dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Mustafa, Octavian G.
|
|
dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.date.accessioned |
2017-02-17T07:56:07Z |
|
dc.date.available |
2017-02-17T07:56:07Z |
|
dc.date.issued |
2011-08 |
|
dc.identifier.citation |
Baleanu, D...et al. (2011). Asymptotic integration of (1+alpha)-order fractional differential equations. Computers&Mathematics With Applications, 62(3), 1492-1500. http://dx.doi.org/10.1016/j.camwa.2011.03.021 |
tr_TR |
dc.identifier.issn |
0898-1221 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1266 |
|
dc.description.abstract |
We establish the long-time asymptotic formula of solutions to the (1 + alpha)-order fractional differential equation (i)(0)O(t)(1+alpha)x + a (t)x = 0, t > 0, under some simple restrictions on the functional coefficient a(t), where (i)(0)O(t)(1+alpha)x is one of the fractional differential operators D-0(t)alpha(x'), ((0)D(t)(alpha)x)' = D-0(t)1+alpha x and D-0(t)alpha(tx' - x). Here, D-0(t)alpha designates the Riemann-Liouville derivative of order a E (0, 1). The asymptotic formula reads as [b + O(1)] . x(small) + c . x(large) as t -> +infinity for given b, c E is an element of R, where x(small) and x(large) represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation (i)(0)O(t)(1+alpha)x = 0, t > 0. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Pergamon-Elsevier Science Ltd |
tr_TR |
dc.relation.isversionof |
10.1016/j.camwa.2011.03.021 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Linear Fractional Differential Equation |
tr_TR |
dc.subject |
Asymptotic Integration |
tr_TR |
dc.title |
Asymptotic integration of (1+alpha)-order fractional differential equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Computers&Mathematics With Applications |
tr_TR |
dc.identifier.volume |
62 |
tr_TR |
dc.identifier.issue |
3 |
tr_TR |
dc.identifier.startpage |
1492 |
tr_TR |
dc.identifier.endpage |
1500 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |