DSpace Repository

Some existence results on nonlinear fractional differential equations

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rezapour, Shahram
dc.contributor.author Mohammadi, Hakimeh
dc.date.accessioned 2017-03-13T12:36:31Z
dc.date.available 2017-03-13T12:36:31Z
dc.date.issued 2013-05-13
dc.identifier.citation Baleanu, D., Rezapour, S., Mohammadi, H. (2013). Some existence results on nonlinear fractional differential equations. Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 371(1990). http://dx.doi.org/10.1098/rsta.2012.0144 tr_TR
dc.identifier.issn 1364-503X
dc.identifier.uri http://hdl.handle.net/20.500.12416/1452
dc.description.abstract In this paper, by using fixed-point methods, we study the existence and uniqueness of a solution for the nonlinear fractional differential equation boundary-value problem D(alpha)u(t) = f(t, u(t)) with a Riemann-Liouville fractional derivative via the different boundary-value problems u(0) = u(T), and the three-point boundary condition u(0)= beta(1)u(eta) and u(T) = beta(2)u(eta), where T > 0, t is an element of I = [0, T], 0 < alpha < 1, 0 < eta < T, 0 < beta(1) < beta(2) < 1. tr_TR
dc.language.iso eng tr_TR
dc.publisher Royal Soc tr_TR
dc.relation.isversionof 10.1098/rsta.2012.0144 tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Fractional Calculus tr_TR
dc.subject Caputo Fractional Derivative tr_TR
dc.subject Riemann-Liouville Fractional Derivative tr_TR
dc.subject Boundary-Value Problem tr_TR
dc.title Some existence results on nonlinear fractional differential equations tr_TR
dc.type article tr_TR
dc.relation.journal Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences tr_TR
dc.identifier.volume 371 tr_TR
dc.identifier.issue 1990 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record