dc.contributor.author |
Islam, M. Qamarul
|
|
dc.contributor.author |
Tiku, Moti L.
|
|
dc.date.accessioned |
2016-06-13T11:16:32Z |
|
dc.date.available |
2016-06-13T11:16:32Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Islam, M.Q., Tiku, M.L. (2010). Multiple linear regression model with stochastic design variables. Journal of Applied Statistics, 37(6), 923-943. http://dx.doi.org/10.1080/02664760902939612 |
tr_TR |
dc.identifier.issn |
0266-4763 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1086 |
|
dc.description.abstract |
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Routledge Journals |
tr_TR |
dc.relation.isversionof |
10.1080/02664760902939612 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Correlation Coefficient |
tr_TR |
dc.subject |
Least Squares |
tr_TR |
dc.subject |
Linear Regression |
tr_TR |
dc.subject |
Modified Maximum Likelihood |
tr_TR |
dc.subject |
Multivariate Distributions |
tr_TR |
dc.subject |
Non-Normality |
tr_TR |
dc.subject |
Random Design |
tr_TR |
dc.title |
Multiple linear regression model with stochastic design variables |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Applied Statistics |
tr_TR |
dc.identifier.volume |
37 |
tr_TR |
dc.identifier.issue |
6 |
tr_TR |
dc.identifier.startpage |
923 |
tr_TR |
dc.identifier.endpage |
943 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, İktisadi İdari Bilimler Fakültesi, İktisat Bölümü |
tr_TR |