dc.contributor.author |
Abdeljawad, Thabet
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Jarad, Fahd
|
|
dc.contributor.author |
Mustafa, Octavian G.
|
|
dc.contributor.author |
Trujillo, J. J.
|
|
dc.date.accessioned |
2016-06-10T08:26:09Z |
|
dc.date.available |
2016-06-10T08:26:09Z |
|
dc.date.issued |
2010-06 |
|
dc.identifier.citation |
Abdeljavad, T...et al. (2010). A fite type result for sequental fractional differintial equations. Dynamic System and Applications, 19(2), 383-394. |
tr_TR |
dc.identifier.issn |
1056-2176 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1066 |
|
dc.description.abstract |
Given the solution f of the sequential fractional differential equation aD(t)(alpha)(aD(t)(alpha) f) + P(t)f = 0, t is an element of [b, a], where -infinity < a < b < c < + infinity, alpha is an element of (1/2, 1) and P : [a, + infinity) -> [0, P(infinity)], P(infinity) < + infinity, is continuous. Assume that there exist t(1),t(2) is an element of [b, c] such that f(t(1)) = (aD(t)(alpha))(t(2)) = 0. Then, we establish here a positive lower bound for c - a which depends solely on alpha, P(infinity). Such a result might be useful in discussing disconjugate fractional differential equations and fractional interpolation, similarly to the case of (integer order) ordinary differential equations |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Dynamic Publisher |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.title |
A fite type result for sequental fractional differintial equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Dynamic System and Applications |
tr_TR |
dc.identifier.volume |
19 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
383 |
tr_TR |
dc.identifier.endpage |
394 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |