DSpace Repository

Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems

Show simple item record

dc.contributor.author Debbouche, Amar
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2017-02-17T08:26:22Z
dc.date.available 2017-02-17T08:26:22Z
dc.date.issued 2011-08
dc.identifier.citation Debbouche, A., Baleanu, D. (2011). Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Computers&Mathematics With Applications, 62(3), 1442-1450. http://dx.doi.org/ 10.1016/j.camwa.2011.03.075 tr_TR
dc.identifier.issn 0898-1221
dc.identifier.uri http://hdl.handle.net/20.500.12416/1270
dc.description.abstract In this work, the controllability result of a class of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems in a Banach space has been established by using the theory of fractional calculus, fixed point technique and also we introduced a new concept called (alpha, u)-resolvent family. As an application that illustrates the abstract results, an example is given tr_TR
dc.language.iso eng tr_TR
dc.publisher Pergamon-Elsevier Science Ltd tr_TR
dc.relation.isversionof 10.1016/j.camwa.2011.03.075 tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Fractional Integro-Differential Systems tr_TR
dc.subject Controllability tr_TR
dc.subject (Alpha, U)-Resolvent Family tr_TR
dc.subject Non Local And Impulsive Conditions tr_TR
dc.subject Fixed Point Theorem tr_TR
dc.title Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems tr_TR
dc.type article tr_TR
dc.relation.journal Computers&Mathematics With Applications tr_TR
dc.identifier.volume 62 tr_TR
dc.identifier.issue 3 tr_TR
dc.identifier.startpage 1442 tr_TR
dc.identifier.endpage 1450 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record