Abstract:
The atmosphere above the sea or ocean, known as the marine atmosphere, affects optical waves propagating through it in a different manner than the atmosphere above land. Like other system design parameters, intensity fluctuations of laser light propagating in marine atmosphere, quantified by the scintillation index, also show different variations. The on-axis scintillations of higher-order laser beams are formulated and evaluated when such excitations are employed in a weakly turbulent marine atmospheric medium. Variations of the scintillation index with respect to the changes in the Gaussian beam size of the higher-order mode, link length, wavelength, and structure constant are reported. Our results can be used in the design of an optical wireless communication link design operating in marine atmospheres.