dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Rezapour, Shahram
|
|
dc.contributor.author |
Salehi, Saeid
|
|
dc.date.accessioned |
2017-03-17T10:28:16Z |
|
dc.date.available |
2017-03-17T10:28:16Z |
|
dc.date.issued |
2015-08-06 |
|
dc.identifier.citation |
Baleanu, D., Rezapour, S., Salehi, S. (2015). On the existence of solutions for a fractional finite difference inclusion via three points boundary conditions. Advance in Difference Equations. http://dx.doi.org/10.1186/s13662-015-0559-7 |
tr_TR |
dc.identifier.issn |
1687-1847 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1499 |
|
dc.description.abstract |
In this paper, we discussed the existence of solutions for the fractional finite difference inclusion Delta(nu)x(t) is an element of F(t, x(t), Delta x(t), Delta(2)x(t)) via the boundary value conditions xi x(nu - 3) + beta Delta x(nu - 3) = 0, x(eta) = 0, and gamma x(b + nu) + delta Delta x(b + nu) = 0, where eta is an element of N-nu-2(b+nu-1), 2 < nu < 3, and F : N-nu-3(b+nu+1) x R x R x R -> 2(R) is a compact valued multifunction. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer International Publishing |
tr_TR |
dc.relation.isversionof |
10.1186/s13662-015-0559-7 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.subject |
Fixed Point |
tr_TR |
dc.subject |
Fractional Finite Difference Inclusion |
tr_TR |
dc.subject |
Three Points Boundary Conditions |
tr_TR |
dc.title |
On the existence of solutions for a fractional finite difference inclusion via three points boundary conditions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Advance in Difference Equations |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |