DSpace@Çankaya

Asymptotic integration of some nonlinear differential equations with fractional time derivative

Basit öğe kaydını göster

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Agarwal, Ravi P.
dc.contributor.author Mustafa, Octavian G.
dc.contributor.author Cosulshci, Mirel
dc.date.accessioned 2017-02-16T11:22:19Z
dc.date.available 2017-02-16T11:22:19Z
dc.date.issued 2011-02-04
dc.identifier.citation Baleanu, D...et al. (2011). Asymptotic integration of some nonlinear differential equations with fractional time derivative. Journal of Physics A-Mathematical and Theoretical, 44(5). http://dx.doi.org/ 10.1088/1751-8113/44/5/055203 tr_TR
dc.identifier.issn 1751-8113
dc.identifier.uri http://hdl.handle.net/20.500.12416/1261
dc.description.abstract We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + alpha)-order fractional differential equation (0)D(t)(alpha) (x') + f (t, x) = 0, t > 0, has a solution x is an element of C([0, +infinity), R) boolean AND C(1)((0, +infinity), R), with lim(t SE arrow 0) [t(1-alpha)x'(t)] is an element of R, which can be expanded asymptotically as a+bt(alpha)+O(t(alpha-1)) when t ->+infinity for given real numbers a, b. Our arguments are based on fixed point theory. Here, (0)D(t)(alpha) designates the Riemann-Liouville derivative of order alpha is an element of (0, 1) tr_TR
dc.language.iso eng tr_TR
dc.publisher IOP Publishing Ltd tr_TR
dc.relation.isversionof 10.1088/1751-8113/44/5/055203 tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Existence tr_TR
dc.title Asymptotic integration of some nonlinear differential equations with fractional time derivative tr_TR
dc.type article tr_TR
dc.relation.journal Journal of Physics A-Mathematical and Theoretical tr_TR
dc.identifier.volume 44 tr_TR
dc.identifier.issue 5 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster