DSpace Repository

Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions

Show simple item record

dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Alzabut, Jehad
dc.contributor.author Mukheimer, A.
dc.contributor.author Zaidan, Y.
dc.date.accessioned 2017-03-14T08:18:41Z
dc.date.available 2017-03-14T08:18:41Z
dc.date.issued 2013-05
dc.identifier.citation Abdeljawad, T...et al. (2013). Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions. Journal of Computational Analysis and Application, 15(4), 678-685. tr_TR
dc.identifier.issn 1521-1398
dc.identifier.uri http://hdl.handle.net/20.500.12416/1457
dc.description.abstract The existence of best proximity points for cyclical type contraction mappings is proved in the category of partial metric spaces. The concept of 0-boundedly compact is introduced and used in the cyclical decomposition. Some possible generalizations to the main results are discussed. Further, illustrative examples are given to demonstrate the effectiveness of our results tr_TR
dc.language.iso eng tr_TR
dc.publisher Eudoxus Press tr_TR
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Partial Metric Space tr_TR
dc.subject Best Proximity Point tr_TR
dc.subject Cyclic Mappings tr_TR
dc.subject Banach Contraction Principle tr_TR
dc.subject Boundedly Compact Set tr_TR
dc.subject 0-Compact Set tr_TR
dc.subject Phi-Cyclical Contraction tr_TR
dc.title Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions tr_TR
dc.type article tr_TR
dc.relation.journal Journal of Computational Analysis and Application tr_TR
dc.identifier.volume 15 tr_TR
dc.identifier.issue 4 tr_TR
dc.identifier.startpage 678 tr_TR
dc.identifier.endpage 685 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record