dc.contributor.author |
Abdeljawad, Thabet
|
|
dc.contributor.author |
Alzabut, Jehad
|
|
dc.contributor.author |
Mukheimer, A.
|
|
dc.contributor.author |
Zaidan, Y.
|
|
dc.date.accessioned |
2017-03-14T08:18:41Z |
|
dc.date.available |
2017-03-14T08:18:41Z |
|
dc.date.issued |
2013-05 |
|
dc.identifier.citation |
Abdeljawad, T...et al. (2013). Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions. Journal of Computational Analysis and Application, 15(4), 678-685. |
tr_TR |
dc.identifier.issn |
1521-1398 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1457 |
|
dc.description.abstract |
The existence of best proximity points for cyclical type contraction mappings is proved in the category of partial metric spaces. The concept of 0-boundedly compact is introduced and used in the cyclical decomposition. Some possible generalizations to the main results are discussed. Further, illustrative examples are given to demonstrate the effectiveness of our results |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Eudoxus Press |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Partial Metric Space |
tr_TR |
dc.subject |
Best Proximity Point |
tr_TR |
dc.subject |
Cyclic Mappings |
tr_TR |
dc.subject |
Banach Contraction Principle |
tr_TR |
dc.subject |
Boundedly Compact Set |
tr_TR |
dc.subject |
0-Compact Set |
tr_TR |
dc.subject |
Phi-Cyclical Contraction |
tr_TR |
dc.title |
Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Computational Analysis and Application |
tr_TR |
dc.identifier.volume |
15 |
tr_TR |
dc.identifier.issue |
4 |
tr_TR |
dc.identifier.startpage |
678 |
tr_TR |
dc.identifier.endpage |
685 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |