Abstract:
Under some simple conditions on the coefficient a( t), we establish that the initial value problem ((0)D(t)(alpha)x)' + a(t)x = 0; t > 0; lim(t SE arrow 0)[t(1-alpha)x(t)] = 0 has no solution in L-p((1, +infinity), R), where p-1/p > alpha > 1/p and D-0(t)alpha designates the Riemann-Liouville derivative of order alpha Our result might be useful for developing a non-integer variant of H. Weyl's limit-circle/limit-point classification of differential equations. (C) 2011 Elsevier Inc. All rights reserved.