DSpace Repository

A fite type result for sequental fractional differintial equations

Show simple item record

dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jarad, Fahd
dc.contributor.author Mustafa, Octavian G.
dc.contributor.author Trujillo, J. J.
dc.date.accessioned 2016-06-10T08:26:09Z
dc.date.available 2016-06-10T08:26:09Z
dc.date.issued 2010-06
dc.identifier.citation Abdeljavad, T...et al. (2010). A fite type result for sequental fractional differintial equations. Dynamic System and Applications, 19(2), 383-394. tr_TR
dc.identifier.issn 1056-2176
dc.identifier.uri http://hdl.handle.net/20.500.12416/1066
dc.description.abstract Given the solution f of the sequential fractional differential equation aD(t)(alpha)(aD(t)(alpha) f) + P(t)f = 0, t is an element of [b, a], where -infinity < a < b < c < + infinity, alpha is an element of (1/2, 1) and P : [a, + infinity) -> [0, P(infinity)], P(infinity) < + infinity, is continuous. Assume that there exist t(1),t(2) is an element of [b, c] such that f(t(1)) = (aD(t)(alpha))(t(2)) = 0. Then, we establish here a positive lower bound for c - a which depends solely on alpha, P(infinity). Such a result might be useful in discussing disconjugate fractional differential equations and fractional interpolation, similarly to the case of (integer order) ordinary differential equations tr_TR
dc.language.iso eng tr_TR
dc.publisher Dynamic Publisher tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.title A fite type result for sequental fractional differintial equations tr_TR
dc.type article tr_TR
dc.relation.journal Dynamic System and Applications tr_TR
dc.identifier.volume 19 tr_TR
dc.identifier.issue 2 tr_TR
dc.identifier.startpage 383 tr_TR
dc.identifier.endpage 394 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record