FRAWLEY, W.J., PIATETSKY-SHAPIRO, G., MATHEUS, C.J. (1991),

Knowledge Discovery in Databases: An Overview, MIT Press, Cambridge.

[8] ULUDAĞ, M. (2005), Supervised Rule Induction for Relational Data,

Ph.D.Dissertation, Eastern Mediterranean University, Gazimağusa, Turkish Republic

of Northern Cyprus.

[9] TOLUN, M.R. et. al. (1999), ILA-2:An Inductive Learning Algorithm for

Knowledge Discovery, Cybernetics and Systems: An International Journal, 609-628.

[10] TOLUN, M.R., ABU-SOUD, S.M. (1998), ILA: An inductive learning

algorithm for rule extraction, Expert Systems with Applications, 361-370.

[11] MANILLA, H., TOIVONEN, H. (1997), Levelwise search and borders of

theories in knowledge discovery, Data Mining and Knowledge Discovery, 241-258.

R1

 54

[12] KNOBBE, A.J, BLOCKEEL, H., SIEBES, A., VAN DER WALLEN,

D.M.G. (1999), Multi-Relational Data Mining, Proceedings of the Benelearn’99

Conference.

[13] AGRAWAL, R., SHIM, K. (1996), Developing Tightly-Coupled Data Mining

Applications on a Relational Database System, Proceedings of the KDD 96

Conference.

[14] DE RAEDT, L., VAN LAER, W. (1995), Inductive Constraint Logic,

Proceedings of the Sixth Conference on Algorithmic Learning Theory, Lecture Notes

in AI, 80–94. Springer-Verlag.

[15] DZEROSKI S., LAVRAC, N. (2001), Relational Data Mining, Springer-

Verlag.

[16] Uludağ, M. (1998), Application of Rule Induction Algorithms to DNA Sequence

Analysis, M.Sc. Thesis, Middle East Technical University, Ankara, Turkey.

[17] LAVRAC N. et. al. (2002), Adapting Classification Rule Induction to Subgroup

Discovery, Proceedings of the 2002 IEEE International Conference on Data Mining,

Maebashi City, Japan.

[18] DEITEL, H.M., DEITEL, P.J. (2002), Java How to Program, Upper Saddle

River, New Jersey.

[19] BLAHA, M.R., RUMBAUGH, J.R. (2004), Object-Oriented Modeling and

Design with UML, Prentice Hall.

[20] GUTZ, S., ROBINSON, M., VOROBIEV, P. (1999), Up to Speed With

Swing, Greenwich, Manning.

[21] CHENG, J. et. al. (2002), KDD Cup 2001 Report, SIGKDD Explorations, 47-

64.

[22] ULUDAĞ, M., TOLUN M.R., ETZOLD, T. (2003), A Multi-Relational Rule

Discovery System, Proceedings of Eighteenth International Symposium on Computer

and Information Sciences, Antalya, Turkey.

[23] TOLUN, M.R., SEVER, H., ULUDAĞ, M. (1998), Improved Rule Discovery

Performance on Uncertainty, Proceedings of the Second Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD-98), Melbourne, Australia.

[24] http://download.oracle.com/javase/1.4.2/docs/api/javax/swing/package-
summary.html (2010)

[25] http://www.ensembl.org (2010)

R2

 55

APPENDIX A

OUTPUTS OF RULES GENERATED BY RILA

MetaInfo:

A1

 56

Rule Set Parameters:

Numbers:

A2

 57

Log of Searching Rules:

Applied Rules:

A3

 58

List of Generated Rules:

A4

 vi

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kapucu, Utku

Nationality: Turkish (TC)

Date and Place of Birth: 30 August 1980 , Karabük

Marital Status: Married

email: utkukapucu@gmail.com

EDUCATION

BSc. in Mathematics and Computer Science Cankaya University 2002-2006

BSc. in Civil Engineering Yildiz Technical University 1998-2001

(Not Completed)

High School TED Karabük College 1994-1997

WORK EXPERIENCE

IT Expert Prime Ministry Undersecretariat of

Customs, Ankara

2006-Present

Software Developer Bott Bilgisayar September 2006 - November 2006

Software Developer Basarsoft June 2006 - August 2006

FOREIGN LANGUAGES

Fluent English, Basic German

HOBBIES

Playing Kemence and Baglama, Movies, Football.

