DSpace Repository

On nonlinear fractional Klein-Gordon equation

Show simple item record

dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Golmankhaneh, Ali K.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2016-07-01T09:22:31Z
dc.date.available 2016-07-01T09:22:31Z
dc.date.issued 2011-03
dc.identifier.citation Golmankhaneh, A.K., Golmankhaneh, Ali K., Baleanu, D. (2011). On nonlinear fractional Klein-Gordon equation. Signal Processing, 91(3), 446-451. http://dx.doi.org/10.1016/j.sigpro.2010.04.016 tr_TR
dc.identifier.issn 0165-1684
dc.identifier.uri http://hdl.handle.net/20.500.12416/1179
dc.description.abstract Numerical methods are used to find exact solution for the nonlinear differential equations. In the last decades Iterative methods have been used for solving fractional differential equations. In this paper, the Homotopy perturbation method has been successively applied for finding approximate analytical solutions of the fractional nonlinear Klein-Cordon equation can be used as numerical algorithm. The behavior of solutions and the effects of different values of fractional order a are shown graphically. Some examples are given to show ability of the method for solving the fractional nonlinear equation tr_TR
dc.language.iso eng tr_TR
dc.publisher Elsevier Science Bv tr_TR
dc.relation.isversionof 10.1016/j.sigpro.2010.04.016 tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Caputo Fractional Derivative tr_TR
dc.subject Fractional Klein Gordon tr_TR
dc.subject Homotopy Perturbation Method tr_TR
dc.subject Numerical Algorithm tr_TR
dc.subject Iteration Method tr_TR
dc.title On nonlinear fractional Klein-Gordon equation tr_TR
dc.type article tr_TR
dc.relation.journal Signal Processing tr_TR
dc.identifier.volume 91 tr_TR
dc.identifier.issue 3 tr_TR
dc.identifier.startpage 446 tr_TR
dc.identifier.endpage 451 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record