dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Mustafa, Octavian G.
|
|
dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.date.accessioned |
2017-02-17T07:40:41Z |
|
dc.date.available |
2017-02-17T07:40:41Z |
|
dc.date.issued |
2011-11-01 |
|
dc.identifier.citation |
Baleanu, D...et al. (2011). On L-p-solutions for a class of sequential fractional differential equations. Applied Mathematics&Computation, 218(5), 2074-2081. http://dx.doi.org/ 10.1016/j.amc.2011.07.024 |
tr_TR |
dc.identifier.issn |
0096-3003 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1264 |
|
dc.description.abstract |
Under some simple conditions on the coefficient a( t), we establish that the initial value problem ((0)D(t)(alpha)x)' + a(t)x = 0; t > 0; lim(t SE arrow 0)[t(1-alpha)x(t)] = 0 has no solution in L-p((1, +infinity), R), where p-1/p > alpha > 1/p and D-0(t)alpha designates the Riemann-Liouville derivative of order alpha Our result might be useful for developing a non-integer variant of H. Weyl's limit-circle/limit-point classification of differential equations. (C) 2011 Elsevier Inc. All rights reserved. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Elsevier Science Inc. |
tr_TR |
dc.relation.isversionof |
10.1016/j.amc.2011.07.024 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Sequential Fractional Differential Equation |
tr_TR |
dc.subject |
L-P-Solution |
tr_TR |
dc.subject |
Limit-Circle/Limit-Point Classification Of Differential Equations |
tr_TR |
dc.title |
On L-p-solutions for a class of sequential fractional differential equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Applied Mathematics&Computation |
tr_TR |
dc.identifier.volume |
218 |
tr_TR |
dc.identifier.issue |
5 |
tr_TR |
dc.identifier.startpage |
2074 |
tr_TR |
dc.identifier.endpage |
2081 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |