dc.contributor.author |
Ülkü, İrem
|
|
dc.contributor.author |
Töreyin, Behçet Uğur
|
|
dc.date.accessioned |
2017-03-09T12:53:43Z |
|
dc.date.available |
2017-03-09T12:53:43Z |
|
dc.date.issued |
2015-05 |
|
dc.identifier.citation |
Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-9 |
tr_TR |
dc.identifier.issn |
1863-1703 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1423 |
|
dc.description.abstract |
Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer |
tr_TR |
dc.relation.isversionof |
10.1007/s11760-015-0753-9 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Sparse Coding |
tr_TR |
dc.subject |
Hyperspectral Imagery |
tr_TR |
dc.subject |
Anomaly Detection |
tr_TR |
dc.subject |
Online Learning |
tr_TR |
dc.title |
Sparse coding of hyperspectral imagery using online learning |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Signal Image And Video Processing |
tr_TR |
dc.contributor.authorID |
17575 |
tr_TR |
dc.contributor.authorID |
19325 |
tr_TR |
dc.identifier.volume |
9 |
tr_TR |
dc.identifier.issue |
4 |
tr_TR |
dc.identifier.startpage |
959 |
tr_TR |
dc.identifier.endpage |
966 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü |
tr_TR |