dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.contributor.author |
Mustafa, Octavian G.
|
|
dc.contributor.author |
Cosulshci, Mirel
|
|
dc.date.accessioned |
2017-02-16T11:22:19Z |
|
dc.date.available |
2017-02-16T11:22:19Z |
|
dc.date.issued |
2011-02-04 |
|
dc.identifier.citation |
Baleanu, D...et al. (2011). Asymptotic integration of some nonlinear differential equations with fractional time derivative. Journal of Physics A-Mathematical and Theoretical, 44(5). http://dx.doi.org/ 10.1088/1751-8113/44/5/055203 |
tr_TR |
dc.identifier.issn |
1751-8113 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1261 |
|
dc.description.abstract |
We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + alpha)-order fractional differential equation (0)D(t)(alpha) (x') + f (t, x) = 0, t > 0, has a solution x is an element of C([0, +infinity), R) boolean AND C(1)((0, +infinity), R), with lim(t SE arrow 0) [t(1-alpha)x'(t)] is an element of R, which can be expanded asymptotically as a+bt(alpha)+O(t(alpha-1)) when t ->+infinity for given real numbers a, b. Our arguments are based on fixed point theory. Here, (0)D(t)(alpha) designates the Riemann-Liouville derivative of order alpha is an element of (0, 1) |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
IOP Publishing Ltd |
tr_TR |
dc.relation.isversionof |
10.1088/1751-8113/44/5/055203 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Existence |
tr_TR |
dc.title |
Asymptotic integration of some nonlinear differential equations with fractional time derivative |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Physics A-Mathematical and Theoretical |
tr_TR |
dc.identifier.volume |
44 |
tr_TR |
dc.identifier.issue |
5 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |