dc.contributor.author |
Jain, M.
|
|
dc.contributor.author |
Taş, Kenan
|
|
dc.contributor.author |
Rhoades, B. E.
|
|
dc.contributor.author |
Gupta, N.
|
|
dc.date.accessioned |
2017-03-15T11:49:53Z |
|
dc.date.available |
2017-03-15T11:49:53Z |
|
dc.date.issued |
2014-04 |
|
dc.identifier.citation |
Jain, M...et al. (2014). Coupled fixed point theorems for generalized symmetric contractions in partially ordered metric spaces and applications. Journal of Computational Analysis and Application, 16(3), 438-454. |
tr_TR |
dc.identifier.issn |
1521-1398 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1484 |
|
dc.description.abstract |
In the setting of partially ordered metric spaces, we introduce the notion of generalized symmetric g-Meir-Keeler type contractions and use the notion to establish the existence and uniqueness of coupled common fixed points. Our notion extends the notion of generalized symmetric Meir-Keeler contractions given by Berinde et. al. [V. Berinde, and M. Pacurar, Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces, Fixed Point Theory and Appl., 2012, 2012:115, doi:10.1186/1687-1812-2012-115] to a pair of mappings. We also give some applications of our main results. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Eudoxus Press |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.subject |
Partially Ordered Metric Space |
tr_TR |
dc.subject |
Fixed Point |
tr_TR |
dc.subject |
Generalized Symmetric Contractions |
tr_TR |
dc.subject |
Coupled Fixed Point |
tr_TR |
dc.title |
Coupled fixed point theorems for generalized symmetric contractions in partially ordered metric spaces and applications |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Computational Analysis and Application |
tr_TR |
dc.contributor.authorID |
4971 |
tr_TR |
dc.identifier.volume |
16 |
tr_TR |
dc.identifier.issue |
3 |
tr_TR |
dc.identifier.startpage |
438 |
tr_TR |
dc.identifier.endpage |
454 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |