dc.contributor.author |
Wu, Guo-Cheng
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Zeng, Sheng-Da
|
|
dc.contributor.author |
Deng, Zhen-Guo
|
|
dc.date.accessioned |
2017-03-29T10:48:18Z |
|
dc.date.available |
2017-03-29T10:48:18Z |
|
dc.date.issued |
2015-04 |
|
dc.identifier.citation |
Wu, G.C...et al. (2015). Discrete fractional diffusion equation. Nonlinear Dynamics, 80(1-2), 281-286. http://dx.doi.org/ 10.1007/s11071-014-1867-2 |
tr_TR |
dc.identifier.issn |
0924-090X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1510 |
|
dc.description.abstract |
The tool of the discrete fractional calculus is introduced to discrete modeling of diffusion problem. A fractional time discretization diffusion model is presented in the Caputo-like delta's sense. The numerical formula is given in form of the equivalent summation. Then, the diffusion concentration is discussed for various fractional difference orders. The discrete fractional model is a fractionization of the classical difference equation and can be more suitable to depict the random or discrete phenomena compared with fractional partial differential equations |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Springer |
tr_TR |
dc.relation.isversionof |
10.1007/s11071-014-1867-2 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Discrete Fractional Calculus |
tr_TR |
dc.subject |
Discrete Anomalous Diffusion |
tr_TR |
dc.subject |
Discrete Fractional Partial Difference Equations |
tr_TR |
dc.title |
Discrete fractional diffusion equation |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Nonlinear Dynamics |
tr_TR |
dc.identifier.volume |
80 |
tr_TR |
dc.identifier.issue |
1-2 |
tr_TR |
dc.identifier.startpage |
281 |
tr_TR |
dc.identifier.endpage |
286 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |