dc.contributor.author |
Murthy, Penumarthy Parvaatesam
|
|
dc.contributor.author |
Kumar, Sanjay
|
|
dc.contributor.author |
Taş, Kenan
|
|
dc.date.accessioned |
2016-06-10T08:09:55Z |
|
dc.date.available |
2016-06-10T08:09:55Z |
|
dc.date.issued |
2010-12 |
|
dc.identifier.citation |
Murthy, P.P., Kumar, S., Taş, Kenan. (2010). Common fixed points of self maps satisfying an integral type contractive condition in fuzzy metric spaces. Mathematical Communications, 15(2), 521-537. |
tr_TR |
dc.identifier.issn |
1331-0623 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1064 |
|
dc.description.abstract |
In this paper, first we prove fixed point theorems for different variant of compatible maps, satisfying a contractive condition of integral type in fuzzy metric spaces, which improve the results of Branciari [2], Rhoades [33], Kumar et al .[23], Subramanyam [35] and results of various authors cited in the literature of "Fixed Point Theory and Applications". Secondly, we introduce the notion of any kind of weakly compatible maps and prove a fixed point theorem for weakly compatible maps along with the notion of any kind of weakly compatible. At the end, we prove a fixed point theorem using variants of R-Weakly commuting mappings in fuzzy metric spaces |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Univ Osijek, Depth Mathematics |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Common Fixed Point |
tr_TR |
dc.subject |
Compatible Map |
tr_TR |
dc.subject |
Weakly Compatible Maps |
tr_TR |
dc.subject |
Any Kind of Weakly Compatible |
tr_TR |
dc.title |
Common fixed points of self maps satisfying an integral type contractive condition in fuzzy metric spaces |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Mathematical Communications |
tr_TR |
dc.contributor.authorID |
4971 |
tr_TR |
dc.identifier.volume |
15 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
521 |
tr_TR |
dc.identifier.endpage |
537 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |