DSpace Repository

On L-p-solutions for a class of sequential fractional differential equations

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Mustafa, Octavian G.
dc.contributor.author Agarwal, Ravi P.
dc.date.accessioned 2017-02-17T07:40:41Z
dc.date.available 2017-02-17T07:40:41Z
dc.date.issued 2011-11-01
dc.identifier.citation Baleanu, D...et al. (2011). On L-p-solutions for a class of sequential fractional differential equations. Applied Mathematics&Computation, 218(5), 2074-2081. http://dx.doi.org/ 10.1016/j.amc.2011.07.024 tr_TR
dc.identifier.issn 0096-3003
dc.identifier.uri http://hdl.handle.net/20.500.12416/1264
dc.description.abstract Under some simple conditions on the coefficient a( t), we establish that the initial value problem ((0)D(t)(alpha)x)' + a(t)x = 0; t > 0; lim(t SE arrow 0)[t(1-alpha)x(t)] = 0 has no solution in L-p((1, +infinity), R), where p-1/p > alpha > 1/p and D-0(t)alpha designates the Riemann-Liouville derivative of order alpha Our result might be useful for developing a non-integer variant of H. Weyl's limit-circle/limit-point classification of differential equations. (C) 2011 Elsevier Inc. All rights reserved. tr_TR
dc.language.iso eng tr_TR
dc.publisher Elsevier Science Inc. tr_TR
dc.relation.isversionof 10.1016/j.amc.2011.07.024 tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Sequential Fractional Differential Equation tr_TR
dc.subject L-P-Solution tr_TR
dc.subject Limit-Circle/Limit-Point Classification Of Differential Equations tr_TR
dc.title On L-p-solutions for a class of sequential fractional differential equations tr_TR
dc.type article tr_TR
dc.relation.journal Applied Mathematics&Computation tr_TR
dc.identifier.volume 218 tr_TR
dc.identifier.issue 5 tr_TR
dc.identifier.startpage 2074 tr_TR
dc.identifier.endpage 2081 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record