dc.contributor.author |
Rabei, Eqab M.
|
|
dc.contributor.author |
Muslih, Sami I.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2016-06-07T07:52:17Z |
|
dc.date.available |
2016-06-07T07:52:17Z |
|
dc.date.issued |
2010-04 |
|
dc.identifier.citation |
Rabei, E.M., Muslih, S.I., Baleanu, D. (2010). Quantization of fractional systems using WKB approximation. Communications In Nonlinear Science And Numerical Simulation, 15(4), 807-811. http://dx.doi.org/10.1016/j.cnsns.2009.05.022 |
tr_TR |
dc.identifier.issn |
1007-5704 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1042 |
|
dc.description.abstract |
The Caputo's fractional derivative is used to quantize fractional systems using (WKB) approximation. The wave function is build such that the phase factor is the same as the Hamilton's principle function S. The energy eigenvalue is found to be in exact agreement with the classical case. To demonstrate our approach an example is investigated in details |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Elsevier Science |
tr_TR |
dc.relation.isversionof |
10.1016/j.cnsns.2009.05.022 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Fractional Derivatives |
tr_TR |
dc.subject |
Fractional WKB Approximation |
tr_TR |
dc.subject |
Hamilton's Principle Function |
tr_TR |
dc.title |
Quantization of fractional systems using WKB approximation |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Communications In Nonlinear Science And Numerical Simulation |
tr_TR |
dc.identifier.volume |
15 |
tr_TR |
dc.identifier.issue |
4 |
tr_TR |
dc.identifier.startpage |
807 |
tr_TR |
dc.identifier.endpage |
811 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |